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Abstract

Macrophages are able to polarize to proinflammatory M1 or alternative M2 states with distinct 

phenotypes and physiological functions. How metabolic status regulates macrophage polarization 

remains not well understood, and here we examine the role of mTOR (Mechanistic Target of 

Rapamycin), a central metabolic pathway that couples nutrient sensing to regulation of metabolic 

processes. Using a mouse model in which myeloid lineage specific deletion of Tsc1 (Tsc1Δ/Δ) 

leads to constitutive mTOR Complex 1 (mTORC1) activation, we find that Tsc1Δ/Δ macrophages 

are refractory to IL-4 induced M2 polarization, but produce increased inflammatory responses to 

proinflammatory stimuli. Moreover, mTORC1-mediated downregulation of Akt signaling 

critically contributes to defective polarization. These findings highlight a key role for the mTOR 

pathway in regulating macrophage polarization, and suggest how nutrient sensing and metabolic 

status could be “hard-wired” to control of macrophage function, with broad implications for 

regulation of Type 2 immunity, inflammation, and allergy.

Introduction

Macrophages play a dynamic role in host defense and maintenance of tissue homeostasis. 

This necessitates a delicate balance between their proinflammatory and immunomodulatory 

functions to ensure appropriate responses to environmental stimuli. Macrophages can be 

broadly classified into M1 (classical) and M2 (alternative) subtypes based on function. M1 
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macrophages are activated by LPS and/or IFN-γ to elaborate proinflammatory cytokine 

production and tissue inflammation 1. Conversely, M2 macrophages are stimulated by Th2 

cytokines IL-4 and/or IL-13 to promote helminthic immunity, fibrosis, allergy, and 

immunomodulation 2. Stimulation of macrophages with IL-4 and IL-13 leads to activation 

of the transcription factor STAT6, which is indispensable for M2 polarization 3. 

Additionally, activation of the nuclear receptors PPARγ and PPARδ is necessary for full 

implementation of the M2 program 4, 5. A hallmark of M2 macrophages is an increase in 

Arginase-1 gene expression and activity 2, which converts L-arginine to L-ornithine to 

promote polyamine synthesis and tissue repair 6. The M2 program is also characterized by 

upregulation of C-type lectins, mannose receptor, chitinase family proteins, resistin-like 

molecules, and Interleukin-10, all of which contribute to immunomodulatory function 7. 

Importantly, distinct metabolic programs are required to support energy demands of M1 and 

M2 macrophages. M1 macrophages rely primarily on glycolytic metabolism, mediated by 

HIF-1α, while M2 macrophages utilize fatty acid oxidation mediated by PPARγ and the 

transcriptional coactivator, PGC-1β 3, 8, 9. This suggests that macrophage metabolism and 

inflammatory phenotype are integrally linked, and hint at additional regulatory control of 

macrophage polarization by metabolic pathways.

The Mechanistic Target of Rapamycin (mTOR) is a key nutrient/energy sensor that couples 

nutrient availability to regulation of downstream metabolic processes such as protein 

synthesis, glycolysis, and de novo lipogenesis 10, 11. mTOR, a serine/threonine kinase, exists 

in a rapamycin-sensitive complex called mTORC1 that is negatively regulated by the 

tuberous sclerosis complex comprised of TSC1 and TSC2 12. Genetic loss of either TSC1 or 

TSC2 leads to constitutive mTORC1 activation 13. Importantly, recent studies demonstrate 

that mTOR controls multiple aspects of T-cell biology including quiescence, activation, and 

differentiation 14. However, little is known regarding the role of mTOR in regulating 

macrophage activation.

In the current study, we elucidate a role for mTOR in macrophage polarization. We 

demonstrate that Tsc1Δ/Δ macrophages have a marked defect in M2 polarization in response 

to IL-4, while the inflammatory response to LPS is enhanced. Aberrant polarization is due, 

at least in part, to mTORC1-mediated attenuation of Akt activity, which renders Tsc1Δ/Δ 

macrophages resistant to the immunomodulatory effects of Akt downstream of IL-4 and 

LPS signaling. Lastly, we show that IL-4 and chitin administration in Tsc1Δ/Δ mice 

recapitulates the defective M2 polarization in vivo.

Results

Constitutive mTORC1 Activity Impairs M2 Polarization

The mTOR pathway integrates a variety of inputs to regulate cell growth and to balance 

anabolic and catabolic processes 15. Interestingly, stimulation of bone marrow derived 

macrophages (BMDMs) with IL-4 or LPS resulted in mTORC1 activation as indicated by 

increased phosphorylation of the downstream targets S6K1 and 4E-BP1 (Fig. 1a), 

suggesting that the mTORC1 pathway may coordinate metabolic changes during 

macrophage activation. To examine this hypothesis, we utilized a model of myeloid-specific 

Tsc1-deficiency in which mTORC1 is constitutively active. Tsc1loxP/loxP LysMCre mice and 
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Tsc1loxP/loxP controls are herein referred to asTsc1Δ/Δ and Tsc1fl/fl respectively. 

Immunoblotting confirmed that TSC1 is absent in the Tsc1Δ/Δ BMDMs (Fig. 1b). TSC2 

protein level was also diminished (Fig. 1b), as TSC1 stabilizes TSC2 16. Tsc1Δ/Δ BMDMs 

displayed constitutive phosphorylation of the mTORC1 downstream targets S6K1 and 4E-

BP1, as well as the S6K1 target ribosomal S6, all of which were sensitive to the mTORC1-

specific inhibitor, rapamycin (Fig. 1b). Furthermore, Tsc1Δ/Δ BMDMs appeared to 

differentiate normally in vitro and expressed similar levels of the macrophage markers F4/80 

and CD11b (Supplementary Fig. S1). As reported in other models of TSC-deficiency 17. 

