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Abstract

A large body of evidence from human and animal studies demonstrates that the maternal diet during pregnancy can
programme physiological and metabolic functions in the developing fetus, effectively determining susceptibility to later
disease. The mechanistic basis of such programming is unclear but may involve resetting of epigenetic marks and fetal gene
expression. The aim of this study was to evaluate genome-wide DNA methylation and gene expression in the livers of
newborn rats exposed to maternal protein restriction. On day one postnatally, there were 618 differentially expressed genes
and 1183 differentially methylated regions (FDR 5%). The functional analysis of differentially expressed genes indicated a
significant effect on DNA repair/cycle/maintenance functions and of lipid, amino acid metabolism and circadian functions.
Enrichment for known biological functions was found to be associated with differentially methylated regions. Moreover,
these epigenetically altered regions overlapped genetic loci associated with metabolic and cardiovascular diseases. Both
expression changes and DNA methylation changes were largely reversed by supplementing the protein restricted diet with
folic acid. Although the epigenetic and gene expression signatures appeared to underpin largely different biological
processes, the gene expression profile of DNA methyl transferases was altered, providing a potential link between the two
molecular signatures. The data showed that maternal protein restriction is associated with widespread differential gene
expression and DNA methylation across the genome, and that folic acid is able to reset both molecular signatures.
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Introduction

Non-communicable diseases of adulthood related to obesity

(type 2-diabetes, cardiovascular disease, cancer) represent major

global public health challenges. Cardiovascular disease in partic-

ular is a significant cause of morbidity and mortality [1]. It is

widely considered that the primary determinants of risk of non-

communicable diseases derive from a combination of environ-

mental factors and the cumulative effects of multiple genetic

variations [2]. However, even with increasingly massive studies

and detection of ever rarer genetic variants, complete aetiological

explanations are elusive [3]. A potential explanation for part of this

‘aetiology gap’ is the phenomenon of fetal programming [4–6].

Based originally on the observation that birth weight associated

with the prevalence of cardiometabolic disease [7], significant

support for its relevance has been provided by the re-creation of

this phenomenon in a wide range of animal models [6].

Whilst models of programming of physiological and metabolic

function are well-characterized, the underlying mechanisms

involved remain unresolved [8]. A basic requirement of fetal

programming is that an event in utero such as a physical,

psychological, metabolic or pharmacological stress results in a

change in the fetus that persists through life. This potentially leads

to adverse consequences in adulthood [6]. Intrauterine life is

characterized by an extensive and complex developmental

programme, which involves cell division, growth and differentia-

tion. Differentiation of cells requires stable marking of the genome

such that cell types commit to specific lineages [9]. This genome

marking process includes modification of DNA by methylation at

CpG sites and modification of the chromatin around which DNA

is wound. Both of these changes are major determinants of the

level of expression of related genes [10]. Consequently, any

interference with this process of epigenetic modification is likely to

influence patterns of gene expression in a stable manner. This

may, in turn, have adverse consequences for the function of the

developed organism, either due to prolonged up- or down-

regulation of gene expression, or remodeling of tissues during

development [6,11].
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The idea that altered DNA methylation following maternal

insult is key to this process comes from the observation, in rodent

models [12–14], that specific genes of interest carry a modified

pattern of cytosine methylation that correlates with their level of

expression. Generally it is reported that hypomethylation of gene

promoters, with up-regulation of expression, occurs in offspring of

animals subject to undernutrition during pregnancy. These genes

include important modulators of the metabolic phenotype such as

PPARa in liver [12], the glucocorticoid receptor in the liver [12]

and hippocampus [13], and, in our own studies of a hypertensive

rat model, the At1b angiotensin receptor in the adrenal glands

[14,15]. Furthermore, the observation that dietary supplementa-

tion with single carbon donors, for example folic acid, can reverse

the phenotypic changes [16–18] in many of these models is

consistent with the hypothesis that disturbance of DNA methyl-

ation underlies this phenomenon. The expression of DNA

methyltransferases may be modified by the maternal diet and this

may explain how undernutrition can alter methylation and hence,

gene expression [13].

It seems unlikely that a disturbance of DNA methylation in

response to maternal undernutrition impacts upon only a few

select genes in a few specific tissues. It is more probable that this

would be a global phenomenon common across the accessible

regions of the genome in most tissues. Sinclair and colleagues

reported that brief periconceptual depletion of methyl donors in

sheep impacted upon methylation of approximately 4% of the

genome in affected lambs [19]. To address these questions we

investigated the extent of DNA methylation across the whole

genome in the livers of control and programmed animals shortly

after birth using the MBD-seq method [20]. Multiple regions of

differential methylation were identified and their relationship with

differential gene expression was characterized. Given that

maternal folic acid supplementation has been shown to reverse

programmed changes in DNA methylation, gene expression and

functional outcomes [12,16,18,21,22], we also assessed the impact

of supplementation upon whole genome methylation and gene

expression.

