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Abstract
Purpose of review—The platelet paradigm that is well established in hemostasis and
thrombosis can be extended to other disease states. A consideration for some major health issues,
such as inflammation, cancer, infection, and neuroscience and how platelet function impacts the
pathophysiology of each clinical situation is provided.

Recent findings—Decades of research and knowledge of platelet function exists and the same
is true for inflammation and cancer. The literature is full of platelet biology overlapping into other,
non-thrombotic, disease states. However, major gaps exist that prevent a complete mechanistic
understanding of platelet function in these other diseases. While much of the overlap provides
antidotal relationships, future studies will likely uncover novel pathophysiological pathways that
are highly relevant to human diseases.

Summary—Recent findings in four major disease areas, inflammation, cancer, infection and
neuroscience are described with current literature linking the disease to platelet function. The
availability of anti-platelet therapies, such as aspirin, exist and future consideration can be given
as to whether anti-platelet therapy is potentially beneficial or harmful as mechanisms of platelet
involvement are better defined.
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Introduction
The intense investigation of platelet function over the past few decades is warranted given
the platelet’s fundamental role in both hemostasis and thrombosis. Indeed, the molecular
events associated with both have been described in elegant molecular detail identifying
multiple therapeutic targets, some that have been exploited in drug development, and others
that are still waiting to be tested. While platelet relevance in hemostasis and thrombosis is
well established there exists a wide range of literature establishing platelet importance in
diseases not immediately associated with either event [1]. While a role for platelets in other
diseases exists the in vivo relevance has sometimes been difficult to dissect owing, in part, to
whether outcomes are due to the platelet’s role in hemostasis or, as an example, the
platelet’s role as an immune modulator [2]. Nevertheless, overlapping functions do exist and
this review will highlight 3 different disease topics where studies have linked platelet
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function to disease progression, severity, and outcome. Specifically, recent highlights in
inflammation and infection, cancer, and neurological disorders will be discussed (Figure 1).

To apply the platelet paradigm beyond hemostasis and thrombosis might be best appreciated
by understanding the phylogenetic origins of the platelet [3]. The anucleate human platelet is
a specialized cell fragment unique to mammals. Non-mammalian vertebrates, such as fish
and birds, have nucleated platelets or thrombocytes. Invertebrates have an even more
primitive blood cell, the amebocyte. The amebocyte is the single blood cell of invertebrates
with a multitude of functions. As different types of blood cells have appeared in phylogeny,
each cell has gained a more specialized function. However, exclusivity for the specialized
function seems rare [4]. Thus, as we consider mammalian platelet function beyond
hemostasis and thrombosis we can often trace these functions as vestiges to the platelet’s
ancestor, the thrombocyte or an amebocyte.

Platelets and Inflammation
The platelet is equipped to influence inflammation and the innate immune response at
several levels [2,5,6]. First, the platelet expresses a repertoire of pattern recognition
receptors, toll-like receptors (TLRs), which initiate the innate immune response [7–11].
Second, there is a platelet/leukocyte and platelet/monocyte axis where specific platelet
receptors and counter receptors on the white blood cells facilitate their interaction in the
blood stream [12–15]. In addition, the platelet stores and releases upon activation many
inflammatory mediators, such as interleukin-1 (IL-1) that can exacerbate the immune
response. In the case of IL-1β, this has been specifically linked to the pathogenesis of
arthritis and systemic lupus erythematosus (SLE) [16]. In a non-classical form of platelet
activation, platelets can release microparticles (less than 1 µM in diameter) and these too
have been linked to the inflammatory pathways associated with rheumatoid arthritis [17,18].
So, the ability of platelets to influence inflammation is likely a dynamic process and
occurring through a variety of mechanisms.