Tsc1Δ/Δ BMDMs were larger (Supplementary Fig. S1) due likely to a role of mTORC1 in 

regulating cell size 18. These observations confirmed constitutive mTORC1 activation in 

Tsc1Δ/Δ BMDMs and established the validity of our genetic model.

To assess macrophage polarization in Tsc1Δ/Δ BMDMs, we used LPS treatment to promote 

an M1-like phenotype and IL-4 stimulation to induce an M2 phenotype. We found that LPS-

treated Tsc1Δ/Δ BMDMs secreted more of the proinflammatory cytokines IL-6 and TNF-α, 

but less of the anti-inflammatory cytokine IL-10 (Fig. 1c). Given the enhanced responses of 

Tsc1Δ/Δ BMDMs to LPS, we postulated that M2 polarization could be defective. Indeed, 

Tsc1Δ/Δ BMDMs failed to fully upregulate the M2 program, with significant reductions in 

Arg-1, Mgl1, Mgl2, Ym1, Fizz1 and Pgc1-β expression (Fig. 1d). Arginase-1 activity 

assessed by urea production was reduced, correlating with lower levels of Arg-1 mRNA 

(Fig. 1e). IL-4-stimulated fatty acid oxidation, another hallmark feature of M2 macrophages, 

was also defective (Fig. 1f). This finding is consistent with the 3-fold reduction in Pgc1-β 

(Fig. 1d), a known mediator of fatty acid oxidation in M2 macrophages 9. Interestingly, M2c 

polarization triggered by IL-10 stimulation was also deficient in Tsc1Δ/Δ BMDMs 

(Supplementary Fig. S2a), which may indicate impaired orchestration of anti-inflammatory 

responses during tissue remodeling or wound healing 19. Macrophage activation to the M2b 

phenotype (by treatment with LPS/immune complexes), which has features of both M1 and 

M2 macrophages 20, 21, was not affected (Supplementary Fig. S2b). Taken together, our 

findings demonstrate that aberrant mTORC1 activation critically modulates macrophage 

polarization. Impaired induction of Pgc-1β and fatty acid oxidation also highlights a key role 

of mTOR in orchestrating macrophage cellular metabolism.

STAT6 and PPARγ Activity are Normal in Tsc1Δ/Δ BMDMs

IL-4R signaling leads to activation of JAK1/JAK3 and tyrosine phosphorylation of the 

transcription factor STAT6, enabling nuclear translocation 2 and induction of target genes 

such as Pparγ and Arg-13. To interrogate the mechanism underpinning defective M2 

polarization in Tsc1Δ/Δ BMDMs, we first examined signal transduction downstream of the 

IL-4R. Tsc1Δ/Δ BMDMs expressed comparable levels of Jak1, Jak3, and IL-4rα mRNAs as 

well as STAT6 protein at basal state (Fig. 2a, Supplementary Fig. S3a). Following IL-4 

stimulation, STAT6 was tyrosine phosphorylated consistent with normal activation (Fig. 2a). 

Chromatin immunoprecipitation assays indicated comparable IL-4- induced recruitment of 

STAT6 to the promoter of the Arg1 gene (Supplementary Fig. S3b). Furthermore, IL-4-

inducible STAT6 transcriptional activity as measured by a STAT6 reporter assay was 

unaffected (Fig. 2b). Finally, normal induction of some M2 genes inTsc1Δ/Δ BMDMs, 

including the STAT6-dependent gene Pparγ 22 (Fig. 2c), indicates no general defect in 
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expression or activation of STAT6, the master regulator of M2 gene induction. IL-4 

signaling can activate STAT1 in some contexts 23, 24, but not in macrophages 

(Supplementary Fig. S3c) consistent with a prior report, excluding a role for impaired 

STAT1 activation in the phenotype of Tsc1Δ/Δ BMDMs 25.

Because previous studies indicate a key role for the nuclear receptors PPARγ and PPARδ in 

M2 polarization, we next turned to an analysis of their expression and activity in Tsc1Δ/Δ 

BMDMs. First, we showed comparable expression of PPARγ and PPARδ in Tsc1fl/fl and 

Tsc1Δ/Δ BMDMs, at basal state and after IL-4 stimulation (Fig. 2c). Since expression does 

not necessarily reflect functional activity, we examined PPARγ activity in Tsc1Δ/Δ BMDMs. 

We found that IL-4 induced comparable expression of the canonical PPARγ-dependent 

genes Fabp4 22, 26 and Cd36 27 (Fig. 2d). Furthermore, the PPARγ agonist troglitazone 

synergized with IL-4 to a similar extent in Tsc1fl/fl and Tsc1Δ/Δ BMDMs (Fig. 2d). 

Analogous findings were obtained with the PPARδ-dependent gene Atgl 28 using the PPARδ 

agonist GW501516 (Supplementary Fig. S4). To corroborate gene expression data, we used 

a PPAR reporter assay to assess PPAR transcriptional activity, and found commensurate 

induction in Tsc1fl/fl and Tsc1Δ/Δ BMDMs (Fig. 2e). Taken together, these findings indicate 

a selective defect in M2 polarization in Tsc1Δ/Δ BMDMs that may not be due to defects in 

STAT6, PPARγ, or PPARδ expression or activity.

mTORC1 Activity Attenuates IL-4-Induced Akt Activation

The data above suggests that Tsc1Δ/Δ BMDMs may not be able to activate some signals 

downstream of IL-4R. We turned our attention to IRS2/PI3K/Akt signaling, since this 

pathway is engaged by the IL-4R in parallel to the JAK/STAT6 pathway 29, 30. PI3K 

activation leads to increased activity of mTORC2, which phosphorylates Akt at S473 to 

activate the protein and promote membrane localization. In addition to S473, Akt is 

critically controlled by phosphorylation at T308, a step mediated by PDK1 (Fig. 3a). Thus 

we examined S473 and T308 phosphorylation as readouts of Akt activity, as well as 

phosphorylation of the downstream Akt targets FOXO1, PRAS40 and GSK-3 31 (Fig. 3a).