Results

Sample collection
Livers were harvested from male offspring on postnatal day 1

(P1) from rat litters fed on control (18% casein), low protein (9%

casein) or low protein with folate- supplemented diets previously

described [16], respectively denoted C, MLP and MLP-F. One

litter from each group was studied, generating up to 16 offspring in

each case. As the aim of our study was to relate methylation and

gene expression to programmed phenotypes, we did not include a

control with folate supplementation group as there is no evidence

that increased folate programmes a distinct postnatal phenotype.

Liver was selected for study in view of its size and relative

homogeneity and the demonstrated role of several liver-specific

genes in insulin resistance. P1 was selected as the sampling time in

the expectation that secondary or compensatory gene expression

changes would be minimized at this early stage and that DNA

methylation profiles would indicate the potential effect of sustained

epigenetic programming through the entire pregnancy.

Gene expression profiles
Gene expression in individual livers was assessed using the

Illumina RatRef-12 Expression BeadChip (n = 4 RNA samples for

each animal group). Differentially expressed genes among the

three animal groups were determined according to the procedure

outlined in Materials and Methods. Figure 1A shows that at False

Discovery Rate (the expected proportion of rejected null

hypotheses that are false positives) FDR = 5% 618 gene probes

were differentially expressed when control (C) and maternal low

protein (MLP) samples were compared. At FDR = 1% 131 genes

were still found to be differentially expressed. The complete set of

differentially expressed genes in this comparison (FDR 5%) is

shown in DATASET S1. Amongst differentially expressed genes

there were Glycine N-methyltransferase, Gnmt, a key enzyme in

1-carbon metabolism; three key DNA methyltransferases: Dnmt1

(maintenance), Dnmt3a and Dnmt3b (de novo); components of the

Mcm gene family; and polycomb proteins. Eight of the differentially

expressed genes between control and low protein diet samples

(including representative genes for Dnmt and Mcm families) were

selected for validation using qPCR. This confirmed the changes

seen on arrays in all cases, and also indicated abrogation of these

changes in the MLP-F group (Figure 1B). Folate supplementation

did not reverse all MLP-induced changes, with Dnmt3a and Dnmt3b

notably irresponsive to the additional folic acid. Functional

analysis of the set of differentially expressed genes in MLP vs. C

using Gene Set Enrichment Analysis-Molecular Signature Data-

base (GSEA-MSignDB) [23,24] showed that there was very strong

enrichment in DNA repair/cycle/maintenance functions amongst

the down-regulated genes; whilst in the up-regulated genes lipid/

amino acid metabolism and circadian functions emerged. More-

over, a large proportion of genes in the down-regulated set shared

transcription factor binding sites for E2F family members in their

regulatory regions (within 2 kbp from the TSS). These genes

include enhancer of zeste homolog 2 (Ezh2) a histone methyltransferase

that is a well-recognised component of the polycomb group of

proteins as well as an oncogene [25]; and genes from the Mcm

family. Notably, a large subset of the down-regulated genes

overlapped a set of down-regulated genes in an EZH2 KO

experiment [26]. Some up-regulated genes shared transcription

factor binding sites for androgen receptor (AR) and activating

protein 2 (AP2). These findings were confirmed by further analysis

with GENEGO Software (see Materials and Methods). The

complete ontological analysis of these differentially expressed

genes can be found in DATASET S2. Previous studies, as well as

our unpublished work, have examined hepatic gene expression

patterns in this model at later time points suggesting disturbance of

more differentiated functions (for example, lipogenesis) at 4, 8 or

12 weeks of age and in older animals [27–29]. These changes

presumably reflect the evolution of the programmed phenotype

with increasing postnatal development as well as secondary

consequences of disturbed gene expression.

A greatly reduced number of genes were differentially expressed

in the MLP offspring in which the maternal diet had been

supplemented with folic acid (MLP-F). 42 genes at FDR 5% (no

genes at 1% FDR) were differentially expressed relative to control,

implying that folate prevented or reversed the gene expression

changes (Fig. 1A). No functional enrichment was found, which is

unremarkable given the low number of differentially expressed

genes. Assuming that folic acid supplementation may have

reversed the MLP phenotype, as expression patterns in MLP-F

livers are similar or equal to expression patterns in C livers, we also

evaluated differentially expressed genes between MLP and MLP-

F. In this comparison we noted a larger number of differentially

expressed gene probes (Figure 1A), namely 763, which was similar

in size to the previous comparison between MLP-F and C (see

DATASET S3). However, only 306 differentially expressed genes

(65 at more stringent FDR 1%) were found in both MLP vs. C and

MLP vs. MLP-F, indicating potentially more subtle differences

between C and MLP-F animals (Figure 1A). The comparison

between MLP and MLP-F still retained the differences found in

Genome-Wide Effects of Maternal Undernutrition
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Mcms and Dnmts (except for Dnmt3a) genes, indicating that the key

pathways that were validated by PCR were indeed altered only in

the MLP animals. Further investigation of the genes that were

differentially expressed only in the MLP vs. MLP-F comparison

indicated enrichment in various metabolic functions (see DATA-

SET S4). The mapped genes (288) that were differentially

expressed in both comparisons (MLP vs. C and MLP vs. MLP+F)

showed distinctive enrichment in DNA metabolism, catabolism

and stress responses (See DATASET S5). In addition to Dnmts and

Mcms genes, we found polycomb H2afz (but not Ezh2), and

complement proteins. Interestingly, a strongly down-regulated

gene whose mutation causes disease, Mmadhc, methylmalonic

aciduria (cobalamin deficiency) cblD type, with homocystinuria

[30], was also found in this list.