The future challenge to understanding how platelets influence inflammation must also
consider the state of platelet activation and the ability of the platelet to regulate activation of
the white blood cell [19*]. Much literature describes the pro-inflammatory properties of the
platelet. However, understanding the dynamic life span and function of the platelet could
lend itself to a more complex interpretation. Perhaps in one setting the platelet elicits an
inhibitory role in inflammation but when triggered by inflammatory mediators to induce
platelet activation, the platelet becomes pro-inflammatory [20]. If we consider the temporal
sequence of events so well-characterized in the platelet paradigm in hemostasis, platelet
function proceeds through a series of events characterized by recognition of a surface, an
activation response, a platelet release reaction, recruitment of platelets, and wound repair.
Considering a similar sequence of events in response to interacting with other blood cells or
an inflamed endothelial cell surface, the dynamics of how a platelet contributes to the
immune response is likely to be quite complex [20].

The importance of understanding platelet function in inflammation is underscored by the
immune system’s complicated role in many chronic diseases. Neurodegenerative diseases
[21], atherosclerosis [22–24], transfusion-related lung injury [25], rheumatoid arthritis [16],
and SLE [16] represent just a sampling of the recent inflammation based pathways that have
strong association with platelet activity [5].

Perhaps one of the biggest challenges to unravel is the potential relevance of platelets in the
severe sepsis syndrome. The significance of improved therapies for sepsis needs little
justification. Sepsis is a worldwide problem in medical management and in the U.S.
accounts yearly for 250,000 deaths, ranking it in the top 10 causes of death [26]. Fibrinolytic
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strategies in treating severe sepsis have unfortunately not improved outcomes as originally
hoped. The consensus opinions on sepsis is there exists major gaps in our understanding.
Dysfunctions in coagulation during the course of sepsis are known but details beyond that
statement have been elusive [27]. The recent withdrawal of Xigris and Eritoran are the latest
casualties for therapeutic intervention in sepsis [28]. Thrombocytopenia associated with
sepsis has been long thought to due to platelet consumption in disseminated intravascular
coagulation [27], but in fact an Ashwell receptor liver clearance mechanism of platelets
during the height of infection might also contribute to the thrombocytopenia [29]. An
increased platelet clearance could lead to further imbalance in the inflammatory continuum
at a time when dysregulated inflammation is exacerbating septic shock. Further
characterizing the platelet-dependent contribution to early aspects of the innate immune
response could remove a barrier to further innovation in understanding the complex disease
process that is sepsis. The difficulty in sepsis treatment and development of new drugs
revolves around the complex – and poorly understood – pathophysiology of sepsis. New
advances will have to include animal models. While recent work has challenged the
applicability of animal models in studies of inflammation [30], even if animals are less
sensitive understanding the differences that exist between animals and humans is likely to be
important for a complete understanding.

Platelets and Cancer
The interrelationship between platelets and cancer dates to the 19th century with
observations by Armand Trousseau (Trousseau’s syndrome). His keen insights linked
venous thrombus formation as a potential predictor of an undiagnosed malignancy [31,32].
However, the association is not restricted to platelets with basic mechanisms of coagulation
linked to various stages of tumor growth and metastasis [33]. Platelet participation is
tumorigenesis can occur at many levels but most striking is how the tumor cells appear to
have hijacked the normal wound healing properties of platelets to promote cellular growth,
metastasis and angiogenesis.[34*]

A vast literature exists on the relevance of circulating platelets in many different animals
models of cancer.[35] But perhaps the best proof of principle for human platelet relevance in
cancer can be attributed to data mined following the wide spread use of aspirin for its
cardiovascular protective effects [36–38]. The efficacy of aspirin in reducing colon cancer
seems compelling, but what is less compelling is the mechanism of action [39]. The anti-
platelet effects of aspirin are well established and occur via cyclooxygenase-1 (COX-1)
inhibition and an inability to convert arachidonic acid into prostaglandins. Thus, the COX-1
inhibition provides a potent anti-platelet activation effect, so much, that in some cases there
can be serious bleeding [40]. This highlights the challenge of maintaining the hemostatic
balance even in light of potential benefits in other disease processes [41*].