Interestingly, IL-4-stimulated Tsc1Δ/Δ BMDMs displayed a striking attenuation in Akt 

signaling as indicated by reduced phosphorylation of AktS473 and AktT308 (Fig. 3b). 

Consistently, phosphorylation of the Akt targets FOXO1 and PRAS40 was diminished 

(Supplementary Fig. S5a). GSK-3 phosphorylation was not reduced (Supplementary Fig. 

S5a), perhaps because of its regulation by multiple inputs 32, 33, 34, 35. Importantly, 

diminished Akt signaling has been noted in TSC-deficient cells during stimulation with 

insulin and other growth factors 36, 37, 38. Such reduction of Akt activity is due to mTORC1-

mediated negative feedback that impinges on multiple targets, including but not limited to 

IRS1/2 degradation 39, 40 and phosphorylation and stabilization of GRB10 41, 42 (Fig. 3a). 

While such mTORC1-mediated negative feedback is well-defined for insulin signaling, little 

is known regarding its role in the regulation of cytokine signaling. Interestingly, we found 

that Tsc1Δ/Δ BMDMs display reduced IRS2 levels in response to IL-4 treatment (Fig. 3b). 

This is likely to contribute to mTORC1-mediated attenuation of Akt signaling, since IRS2 

has been implicated in Akt activation during IL-4 stimulation 29. Increased levels of 

phosphorylated and total GRB10 (Supplementary Fig. S5b) may also play a role given that 
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GRB10 inhibits signaling downstream of RTKs 43, 44, 45. Thus increased mTORC1 activity 

in our model is likely to attenuate Akt signaling at least in part through IRS2 and GRB10. 

PDK1, the Akt T308 kinase, has constitutive kinase activity and is critically regulated by 

PIP3-mediated recruitment to the plasma membrane 46, thus normal PDK1 activity in 

Tsc1Δ/Δ BMDMs (Supplementary Fig. S5c) also supports our model that attenuated Akt 

signaling in Tsc1Δ/Δ BMDMs occurs at a receptor proximal step upstream of PI3K mediated 

PIP3 production (Fig. 3a). Finally, LPS-mediated Akt activation was diminished in Tsc1Δ/Δ 

BMDMs, as evidenced by a defect in phosphorylation of Akt and the Akt target FOXO1 

(Supplementary Fig. S5d). Collectively, these findings demonstrate that mTORC1- mediated 

negative feedback mechanisms converge to ultimately attenuate Akt signaling in Tsc1Δ/Δ 

BMDMs.

Having shown a defect in Akt activation in Tsc1Δ/Δ BMDMs, we addressed a potential role 

in impaired M2 polarization. Previous studies have used rapamycin treatment to alleviate 

mTORC1-mediated negative feedback of Akt signaling and to interrogate the role of 

attenuated Akt activation in TSC-deficient models 36, 37, 38. Accordingly, we found that 

rapamycin treatment of Tsc1Δ/Δ BMDMs rescued IL-4 inducible Akt signaling (Fig. 3c). 

Importantly, such treatment restored induction of M2 genes Arg1, Fizz1, and Mgl1/2 as well 

as Arginase activity (Fig. 3d,e). Together this suggests that deficient M2 polarization in 

Tsc1Δ/Δ BMDMs may be due to mTORC1-mediated negative feedback of Akt signaling. We 

note that rapamycin treatment of control Tsc1fl/fl BMDMs also modestly increased Akt 

signaling (Fig. 3c) as well as M2 responses (Fig. 3d,e), indicating that acute, signal-

dependent activation of mTORC1 during IL-4 signaling can also feedback to inhibit Akt 

activation.

Attenuated Akt signaling underlies aberrant polarization

Our findings linking reduced Akt activation to impaired M2 polarization in Tsc1Δ/Δ BMDMs 

(Fig. 3b–e) are interesting given that little is known regarding the role of Akt in this process. 

To address this directly, we treated WT BMDMs with MK-2206, an allosteric inhibitor of 

Akt. This led to a decrease in IL-4-inducible phosphorylation of AktT308 and AktS473 as well 

as the Akt target FOXO1, but did not affect STAT6 phosphorylation (Fig. 4a). Importantly, 

pretreatment with MK-2206 reduced IL-4 mediated induction of Arg1, Fizz1, Mgl2, and 

Mgl1 (Fig. 4b), as well as Arginase-1 activity (Fig. 4c). Similar effects were observed with 

the structurally distinct Akt inhibitor Aktviii (Supplementary Fig. S6a–b), indicating the 

specificity of the inhibitors. These findings argue that Akt may play an important role in M2 

polarization. Together with the data in Figure 3, they also support the idea that attenuated 

Akt signaling underpins defective M2 polarization in Tsc1Δ/Δ BMDMs.

Next, we took a genetic approach to rescue Akt signaling in Tsc1Δ/Δ BMDMs. As expected, 

retroviral transduction of Tsc1Δ/Δ BMDMs with myristylated-Akt1 (myr-Akt) led to 

constitutive Akt signaling as indicated by high basal state P-AktT308 and P-AktS473 (Fig. 