Whole genome DNA methylation profiles
Genomic DNA from the samples was subjected to selection

according to the methyl-CpG binding domain-based (MBD)

protein protocol (DNA pooled from 8 individual animals per

group). The DNA fragments so selected were then subjected to

high throughput sequencing using Illumina Genome Analyzer II

technology. The resulting DNA sequences were mapped to the rat

genome assembly Nov 2004 (Baylor 3.4/rn4) using Bowtie [31],

and the resulting alignments were normalized to create methyl-

ation tracks (see Supplementary Data), which were subsequently

visualised in UCSC Genome Browser. We finally modelled the

DNA epigenetic marks using MACS [32] (see details in Materials

and Methods). Comparing MLP to C, we selected those

differentially methylated regions (DMRs) that exhibited calculated

FDR = 5%. Therefore, out of a larger (FDR = 10%) collection of

differentially methylated regions (see relevant GEO dataset), 1183

genomic loci were retained for downstream analysis in MLP livers

in comparison to controls. Hypermethylated regions identified

comparing MLP to C livers had an average size of ,800 bp, a

mean fold enrichment of ,8, and average distance from the

Transcription Start Site (TSS),80,000 bp. Detailed statistics of

these features as well as fold enrichments is provided in Table S1.

These regions were subsequently annotated to the ‘nearest gene’

using Ensemble API as described in Materials and Methods

(DATASET S6). Genomic annotation indicated that these regions

were distributed both within genes (40%) and between genes

(58%) with 2% overlapping either exons or 59/39UTRs (Table S1).

A large number of DMRs also mapped to repetitive elements

within the genome. No single class of repeat significantly

Figure 1. Differentially expressed genes in maternal undernutrition model. (A) Venn’s diagrams showing the number of differentially
expressed gene probes in comparisons MLP vs. C (P-C), MLP-F vs. C (F-C) and MLP vs. MLP-F (P-F) at FDR 5% (top) and FDR 1% (bottom). Number of
gene probes whose expression was unaltered is indicated in black (right). Numbers of altered gene probes in MLP-C contrast at different FDR are
indicated in green (left). (B) qRT-PCR mRNA analysis for 8 genes: Dnmt1, Dnmt3a, Dnmt3b, Aurkb, Mcm6, Hat1, Gnmt and Gmnn. Results are given in
relative units, as ratio of number of copies in assessed gene and housekeeping gene GAPDH. 6 P,0.05; 66 P,0.01; 666 P,0.001. ns P.0.05.
doi:10.1371/journal.pone.0082989.g001
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outnumbered others, but they included Line 1 repeats (70), dust

(42) and trf (29) repeats (Table S1). Differentially methylated loci

annotated to Dnmt1, Agtrap, Fgf5, and Mcm6 were validated by

conventional bisulphite sequencing, confirming the genome-wide

results (one region annotated to Smfbt1 could not be validated,

though). The validation data and genomic context of these DMRs

is shown in Figure 2. The total number of unique gene symbols

that bore differential DNA methylation at FDR 5% was 630.

This gene list was further investigated using GSEA-MSigDB

[23,24]. Interestingly, we found that a large subset of these DMR-

neighbouring genes was associated with down-regulation in an

experiment with UV-induced mutation of ERCC3 transcription

factor [33], as well as with a distinctive signature for MLLT3

(FOXO transcription factor) in the regulatory regions (within

2 Kbp from the TSS) of more than one hundred genes. The

complete analysis can be found in DATASET S7. No enrichment

in miRNA signatures was observed, which was subsequently

confirmed by GREAT [34]; and no enrichment in canonical

pathways or GO terms could be detected. Therefore, we also

performed functional enrichment analysis via GREAT [34], using

mouse and human orthologous regions for the DMRs that we

found in rat (see Materials and Methods). The functional

enrichment analysis overall pointed to immune response, espe-

cially to the function of the immune component that fights

infection and which is also involved in autoimmune diseases.