The challenge in mechanistically explaining aspirin therapy efficacy in cancer patients is
dissecting aspirin’s effects on platelets from a similar inhibition of COX-2 which is
expressed by a wide range of cell types, including tumor cells [39,42]. Indeed, aspirin
effects could be wide ranging and if properly balanced with its anti-hemostatic effects could
be one of the easiest first lines of prevention in many seemingly unrelated cancers. With a
growing interest in personalized medicine, understanding the individuality of aspirin
resistance and aspirin sensitivity might identify a safer approach to aspirin therapy [43].

One of the better described platelet properties effecting tumor growth is the angiogenic
pathway [44,45]. Again, the wound healing activation release of a wide range of stored
proteins can dramatically influence new blood vessel growth to satisfy the insatiable tumor
appetite for nutrients [46]. One of the bigger dilemmas in understanding the proangiogenic
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properties of platelets is also appreciating the presence of anti-angiogenic properties stored
in similar platelet granules. Some have proposed the presence of distinct subpopulations of
platelet granules where some degree of segregation might exist between pro- and anti-
angiogenic proteins [47,48]. Others suggest the segregated storage is a more stochastic
event[49]. The pathophysiologic situation might be even more complex with consideration
for the relative amounts of each protein, the pro- or anti-angiogenic strength of each protein,
and the ability of older platelets to have sequestered more growth factor from the plasma
during its lifetime in the bloodstream. Thus, a complete mechanistic explanation of the
platelet’s regulation of angiogenesis is still waiting, but clearly one with important
therapeutic implications.

Many solid tumors can also display a degree of thrombocytosis, or elevated platelet count
that correlates with a worsening prognosis [50]. Again, the effect of thrombocytosis could be
multifactorial but would likely include increased levels of platelet-secreted growth factors
and increased metastatic potential. Either effect would challenge intervention. A long held
observation of tumor cells supporting platelet aggregation highlights the tumor cells ability
to exert a thrombotic effect likely contributing to the Trousseau syndrome [32]. The
aggregation mechanisms are the well characterized receptor-ligand interactions and
pathways that are exquisitely described for hemostasis, such as glycoprotein (GP) Ib-IX,
GPIIb/IIIa, ADP, and thromboxane [51].

The challenge going forward is to understand a plethora of pathways where cancer and
platelets converge. While retrospective analysis have supported aspirin effects in limiting
metastasis, the inhibition of P2Y12 for which large data sets exists because of its widespread
use in cardiovascular disease has been more controversial [52,53]. Recent evidence linking
P2Y12 inhibition and increased growth of solid tumors is alarming [52]. Others have
developed anti-platelet antibodies to recognize the activated platelet and then further
fragment the platelet potentially reducing metastatic potential [54,55]. Clearly, better
mechanistic insights are needed to understand the translation of animal model studies to the
human clinical situation. In most cases, it will likely be an example of where the tumor cell
is exploiting the normal specialized physiology of the circulating platelet, an ability to
adhere, activate, recruit and repair damage. Because the normal platelet response is a
temporal sequence of events with platelet properties changing at each step, focusing on any
single event may not afford the greatest improvement in therapy. A multi-faceted approach
may prove beneficial but will also be challenging given the heterogeneity in the human
population at each level of intervention. Will a personalized medicine approach provide
answers and benefits [56*]? The potential for personalized medicine to improve care has
shown some success but it is worthy to never underestimate biological complexities. When
one approach looks obvious it many times underscores a simplistic view that is later proven
to be poorly understood. Thus, while garnered enthusiasm is great, caution is needed too.