4d). Importantly, this was associated with increased induction of Arg1 and Mgl1 (Fig. 4e), as 

well as Arginase-1 activity (Fig. 4f), following IL-4 stimulation. Although ectopic 

expression of myr-Akt was insufficient to rescue Fizz1 and Mgl2 expression, this could be 

achieved in the context of rapamycin co-treatment (Supplementary Fig. S6c). Thus, myr-Akt 
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may not fully recapitulate IL-4 inducible Akt activation; or alternatively, rescue of Akt 

signaling is not sufficient for restoring Mgl2 and Fizz1 expression, and some other 

consequence of constitutive mTORC1 activation is critically relieved by rapamycin 

treatment. Finally, to extend these studies to the proinflammatory responses, we examined 

myr-Akt expressing Tsc1Δ/Δ BMDMs following LPS treatment. We observed significantly 

reduced expression of Il-6 and Tnfα but increased expression of Il-10 (Fig. 4g and 

Supplementary Fig. S6d).

Deficient M2 polarization in Tsc1Δ/Δ mice

Finally, we asked if TSC1-deficiency would impair M2 polarization in vivo. We used 

intraperitoneal (IP) injection of an IL-4/IL-4 antibody complex to elicit IL-4-dependent 

recruitment and in situ proliferation of M2 macrophages 47 in Tsc1fl/fl and Tsc1Δ/Δ mice. 

Strikingly, induction of most M2 genes was decreased in peritoneal exudate cells (PECs) 

fromTsc1Δ/Δ mice (Fig. 5a). To corroborate these findings, we used a model of chitin 

administration that triggers IL-4-dependent recruitment and polarization of M2 

macrophages 48, 49. We observed a near universal reduction of M2 gene expression in 

Tsc1Δ/Δ PECs (Fig. 5b), similar to the IL-4 injection. Collectively the findings support our 

model that constitutive mTORC1 activity can attenuate macrophage M2 polarization in vivo.

Discussion

In this study, we use a novel model of myeloid-specific Tsc1 deletion and constitutive 

mTORC1 activity to elucidate mTORC1 function in macrophages. We found that Tsc1Δ/Δ 

BMDMs have enhanced proinflammatory cytokine production while IL-10 secretion is 

reduced, in line with a recent analysis of Tsc1Δ/Δ BMDMs 17. Other studies reached 

conflicting conclusions, using shRNA knockdown in monocytes and dendritic cells 50, 51. 

Extending the analysis of mTORC1 function in macrophages, we showed that Tsc1Δ/Δ 

BMDMs are impaired in M2 polarization, expressing reduced levels of key M2 markers 

such as Arg-1, Fizz1, Mgl1, Mgl2, Ym1 and Pgc-1β (Fig. 1d). Interestingly, the defect in M2 

activation seems to be selective, since induction of PPARγ and some PPARγ dependent 

genes (e.g. Cd36 and Fabp4) occur normally (Fig. 2c,d). Additionally we find that Tsc1Δ/Δ 

BMDMs have diminished levels of Arginase-1 activity and fatty acid oxidation, hallmark 

features of M2 macrophages (Fig. 1e,f). This suggests that mTORC1 may couple regulation 

of fatty acid oxidation to control of macrophage polarization, consistent with the emerging 

view that macrophage cellular metabolism is closely linked to activation status 3, 8, 52. 

Finally, we use models of IL-4 and chitin injection to show that constitutive mTORC1 

activity in myeloid lineage cells results in broad defects in M2 polarization in vivo (Fig. 5).

Normal activation of known regulators of M2 polarization, including STAT6, PPARγ and 

PPARδ (Fig. 2), suggests that impaired M2 polarization in Tsc1Δ/Δ BMDMs may be due to 

block of a parallel signaling pathway. In addition to the JAK/STAT6 pathway, IL-4R 

signaling engages IRS2/PI3K signaling in parallel to mediate Akt activation 29, 30. While 

STAT6 is indispensable for M2 polarization 1, 53, the role of Akt signaling has not been well 

characterized. Our findings suggest a critical role for mTORC1-mediated feedback 

inhibition of Akt signaling in Tsc1Δ/Δ BMDMs. In support of this, Tsc1Δ/Δ BMDMs display 
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decreased IL-4-inducible Akt activation, as indicated by diminished P-AktT308 and P-

AktS473 (Fig. 3b) and phosphorylation of the Akt targets FOXO1 and PRAS40 

(Supplementary Fig. S5a). Importantly, rapamycin treatment (Fig. 3c–e) and ectopic 

expression of myr-Akt (Fig. 4d–f, Supplementary Fig. S6c) restore Akt activation 

simultaneous with rescue of M2 gene expression and Arginase activity. We suggest that 

decreased IRS2 (Fig. 3b) but increased GRB10 (Supplementary Fig. S5b) levels may 

contribute to mTORC1-mediated attenuation of Akt signaling, since IRS2 has been 

implicated in IL-4R signaling 54, while GRB10 downregulates signaling downstream of 

RTKs 43. While other negative feedback mechanisms have been described in insulin 

signaling 40, 55 and may exist in our setting, they act synergistically and ultimately converge 

to attenuate Akt activation. Finally, we believe that feedback inhibition to Akt may also 

underlie the enhanced responsiveness of Tsc1Δ/Δ BMDMs to LPS stimulation. While we 

have not extensively characterized the underlying mechanism(s) in this context, Akt 

activation in Tsc1 Δ/Δ BMDMs is diminished following LPS signaling (Supplementary Fig. 

S5d), and its rescue with myr-Akt expression reduces the exaggerated responses (Fig. 4g).