Using mouse regions and annotating to the ‘nearest gene’

GREAT rule, enrichment in functions related to the ‘activation of the

immune response’ and ‘positive regulation of the immune system process’ as

well as ‘differentiation of retina/eye photoreceptor’ (corrected p-values

ranging between 1023–1022) was found. Enrichment in ‘Mouse

phenotype’ terms relevant to ‘abnormal CD8-positive T cell morphol-

ogy/number’, ‘abnormal single-positive T cell number’ and ‘decreased single-

positive T cell number’ (corrected p-values 1022), suggests deregula-

tion of this immune system component. Using human regions, no

enrichment in GO terms was found; yet the same enrichment in

‘Mouse phenotype’ terms was reproduced. A few additional

enriched terms in this collection pointed to developmental

functions (DATASET S7). Performing the same analysis with

GREAT extension rules (see Materials and Methods), for both

human and mouse orthologs regions lists, we found again that

several immune system functions were enriched (corrected

p-values,1022) (DATASET S7). Adopting a wider annotation

rule allowed us to identify further immune signatures such as those

involving CD4+ T-cells and innate immune system. Overall,

regardless of the species and rule used for annotation, immune

system enrichment was evident. This seemed to correlate well with

the above-mentioned ‘FOXO signature’ discovered with GSEA-

MSigDB. FOXO proteins are important for developmental

regulation, for example in the differentiation of T-cells to become

regulatory T cells [35] (see discussion).

Comparing MLP-F to C no differentially methylated regions

were found, possibly indicating a protective action of folate

supplementation against the MLP effect on DNA methylation.

Once more assuming reversal upon folate supplementation, we

compared MLP to MLP-F livers. We obtained 35 hypermethy-

lated regions at FDR 5% subsequently annotated using Ensemble

API, which (partially) overlapped the best differentially methylated

regions identified in comparison MLP vs. C (see DATASET S8).

These DMRs mapped to 17 unique gene symbols amongst which

Sfmbt1 (polycomb) and Acadm, an enzyme whose deficiency causes

serious hepatic dysfunction. Approximately half of these 35 loci

bore either no gene symbol or their relevant identifier could not be

mapped to ontological collection, and no functional enrichment

could be detected. Although 14 DMR loci from both lists perfectly

overlapped at FDR 5%, we noticed that many more DMRs could

be identified in MLP vs. C as compared to MLP vs. MLP-F,

suggesting that the changes induced by the folic acid do not

completely rescue the disturbance. This discordance may poten-

tially be related to the ‘digital’ nature of the technology employed

for detecting DMRs, and would also require investigation into

dosage effects and sample variability.

GWAS and DNA methylation
We evaluated the overlap between differentially methylated

regions in MLP vs. C (rat) and loci found in GWAS studies

(human) pertaining to metabolic and cardiovascular disorders

(diabetes, high blood pressure, cardiovascular function, and

obesity), using their associated gene lists. The overlap with 104

GWAS genes was found to be statistically significant (hypergeo-

metric probability p = 0.0025). This set included genes (see Table 1)

such as FTO, for which a link between genetic state (SNP allele,

within an intron) and DNA methylation has been published

previously [36], and BACH2, a transcription factor which

maintains immune homeostasis [37] and whose polymorphisms

have been associated with several inflammation-related autoim-

mune diseases. The statistical significance of this overlap, linked to

the size of gene lists, may vary according to how the GWAS lists

were compiled. Nevertheless, in the light of recent discoveries

[38,39], this finding suggests potential, dysfunctional interplay of

genetic and epigenetic alterations, implicating DNA methylation

disturbance.

Gene expression and DNA methylation
There was no significant overlap between genes associated with

differentially methylated regions and differentially expressed genes,

as shown in Figure 3. Only 9 up-regulated genes and 6 down-

regulated genes were found at the intersection with DMR-

neighbouring genes (both lists taken at FDR 5%; hyper-geometric

probability = 0.69). The DNA methyltransferase-1, Dnmt1, which

was down-regulated (see Figure 1B) and bore a validated (intronic)

DMR at FDR higher than 5%, does not appear in this list (see

discussion). The functions of these 15 genes can be found in Figure

S1, along with relevant genomic details. Functional enrichment

analysis of the 15 DMRs-neighbouring genes did not highlight

common pathways, and no correlation of up/down-regulation

with the genomic context of DMRs could be determined. Ten of

these 15 methylation marks occurred in introns, which tradition-

ally is associated with gene silencing [40,41]. However, only 4 of

these marks were linked to down-regulated genes (Dym, Glrx2,

Myh10, Pftk1, see Figure S1). Additionally, comparative analysis of

DMR-neighboring and differentially expressed gene sets (FDR

5%) with GENEGO showed a striking inverse relationship in 3

categories: ‘cell cycle and its regulation’ function (highly enriched in

GEX and low in MBD), ‘apoptosis’ and ‘mitogenic signaling’ (highly

enriched in MBD and low in GEX (see Figure S2). This

discordance, though not completely unexpected (see discussion),

argues for a greater understanding of the complex interplay

between DNA methylation and gene expression in fetal program-

ming models, across tissues and development.

Discussion

The phenomenon of fetal programming by which intrauterine

stressor are associated with physiological and metabolic effects in

adult offspring is now well established in a variety of species, and

good evidence indicates that this contributes to human disease.