Platelets and Infection
Similar to the dynamic role of platelets in cancer biology, similar interactions and dynamic
relevance also exists in models of cerebral malaria [57]. Here, the situation is far from
simple with the “state” of the platelet affording very different protective or deleterious
outcomes during infection. In the early phase of infection, platelets can limit parasite growth
by killing Plasmodium falciparum through the release of platelet factor 4 [58,59*]. Later as
the disease progresses, platelet activation begins to significantly contribute to the malaria-
associated inflammation presumably through many of the pathways outlined above [57].

Platelet bacterial interactions have also been documented and support the universal theme of
intrinsic platelet adhesion [60]. The pathophysiologic consequences in situations such as
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infective endocarditis would significantly worsen cardiovascular disease and congestive
heart failure [61]. The major platelet adhesion receptor, GP Ib, has been implicated as a
binding site on the platelet surface to Streptococcus sanguis, and as a consequence of
binding can induce platelet activation and aggregation [61,62]. While S. sanguis studies are
relevant to thrombus formation on a cardiac valve, one could speculate on similar
consequences in other cases of severe bacterial infection, as briefly mentioned above related
to the severe sepsis syndrome. Understanding the dynamics of platelet interactions with
bacteria, immune cells, the state of platelet activation, is likely to be a daunting task but
clearly one where antidotal pathophysiologic significance seems obvious but needs more
detailed mechanistic investigation.

The Circulating Neuron
The idea of the platelet as a circulating neuron contains some truth but can also be somewhat
misleading. The truth stems from similarities between the platelet release reaction of stored
agonists following stimulation, and neurotransmitter release following an action potential
stimulation of a neuron. The similarities and dissimilarities comparing platelet and neuron
exocytosis has been reviewed [63]. What is clear is a wealth of literature examining platelet
function from individuals with a range of diagnosed psychiatric syndromes. A recent search
of www.pubmed.org with the search terms “platelet and mental illness” returned 3569
citations. Further refining the search to schizophrenia or other disorders still returns a
plethora of information. An obvious examination of platelet function relates to ease of
obtaining a venipuncture vial of blood for analysis and analyzing the platelet as a window
into what might be dysfunctional in the neuron.

What is most compelling in these searches is the majority of the literature is pre-1980s.
Thus, given the significant platelet mechanistic insights that have been realized in the last 30
years, a re-examination of this older work is likely to provide some very interesting new
insights into the circulating neuron hypothesis. Given the widespread use of serotonin-
uptake inhibitors to treat depression and the platelet as a circulating regulator of serotonin
[64], this is a beyond hemostasis/thrombosis topic that clearly deserves attention.

Conclusion
Significant insights into platelet mechanisms in hemostasis and thrombosis have been made.
Platelet targets for inhibition of thrombosis have been identified and many have been used.
Less appreciated is how the same platelet mediated interactions are influencing
inflammation, cancer, infection. Moving forward such investigations should quickly provide
new and exciting information thanks to the immediate benefit of established mouse models,
antibodies, and sophisticated techniques to examine hemodynamic properties and the
platelet response.
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TLR toll-like receptor

SLE systemic lupus erythematosus

IL-1 interleukin-1
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COX cyclooxygenase

GP glycoprotein
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Key points

• Platelets are highly specialized mammalian cellular fragments, the origin of
which can be traced to multi-functional cells, such as thrombocytes and
amebocytes found in lower organisms.

• The adhesive nature of platelets supports interactions with cells participating in
a wide range of disease processes, such as cancer, inflammation, and
neurological disorders.

• Extending the platelet paradigm that is so well described in hemostasis and
thrombosis to other disease states remains an important direction where major
gaps exist in our knowledge.
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Figure 1. Platelets at the interface of disease
The dynamics that exist between platelet function in hemostasis / thrombosis and diseases,
such as cancer, inflammation, and neurological disorders are being explored. Traditional
platelet function in hemostasis and thrombosis impacts each of these areas to varying
degrees and some of the recent progress and insights are highlighted in this review. Further
overlap between cancer / inflammation, and inflammation / neurological disorders is also
known but beyond the scope of what is discussed here.
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