Importantly, control of M2 polarization by Akt signaling is likely to extend beyond our 

genetic model to other settings, since pharmacological inhibition of Akt impairs M2 

activation in wild-type BMDMs (Fig. 4b,c, Supplementary Fig. S6a,b). Moreover, 

rapamycin treatment of control BMDMs modestly increases Akt signaling and M2 responses 

(Fig. 3c–e). Thus our findings reveal a largely unappreciated role for Akt in synergizing 

with the STAT6 pathway to regulate full M2 polarization (Fig. 6a). Whether Akt promotes 

or inhibits inflammation downstream of LPS signaling is not entirely clear 56, but at least in 

Tsc1Δ/Δ BMDMs, simultaneous mTORC1 activation and Akt attenuation lead to enhanced 

proinflammatory responses that can be rescued by restoring Akt signaling (Fig. 4g). The 

relevant Akt targets that regulate macrophage polarization are not well defined, but could 

include FOXO1 and CEBPβ 57, 58. Interestingly, macrophages deficient in Rictor, a subunit 

of the mTORC2 complex that phosphorylates Akt on S473, were deficient in some but not 

all Akt-dependent activities (Supplementary Fig. S7a) consistent with previous models of 

mTORC2- deficiency 59, 60 but polarized normally to the M2 phenotype (Supplementary 

Fig. S7b–c), and could serve as a plausible model to identify the relevant Akt targets 

controlling M2 activation.

Our studies indicate the existence of a mTORC1-Akt regulatory loop in the IL-4 signaling 

pathway that parallels that of the insulin pathway. In the latter, a feedback loop between 

mTORC1 and Akt—in which receptor engagement of the IRS/PI3K/Akt pathway leads to 

mTORC1 activation that feeds back to attenuate Akt signaling—is critical for transient, 

signal-dependent activation of these two signaling modules (Fig. 3a). Similarly, activation of 

the IRS2/PI3K/Akt pathway by IL-4 mediates mTORC1 activation (Fig. 1a, Supplementary 

Fig. S8) and as shown here, results in feedback inhibition of Akt signaling (Fig. 3a–c, 6a). 

Importantly, mTORC1 activity is critically modulated by nutrient/energy availability 61, thus 

we propose that integration of the mTORC1-Akt regulatory loop into the IL-4 signaling 

pathway may allow macrophages to calibrate their activation and function to metabolic 

status and nutrient availability (Fig. 6a). In contrast, this regulatory circuitry is disrupted by 

constitutive or aberrant activation of mTORC1, as occurs during nutrient excess or in our 

Byles et al. Page 7

Nat Commun. Author manuscript; available in PMC 2013 December 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



genetic model. As a consequence, induction of M2 polarization by the synergistic 

interactions of the Akt and JAK/STAT pathways is impaired (Fig. 6a,b). Conversely, 

elevated mTORC1 activity and consequent downregulation of Akt signaling may facilitate 

increased responses to LPS stimulation (Fig. 6b). Finally, we note that such “hard-wiring” of 

mTORC1-Akt signaling to cytokine signaling could have relevance to other immunological 

contexts, given that many cytokines that regulate immune cell function engage the Akt 

pathway (and presumably also mTORC1).

In conclusion, our study highlights a key role of the mTORC1 pathway in control of 

macrophage polarization. Such control is likely to be of particular relevance for adipose 

tissue macrophage (ATMs). In the lean state, ATMs with a M2 phenotype maintain an anti-

inflammatory environment and adipocyte insulin sensitivity, while in obesity, ATMs with a 

M1 phenotype produce inflammatory cytokines and promote insulin resistance and 

metabolic dysfunction. We propose that nutrient sensing by mTORC1 may directly regulate 

the pathophysiological switch of ATMs during obesity, extending the current model for 

regulation of the pathophysiological M2 to M1 switch 62. Indeed, given that macrophages 

are critical orchestrators of diverse physiological responses, regulation of macrophage 

activation by the mTOR pathway may have profound consequences in many settings, 

including helminth infection, inflammation, allergy, and tissue repair.

Methods

BMDMs

Briefly, femurs were removed from mice after CO2 euthanasia, and cells were liberated 

using a mortar and pestle. For macrophage differentiation, bone marrow derived cells were 

plated in petri dishes with 1640 RPMI media (10% FCS, Penicillin/Streptomycin, 2mM L-

Glutamine) supplemented with MCSF-containing L929 cell supernatant for seven days. 

MCSF differentiated macrophages were harvested and plated in tissue culture dishes for 

subsequent experiments. For M1-like activation, 0.5-0.7×106 BMDMs were plated in 12-

well tissue culture dishes and treated with 10ng/ml LPS (Invivogen). For M2(a) polarization, 

cells were treated with 10ng/ml IL-4 (Peprotech). For M2b polarization, cells were treated 

with 10ng/ml IL-10 (Peprotech). For M2b polarization, cells were treated simultaneously 

with 10ng/ml LPS (Invivogen) and either unopsonized sheep red blood cells (SRBC) 

(Lampire biological laboratories) or SRBCs opsonized with 1:400 anti-SRBC IgG (cat# 

55806 MP Biomedicals).

Mice

To generate mice with targeted deletion of Tsc1 in myeloid lineage cells, mice with flanking 

loxP Tsc1 alleles (Tsc1fl/fl) were crossed to LysozymeM Cre transgenic mice, both on a B6 

background 38, 63. Cre-recombinase activity results in deletion of exons 17 and 18 of Tsc1, 

generating a null allele 64. Male mice aged 12 weeks were used for in vivo chitin 

administration and male mice aged 6–8 weeks were used for in vivo IL-4 administration. For 

Rictor deletion in vivo, tamoxifen (VWR) was suspended in sunflower seed oil (VWR) at 

10mg/ml, and 200μl/25g body weight was injected into 10-week old Rictorfl/fl and Rictorfl/fl 

UbiquitinC- CreERT2 mice once daily for 7 days 65. Bone-marrow from such mice were 
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used to generate Rictor-deficient macrophages. Mice were maintained at Harvard Medical 

School and Massachusetts Institute of Technology, and all procedures were performed in 

accordance with the guidelines set forth by the Institutional Animal Care and Use 

Committees at each institution.