Such observations highlight the importance of the intrauterine

environment for human health with substantial public health

Genome-Wide Effects of Maternal Undernutrition
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implications. The mechanisms that underlie this phenomenon are

less clear, but accumulating evidence supports the ‘‘DNA

methylation hypothesis’’ [42]. In summary, this hypothesis

suggests that since that intrauterine life coincides with a period

of major epigenetic modification of the fetal genome, and since

many of these DNA methylation changes are highly stable,

disturbance of this epigenetic process through adverse environ-

mental exposure has the potential to influence gene expression

throughout the life of the offspring. There are numerous examples

from animal models of undernutrition in pregnancy which indicate

effects of the nutritional environment upon specific gene

promoters in specific tissues [6]. Similarly, differential methylation

has been observed in the IGF-2 gene in humans who were exposed

to the 1944/5 Dutch famine in utero [43]. The primary aim of this

study was to establish whether maternal dietary effects upon DNA

methylation and gene expression occur across the whole genome.

Our findings show an excellent correlation of such genome-wide

patterns with relevant phenotypes, although arguing for a greater

understanding of the molecular basis of fetal programming.

It is clear that a multitude of anatomical and physiological

processes are altered in models of fetal programming and that

these stem from underlying alterations in gene expression [44,45].

An undoubted difficulty with such observations is to distinguish

primary alterations in gene expression from secondary alterations

occurring consequent to primary alterations. For example the

profound hepatic steatosis developed in aged rats exposed to

protein restriction in utero is associated with hepatic over-expression

of SREBP1c and the lipogenic pathway [44]. However in younger

animals the same pathway is suppressed and there is no evidence

of differential expression at birth or during the fetal period [27,46].

Furthermore, it is clear that increased global DNA methylation is

present in some tissues in rodent models of nutritional program-

ming, and differential methylation in a number of specific genes

and specific sites within these genes has been described and

correlates, in published examples, with the observed gene

expression changes [12,14].

In this study we have used a well-established model of fetal

programming in the rat and shown that a maternal low protein

diet is associated with a significantly disturbed pattern of altered

gene expression in the liver from as early as P1. Others have

shown that this, or a similar model is associated with altered

hepatic gene expression by 4, 8 or 12 weeks of age, with prolonged

effects into ageing, and thus this finding is not unexpected. Indeed

we have recently shown that protein restriction and maternal iron

deficiency disturb similar gene pathways (cell cycle regulation,

mitosis) as early as d13 gestation [45,47]. The ontogeny of the

differentially expressed genes differs in later time point experi-

ments from those observed at P1. This should not be unexpected

as obvious physiological and nutritional developments occur

between neonatal and more mature animals. These are inevitably

accompanied by maturation in gene expression patterns in both

the liver and elsewhere. Secondary changes in gene expression will

occur at later time points, particularly in response to disturbed

Figure 2. Figure panel representing five genomic loci (Agtrap, Fgf5, Dnmt1, Mcm6, Sfmbt1) containing differentially methylated
regions (DMRs) between livers obtained from newborns whose mothers were fed a control diet (18% protein) and livers obtained from
newborns whose mothers were fed a low protein (9% protein) diet. For each locus, Panel A shows the validation data obtained from bisulfite
conversion followed by cloning and sequencing, which provides methylation status at single CpG site resolution for different livers and different
clones (black circles represent methylated CpG, white circles unmethylated CpG). All loci except for Sfmbt1 validated significant difference in DNA
Methylation (Agtrap P,0.01, Fgf5 P,0.01; Dnmt1 P,0.05; Mcm6 P,0.01, Mann-Whitney U test), in line with that indicated by genome-wide MBD-Seq
data. Panel B provides an overview of the genomic locus, the gene structure, the location of the DMR validated, and the level of methylation across
the locus for each of the animal groups analyzed (Control = ‘‘cmbd’’, Low Protein = ‘‘pmbd’’, and Low Protein with Folic Acid Supplementa-
tion = ‘‘fmbd’’). Panel C summarises the percent methylation in control and low protein for each locus assessed by bisulphite sequencing.
doi:10.1371/journal.pone.0082989.g002

Table 1. List of loci from selected GWAS studies pertaining to
metabolic and cardiovascular phenotypes associated to Low
Protein diet that contain differentially methylated regions in
their orthologous rat locus.

GWAS Locus Disease

BACH2 Type 1 Diabetes

CTLA4 Type 1 Diabetes

CTSH Type 1 Diabetes

PTPN2 Type 1 Diabetes

AGTRAP Systolic Blood pressure

ARID5B Diastolic Blood pressure

PRDM8 Diastolic Blood pressure

SETBP1 Ventricular Conduction

VTI1A Ventricular Conduction

FTO Obesity and Obese Type 2 Diabetes

The overlap between the total number of GWAS loci investigated and DMR
containing loci is significant (p = 0.0025).
doi:10.1371/journal.pone.0082989.t001

Figure 3. Intersection of differentially expressed (GEX), sepa-
rated in up-regulated (UP) and down-regulated (DW), and
DMRs-neighboring (MBD) genes. At FDR 5% only 15 genes
(hypergeometric probability = 0.69) are found in both lists, of which 6
were down-regulated (Dym, Glrx2, Mlph, Myh10, Pftk1, And Prep) and 9
up-regulated (Abcc8, Abhd6, Cep350, Ctsa, Eif2b3, Pdk1, Serpina11, Tpcn2,
And Tyw3). The total number of mapped genes is 555 in MBD and 577
in GEX.
doi:10.1371/journal.pone.0082989.g003

Genome-Wide Effects of Maternal Undernutrition
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physiological and metabolic phenotypes, as we observed in earlier

work [27,29,48]. Transient disturbance of expression may result

from short-term consequences of the adverse maternal environ-

ment.