Immunoblotting

For protein sample preparation, cells were washed twice with cold PBS following 

stimulation and lysed in 1% NP-40 buffer with EDTA-free protease inhibitor tablets (Roche 

Diagnostics) and phosphatase inhibitors. Protein concentration in lysates was determined 

using the Bradford method. Equal amounts of protein were loaded onto SDS-PAGE gels and 

subsequently transferred to PVDF membranes for immunoblotting with primary antibodies 

as indicated. Full blots of all immunoblots shown in the main article are included in 

Supplementary Fig. S9.

Antibodies and Reagents

Primary antibodies were purchased from Cell Signaling (all at 1:1000 dilution in 5% BSA), 

except for the following: α- Tubulin (Sigma, 1:5000), β-Actin (Sigma,1:2000), Flag-M2 

(Sigma, 1:1000), and PPARγ (Santa Cruz E-8, 1:1000) and PPARδ (Santa Cruz, 1:250). For 

flow cytometry, antibodies were used to CD11b-PE (BD Biosciences) and F4/80-FITC 

(BioLegend). Inhibitors were used as follows: MK2206 1μM (Selleck), Aktviii 10μM 

(Enzo), Rapamycin 20nM (LC Laboratories), Troglitazone 1μM (Cayman) and GW501516 

100 μM (Enzo).

Arginase Assays

Arginase assay was described previously 66. Briefly, 0.5×106 cells/well in 12-well plates 

were stimulated with IL-4 for 12–48h. Cells were lysed in 0.1% TritonX-100 lysis buffer 

with protease inhibitors. Lysates with equal amounts of protein were incubated with 500mM 

L-Arginine for 45 minutes at 37°C, followed by acid stop solution. The degradation of L-

arginine to urea was measured by adding 9% isonitrosopropiophenone in 100% ethanol. 

Absorbance was read at 540nm in a microplate reader. All samples were read in triplicate.

Fatty Acid Oxidation

BMDMs were plated 0.7×106 cells/well in 12-well tissue culture dishes in complete RPMI 

and stimulated with IL-4 for 36h. After stimulation, cells were washed with PBS and loaded 

with low glucose DMEM + 2% fatty acid-free BSA (Lampire Biologicals) for 30 minutes at 

37°C. After 30 minutes, cells were washed with PBS and given 3H-labeled palmitic acid 

(2μCi/well, MP Biomedicals) in low glucose DMEM, with 2% fatty acid-free BSA and 

0.2mM unlabeled oleic acid (Sigma). After 4h, 100μl of media was collected and the 

isolation of 3H2O was performed using trichloroacetic acid followed by chloroform-

methanol extraction. The water-soluble fraction was collected in 5ml of EcoLume (MP 

Biomedicals) scintillation fluid and counted for 5 minutes using a Beckman LS6500 

scintillation counter. Cells were lysed in 500μl of 0.1N NaOH and total protein was 

determined using the Bradford method. Background 3H was subtracted from the CPM 
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(counts per minute) value and all samples were normalized to mg of total protein. All 

samples were performed in duplicate.

Myr-Akt-Transduction

To make retrovirus particles, 293T cells were co-transfected with pBabe empty vector (EV) 

Puro or pBabe Puro Myr Flag Human-Akt1 purchased from Addgene (plasmid 15294) along 

with pCL-Eco (Imgenex #10045P) using Lipofectamine 2000 (Invitrogen). Transfected 

293T media was changed the next day and placed at 32C. Viral supernatant was collected on 

day 2 and day 3 post-transfection. Fresh bone marrow was plated on the same day as 

transfection above and transduced with media containing viral supernatant (50% viral 

supernatant containing pBabe EV or pBabe Puro Myr Flag Human-Akt1, 40% RPMI 

complete media, and 10% CMG-media) on day 2 and day 3 and selected using 4 μg/ml 

puromycin on days 4–7.

ELISA

Cytokine concentration was determined using for IL-10, TNFα, and IL-6 using ELISA kits 

purchased from BioLegend. Briefly, experimental supernatants were collected and 

centrifuged at 3000 g/5min. Supernatants were analyzed in duplicate per manufacturers 

protocol.

Chromatin Immunoprecipitation

For STAT6 ChIP, BMDMS (5×106) were plated in 6cm tissue culture plates and stimulated 

for 2h with 10ng/ml IL-4. Cells were subsequently fixed with 1% formaldehyde for 10 min 

at room temperature. Formaldehyde was quenched with glycine. After collecting cells, lysis 

was performed using 500μl of SDS buffer (1% SDS, 10mM EDTA, 50mM Tris-Cl pH 8) 

plus protease and phosphatase inhibitors. Cells were subsequently sonicated for 3 min on ice 

with 1 sec pulses using a Misonix 4000 sonicator to shear chromatin. Following sonication, 

samples were diluted to 3ml with ChIP Dilution Buffer (0.01% SDS, 1.1% TritonX-100, 

1.2mM EDTA, 16.7mM Tris-Cl pH 8, 167mM NaCl) and precleared for 1h at 4°C with 

Protein A salmon sperm/agarose beads (Millipore). Precleared chromatin was split into 

400μl aliquots for IP with either 5μg of STAT-6 (M-20 ChIP grade, Santa Cruz) or for no 

antibody control overnight at 4°C. IPs were incubated with Protein A salmon sperm/agarose 

beads (Millipore) the following day for 3h at 4°C. After 3h, beads were spun down and 

~10% of chromatin was taken for input and processed in parallel to IP samples. Antibody-

bead complexes were then washed with low salt (0.1%SDS, 1% Triton X-100, 2mM EDTA, 

20mM Tris-Cl pH 8, 150mM NaCl), high salt (0.1%SDS, 1% Triton X-100, 2mM EDTA, 

20mM Tris-Cl pH 8, 500mM NaCl), and lithium chloride (0.25M LiCl, 1% deoxycholic 

acid, 1%NP-40, 1mM EDTA, 10mM Tris-Cl pH 8) buffers followed by two washes with TE 

buffer. Chromatin-antibody complexes were eluted with elution buffer (1%SDS + 0.1M 

sodium bicarbonate) and crosslinks were reversed using sodium chloride and incubation at 

60°C for 4h. Samples were then incubated 1h with Proteinase K (Roche) at 60°C. DNA was 

purified using PCR purification columns (Qiagen) and used for quantitative PCR with 

primers generated to the Arg1 promoter region. Fold enrichment was calculated as ChIP 

signals divided by no antibody control and normalized to input.
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Quantitative PCR

To measure gene expression in BMDMs and PECs, RNA was isolated using RNA Bee (Tel-

Test) per manufacturers protocol and used to make cDNA using High Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems). A Bio-Rad C1000 Thermocycler was used 

to analyze the samples under the following conditions: 95°C (5 min), 50 cycles of 95°C (10 

s), 60°C (10 s), and 72°C (20 s). Reaction mixture consisted of 4 μl cDNA, 1.5 μl 3 μM 

primers for each gene used in the study (F+R), 2 μl H2O, and 7.5 μl 2× SYBR green (Bio-

Rad). Samples from BMDMs were normalized to hypoxanthine phosphoribosyltransferase 

(HPRT) and samples from PECs were normalized to the macrophage marker CD68. Data 

was analyzed by means of the CFX Manger Software (Bio-Rad) using the delta/delta CT 

method. Sequences for all qPCR primers are shown in Supplementary Table S1.

Chitin Administration

Chitin (Sigma) was prepared as previously described 48. Briefly, chitin was washed 3 times 

with PBS and then sonicated (Misonix Sonicator 4000) for 30 minutes on ice. The dissolved 

chitin was filtered and diluted with PBS to 4 μg/ml. 800ng chitin dissolved in 200 μl PBS of 

was injected intraperitoneally and PECs were collected 48 hours post injection.

IL-4 Complex Administration

Long acting IL-4 complex (IL-4c) was prepared as previously described 47. Briefly, IL-4 

(Peprotech) was suspended at a concentration of 500 μg/ml and mixed with anti-mouse IL-4 

(BioXcell clone 11b11) at a molar ratio of 2:1 (weight 1:5) and incubated 1–2 minutes at 

room temperature. IL-4c was suspended in normal saline to a concentration of 25μg/ml IL-4 

and 125 ug/ml of 11b11. Each mouse was injected intraperitoneally with 200μl of IL-4c (5 

μg IL-4 and 25 μg 11b11) on day 0 and 2, and PECs were collected on day 4.

Dual Luciferase Assays

BMDMs were electroporated using Amaxa nucleofector and mouse macrophage 

nucleofector kit (Lonza) with PPAR-Firefly luciferase plasmid (C.H. Lee, Harvard School 

of Public Health) or STAT6-Firefly luciferase (purchased from Addgene-plasmid #35554) 

along with Renilla-Luciferase plasmid as a transfection control. The PPAR-Firefly luciferase 

plasmid consists of 3 copies of the Acox1 PPAR response element 67 upstream of an SV40 

minimal promoter. BMDMs were treated with IL-4 and/or troglitazone 4 hours post 

electroporation for 24 hours. Cell lysates were collected and analyzed using the Promega 

Dual-Luciferase Reporter Assay System.

Statistical Analysis

Statistical analysis was carried out using Prism (Graph Pad) software. The student’s t-test 

was used to determine statistical significance, defined as p<0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Tsc1Δ/Δ BMDMs Have Defective M2 Polarization and Enhanced Responses to LPS 
stimulation
a. Immunoblot analysis of WT BMDMs stimulated with LPS or IL-4 for 15–60 min as 

indicated. b. Immunoblot analysis of lysates from Tsc1fl/fl and Tsc1Δ/Δ BMDMs treated with 

or without rapamycin for 15h. c. Measurement of TNF-α, IL-6, and IL-10 secretion by 

ELISA after treatment with LPS for 3h and 6h, (n=2 representative experiments). d. 
Expression of M2 genes in Tsc1fl/fl and Tsc1Δ/Δ BMDMs after treatment with IL-4 for 24h 

(n=3). *p<0.05, **p<0.01, ***p<0.001.e. Urea production normalized to total protein in 

Tsc1fl/fl and Tsc1Δ/Δ BMDMs stimulated as in (c), (n=4), *p<0.001 for untreated vs IL-4 for 

Tsc1fl/fl, **p<0.01 for IL-4 treated Tsc1fl/fl vs Tsc1Δ/Δ, ***p<0.05 for untreated vs IL-4 for 
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Tsc1Δ/Δ. f. Fatty acid oxidation of 3H-palmitic acid presented as counts per minute 

normalized to mg of total protein after 36h treatment with IL-4, (n=3). *p<0.01 for untreated 

vs IL-4 in Tsc1fl/fl, **p<0.01 for IL-4 treated Tsc1fl/fl vs Tsc1Δ/Δ. Graphs are shown as mean 

± SEM. P-values were determined using Student’s t-tests.
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Figure 2. STAT6 and PPARγ Activity are Normal in Tsc1Δ/Δ BMDMs
a. Immunoblot analysis of lysates from Tsc1fl/fl and Tsc1Δ/Δ BMDMs stimulated with IL-4 

for 5–60min. b. STAT6 luciferase reporter assay in Tsc1fl/fl and Tsc1Δ/Δ BMDMs. Data 

shown as fold induction of firefly luciferase activity normalized to renilla luciferase for IL- 

4 treatment relative to untreated sample (n=2 experiments performed in duplicate). c. Gene 

expression and immunoblots for PPARγ and PPARδ in Tsc1fl/fl and Tsc1Δ/Δ BMDMs after 

treatment with IL-4 for 24h. Gene expression data is shown as mean ± SEM (n=3). d. 
Expression of PPARγ-dependent genes in Tsc1fl/fl and Tsc1Δ/Δ BMDMs treated with IL-4 in 

the presence or absence of troglitazone for 24h. DMSO vehicle was used as control, ( n=3). 