A substantial number of differentially methylated regions were

observed in comparing MLP and control animals by whole

genome MBD-Seq analysis. These were widely distributed across

the genome and did not exhibit strong relationships with gene

promoters or other recognised gene regulatory regions, as has been

also shown in numerous other genome-wide studies, which have

clearly indicated that CpG islands and promoters constitute only a

fraction of the genome affected by DNA methylation [49]. There

was a high frequency of association with a variety of types of DNA

repeat, the significance of which is not clear, although this

phenomenon has been observed in other models of differential

DNA methylation [36]. We validated DMRs at a greater FDR

than the one used for the annotation, so it is possible that further

biologically relevant enrichments would be identified if we utilized

a wider set of differentially methylated regions. Nevertheless, DNA

methylation, although assessed using a single molecular assay,

reflects a multitude of functional mechanisms in relation to the

location of the signal (gene body, intergenic regions, promoters,

etc). In absence of dedicated annotation tools, we have employed

two different annotation methodologies in a complementary way.

The pathways so identified (immune/developmental signatures)

are consistent, yet further validation would be required.

It is notable that a large subset of DMRs-neighbouring genes

were found sharing binding sites that match annotation for FOXO

(or MLLT7, the human homolog of Drosophila trithorax MLL), a negative

regulator of insulin sensitivity in liver, adipocytes and pancreatic

cells [50], which may suggest that these genes are somehow

functionally related, perhaps through trithorax. Significant associ-

ation with AR and AP2 response elements in up-regulated genes as

well as with liver-specific functions was observed. Furthermore,

down-regulation at P1 was very significantly associated with E2F

binding sites in a subset of genes, including strong downregulation

of Ezh2 and H2afz (polycomb). Notably, conditional deletion of

Polycomb protein EZH2 in mouse beta-cell determines beta-cell

regeneration failure leading to diabetes mellitus [51].

Having established the concomitant presence of differential

gene expression and differential DNA methylation, it might be

assumed in the light of previously published work that the genes

affected would be largely the same. As is readily apparent from

Figure 3, this was clearly not the case. Only 3 of the genes that are

differentially expressed at FDR 1% were also associated with

DMRs (and 15 genes at FDR 5%). Such discordance is consistent

with other recent studies [52,53]. To identify more substantial

concordance between gene expression and DNA methylation

signatures would probably require the use of specific tissues, time

points and possibly environmental stimuli that would elicit a gene

expression outcome from loci epigenetically programmed during

development. The apparent discordance between the lists of

DMRs-neighboring and differentially expressed genes may also be

explained by differential methylation essentially only impacting

upon expression under conditions of stimulus or challenge, e.g. in

response to endocrine signals, or to metabolic stressors, that are

absent in the P1 liver. One alternative model is that in which an

unknown factor results in both altered DNA methylation and gene

expression. This alternative factor may be early stable histone

modifications such as those resulting from polycomb/trithorax-type

developmental influences [54]. The finding of a close relationship

between E2F recognition elements and genes showing altered

expression is compatible with this. Notably, E2f7 and E2f8 were

respectively methylated and differentially expressed (down-regu-

lated) in MLP vs. C.

It was interesting to discover a significant overlap between

DMRs and loci involved in GWAS studies for metabolic disorders

such as type 1 diabetes, obesity and blood pressure. This was

particularly remarkable given that this comparison involves

comparing genetic and epigenetic loci as well as comparing

human studies to animal model studies. Although the importance

of this overlap needs confirmation through further studies, the

observation strongly supports the hypothesis that complex traits

and diseases are under the control of specific loci both genetically

and epigenetically. It would also suggest that fetal programming

effects might be linked to modulation of the epigenetic state of loci

that are related to disease at a genetic level. Improved predictive

ability might therefore develop from consideration of both the

genetic and epigenetic state of a locus.

The observation that folic acid supplementation prevented or

reversed both the changes in gene expression, (in keeping with

observations at later time points of development [55]) and the

changes in DNA methylation is of considerable interest. A general

disturbance of 1-carbon metabolism associated with maternal

protein restriction (suggested by the dysregulation, rescued by

folate, of Gnmt in MLP), is one candidate mechanism that may

explain this. However, whilst there have been reports of elevated

maternal plasma homocysteine concentrations in protein restric-

tion [18] there is no convincing metabolic data that suggests the

protocol leads to folate insufficiency or gross changes in the

methionine-homocysteine, or folic acid cycles [16]. The observa-

tion that maternal low protein feeding down-regulates expression

of Dnmt1 in the offspring has been previously reported in older

animals, suggesting that the effect lasts until at least weaning [12].

The effect of folate is more challenging to explain, but could be

related to flux through the methionine-homocysteine pathway and

the inhibitory effect of S-adenosylhomocysteine on Dnmt1 [56,57].