*p<0.05 for IL-4 treated Tsc1fl/fl and Tsc1Δ/Δ, **p<0.01, ***p<0.001 for IL-4 versus 

IL-4+Tro. e. PPAR luciferase reporter assay in Tsc1fl/fl and Tsc1Δ/Δ BMDMs. Data shown as 

fold induction of firefly luciferase activity normalized to renilla luciferase for IL-4 or 

troglitazone treatment relative to untreated sample (representative of 3 experiments 

performed in triplicate). Graphs are shown as mean ± SEM. P-values determined using 

Student’s t-tests.
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Figure 3. Constitutive mTORC1 Activity Attenuates IL-4-Induced Akt Activation
a. Overview of mTORC1 signaling downstream of IL-4, insulin, and growth factors. 

Receptor activation engages the IRS/PI3K/Akt pathway. PI3K converts PIP2 to PIP3 thus 

recruiting PDK1 and Akt to the plasma membrane, enabling PDK1-mediated 

phosphorylation of Akt on T308. PI3K also activates mTORC2, which phosphorylates Akt 

on S473. Thus activated, Akt can phosphorylate downstream targets to regulate their 

activity. One consequence of Akt activation is increased mTORC1 activity, which feeds 

back to attenuate IRS2/PI3K/Akt signaling through multiple mechanisms, including 

reducing levels of IRS2 while increasing levels of GRB10. b. Immunoblot analysis of 

Byles et al. Page 19

Nat Commun. Author manuscript; available in PMC 2013 December 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lysates from Tsc1fl/fl and Tsc1Δ/Δ BMDMs stimulated with IL-4 for 5–60 min. c. 
Immunoblot analysis of lysates from Tsc1fl/fl and Tsc1Δ/Δ BMDMs stimulated with IL-4 for 

20 min in the presence or absence of rapamycin (20nM, 1h pretreatment). DMSO vehicle 

was used as control. d. Expression of M2 genes in Tsc1fl/fl and Tsc1Δ/Δ BMDMs after 

treatment with IL-4 for 15h in the presence or absence of rapamycin (20nM, 1h 

pretreatment). (n=5). *p<0.05, **p<0.01, ***p<0.001 for IL-4 versus IL-4+rap. e. Urea 

production normalized to total protein in Tsc1fl/fl and Tsc1Δ/Δ BMDMs stimulated with IL- 4 

for 20h in the presence or absence of rapamycin (20nM, 1h pretreatment). (n=5),*p<0.001. 

Graphs are shown as mean ± SEM. P-values were determined using Student’s t-tests.
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Figure 4. Akt Signaling is Critical For Polarization in Tsc1Δ/Δ BMDMs
a. Immunoblot analysis of WT BMDMs pretreated with MK-2206 for 1h and treated with 

IL-4 for the indicated time points. b and c. WT BMDMs were pretreated with MK-2206 or 

DMSO for 1h before stimulation with IL-4 for 24h and examination of (b) M2 gene 

expression (n=3) or (c) urea production (n=4). d. Immunoblot analysis of Tsc1Δ/Δ BMDMs 

transduced with myr-flag-Akt or empty vector (EV). e and f. Myr-Akt Tsc1Δ/Δ BMDMs and 

EV Tsc1Δ/Δ BMDMs were stimulated with IL-4 followed 24h later by analysis of (e) M2 

gene expression (n=4 representative experiments) or (f) urea production (n=3). g. Cytokine 

gene expression in myr-Akt Tsc1Δ/Δ BMDMs and EV Tsc1Δ/Δ BMDMs stimulated with LPS 

for 6 hours (n=3). Graphs are shown as mean ± SEM,*p<0.05, **p<0.01, ***p<0.001. P-

values were determined using Student’s t-tests.
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Figure 5. M2 Polarization of Tsc1Δ/Δ Mice is Impaired in vivo
a. M2 gene expression in PECs from Tsc1Δ/Δ and Tsc1fl/fl mice 4 days post IP injection with 

IL-4 complex on days 0 and 2 (n= 4 mice per genotype). b. M2 gene expression in PECs 

from male Tsc1Δ/Δ and Tsc1fl/fl mice 48h post IP injection with chitin (n=5 mice per 

genotype). Data shown as mean ± SEM, *p<0.05, **p<0.01, ***p<0.001. P-values were 

determined using Student’s t-tests.
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Figure 6. Model
Proposed model for how mTORC1 activity controls macrophage polarization. a. 
Physiological induction of the Akt-mTORC1 signaling loop by IL-4 stimulation (left) allows 

for transient, inducible activation of the pathway, and enables Akt to synergize with the 

JAK/STAT pathway for M2 polarization. mTORC1 activity is also regulated by nutrient 

availability (not shown here), so such wiring of the signaling pathway may allow calibration 

of M2 activation to metabolic status (left). In contrast, constitutive or aberrant mTORC1 

activation corrupts this signaling pathway and modulation of macrophage activation by 

metabolic inputs (right). (Green = activation; Red = inhibition; Black = attenuated) b. 
Constitutive or aberrant activation of mTORC1 impairs the ability of macrophages to 

respond appropriately to polarizing stimuli. A critical mediator of this process is Akt, whose 

activity is downregulated by increased mTORC1 activity.
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