Conclusions

In summary, this study has provided evidence of a substantial

effect of diet during pregnancy on both the gene expression and

DNA methylation genome-wide profile in newborns. The loci

affected in terms of gene expression and DNA methylation were

quite different, probably reflecting different roles of these

signatures. Whilst we noted some evidence that diet impacted

upon expression and epigenetic regulation of Dnmts, inconsistency

and subtle variations in the data suggest more intricate mecha-

nisms are involved in the response to early diet. There was a

significant overlap between loci affected in terms of DNA

methylation in the model, with loci from GWAS studies for

metabolic and cardiovascular disorders. Together these findings

indicate that improved understanding of complex traits and

diseases is likely to require further integration of human and

animal studies, with amalgamation of genetic, epigenetic, and gene

expression-based approaches.

Materials and Methods

Ethics statement
All animal experiments were performed in the BioResources

Unit of the University of Nottingham, under license from the

United Kingdom Home Office in accordance with the 1986

Animals (Scientific Procedures) Act. The study was approved by

the UK Home Office (Project License PPL40/2990) and

University of Nottingham Ethics Committee (approval ID SLE/

005/07).
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Animals
Virgin female Wistar rats (Harlan, UK) were mated at between

180 and 225 g weight, to a single stud male. Upon confirmation of

pregnancy by the presence of a semen plug the female rats were

randomly allocated to be fed one of three synthetic diets (18%

casein, 1 mg/kg folate Control; 9% casein, 1 mg/kg folate MLP;

9% casein, 5 mg/kg folate MLP-F). See Table S2. The full

composition of the diets is published elsewhere (14). Pregnant

dams were fed the semi-synthetic diets until they delivered pups at

22 d of gestation. At 1 day after birth, the male pups were culled

by cervical dislocation. Liver tissue was collected, snap-frozen in

liquid nitrogen and stored at 280uC. One litter from each group

was studied, generating up to 16 offspring in each case. DNA was

pooled from livers of 8 individual animals per group. Four of these

livers also provided samples for RNA preparations.

Microarray experiment
Total RNA were isolated from three groups of 1 day male rat

livers using RNeasy mini kit (QIAGEN), treated with Turbo

DNaseI (Ambion) for 30 min at 37uC, then with phenol/

chloroform and ethanol precipitated. The quality of RNA was

validated by an Agilent 2100 Bioanalyzer (Agilent Technologies).

Four RNA samples for each group were hybridized to RatRef-12

Expression BeadChip Microarray (Illumina). All samples exhibited

signal-to-noise ratio above 11. Raw data was analyzed using

beadarray and limma R-Bioconductor packages (see links below).

Quantile normalization, shrinkage (eBayes) and Benjamini-Hoch-

berg false discovery rate control methods (FDR) were devised.

Heatmap and volcano plot for comparison MLP/C are shown in

Figure S3 and Figure S4 respectively. GEO accession number of

this experiment is GSE50799.

Validation of gene expression data
1 mg of RNA was reverse transcribed with SuperScriptII

(Invitrogen) and used as a template in real-time q-PCR. All

PCR amplifications were performed using a Kappa SYBR FAST

qPCR master mix kit (Kappa Biosystems). Cycling conditions:

denaturation at 95uC for 3 min, then 40 cycles of 95uC for 3 sec,

60uC for 20 sec, followed by dissociation curve step. All real-time

PCRs were carried out using the Mx3000 Multiplex Quantitative

PCR System (Stratagene). All reactions were performed twice in

triplicate. Reaction specificity was verified by melting curve.

Primers were designed to amplify 8 genes: Dnmt1, Dnmt3a, Dnmt3b,

AurKB, Mcm6, Hat1, Gnmt and Gmnn. Primer sequences are listed in

DATASET S9. P-values (Student’s t-test) less than 0.05 were

deemed significant (see Figure 1B).

MBD enrichment of methylated DNA
Genomic DNA was isolated using QIAamp DNA mini kit

(QIAGEN) and fragmented by sonication to 500 bp using the

Bioruptor (Diagenode). His6-GST-MBD fusion protein was

incubated with 1 mg of fragmented DNA (for 1 reaction) for

2 hours at 4uC, followed by incubation with magnetic beads for

another hour at 4uC. Methylated DNA was eluted from beads-

MBD-DNA complexes according to the manufacturer’s instruc-

tions (MethylCap kit, Diagenode). Eluted fractions were purified

through the spin columns (QIAGEN, PCR purification kit) and

stored frozen. High salt fraction was used for library preparation.

MethylCap enrichment efficiency in the same IP sample was

calculated by Q-PCR comparison of the specific gene and non-

methylated DNA using rat meDNA primer pair (TSH2B) and rat

unDNA primer pair (GAPDH) (Diagenode). DNA was pooled

from 8 individual animals per group (same litter).

Library preparation
Approximately 10 ng of captured DNA was used for library

preparation (ChIP-seq DNA sample Prep Kit, Illumina). DNA was

first end repaired, and then A-overhangs were added to the 39

ends. After ligation of Illumina adapters 300 bp DNA was isolated

by 2% NuSieve 3:1 agarose (LONZA) gel electrophoresis, gel

purified at RT, eluted from the columns (QIAGEN) and enriched

by 18 cycles of PCR. The library was evaluated using an Agilent

2100 Bioanalyzer (Agilent Technologies), quantified by q PCR

with Illumina primers followed by paired –end 76-bp sequencing

using an Illumina Genome Analyzer II according to the

manufacturer’s instructions in Genome Centre. GEO accession

number of this experiment is GSE50935.

MBD sequencing quality control
Quality control of the sequenced libraries was performed using

FastQC software (see web links below) as well as in-house scripts in

order to provide complementary information whenever necessary.

FastQC assessed six features for each (76 bp) read in each library

as follows: per base sequence quality, per sequence quality scores, per

base sequence content, per base GC content, per sequence GC content,

per base N content, sequence length distribution, sequence

duplication levels, overrepresented sequences, presence of con-

taminants (K-mers level). Further quality control was performed

after aligning the reads to the genome (see below).

Pair alignments
Alignments to the reference genome, Rattus Norvegicus rn4, were

performed using Bowtie [31] and retaining one alignment per read

pair. In case of multiple locations, either the alignment with

highest score was retained or the read pair was definitely

discarded. The alignments were also normalized and transformed

in genomic tracks for visualization in UCSC genome browser (see

web links below) using the R package MEDIPS [58]. The same

package was also used to evaluate coverage, saturation and GC

content of our MBD-seq data. This step completed our quality

control procedure. Only libraries that passed all quality control

steps were further processed. Library saturation levels for C, MLP

and MLP+F were (as measured by Pearson’s coefficient) 0.98, 0.99

and 0.99, respectively. See also Table S3.

Differentially methylated regions
Regions of signal variability were identified using MACS [32], a

model-based method developed for analyzing ChIP-seq data,

given the many analogies between MBD-seq and ChIP-seq.

Differentially methylated regions in comparison MLP vs C and C

vs MLP; MLP+F vs C and C vs MLP+F; MLP vs MLP+F and

MLP+F vs MLP were analyzed. After a sensitivity study, all

adjustable parameters were set to default values whenever possible.

Effective genome size was set to 2.00e+09 bp, model fold to 32, p-

value cut-off to 1025 and bandwidth to 300 bp. The hypermethy-

lated regions as well as methylation tracks were visualized in

UCSC genome browser (see web links below). See also Table S1

and Table S3.

Bisulphite sequencing
1 mg of genomic DNA from each liver sample was bisulphite

converted according to manufacture’s instruction (EZ DNA

methylation Gold kit, ZYMO Research). Converted DNA was

eluted from the column with 12 ml of elution buffer. 2 ml of this

DNA was used as a template for the 1st round of PCR that were

separated by gel electrophoresis, gel purified, eluted in 50 ul of EB,

then 4–10 ml of this was used for 2nd round PCR (in total volume
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25 ml) with forward nested primer. The amplified products were

gel purified and cloned into pCR-4 TOPO vector (TOPO TA

Cloning kit, Invitrogen). Primers for PCR were designed to

amplify DMR of the rat Dnmt1, Agtrap1, Mcm6, Fgf5 and Sfmbt

genes. Primer sequences are listed in DATASET S10. Individual

clones were analyzed for the presence of cloned DNA fragment by

colony PCR. Plasmid DNA was isolated from correct clones

(Qiagene). For each animal group up to 6 livers and 53 clones

were sequenced using T3 sequencing primer (see detail in

DATASET S10). To evaluate the significance of methylation

enrichment, U-statistics was applied (DATASET S11).

Genomic annotation
The differentially methylated regions were annotated by (a)

querying Ensembl Rattus Norvegicus repository database for

‘nearest genes’ and ‘nearest repeat’ up to 10 Kb from annotated TSS

via in-house script based upon the Application Programming

Interfaces provided by Ensembl API Core (see web links below); (b)

using GREAT [34], after applying UCSC Utility batch coordi-

nates conversion (see web links below) to convert the rat genomic

regions identified via MBD-seq to Mouse and Human orthologs

(the two closest species of the three supported at the moment).

GREAT employs three annotation rules as follows: ‘nearest genes’

(directly comparable to our in-house annotation above), ‘basal+
extension’ and ‘two nearest genes’.

Ontological annotation
All gene lists were annotated by employing GSEA-MSignDB

[23,24] and the proprietary software GENEGO from Metacore

web portal (see web links below). GENEGO was also utilized for

performing the mutual comparison of gene expression and DMR-

neighboring gene lists. Additional annotation was performed using

GREAT, as specified above. The lists of gene symbols used as

input can be found in Datasets D2, D4, D5 and D7. The p-values

for overlaps of experimental lists with standard biological

collections (BioCarta, Kegg, Reactome and GO) and differentially

expressed gene lists from MSignDB collections were generated by

hypergeometric tests implemented in GSEA-MSignDB toolkit, as

described in [23,24] and GSEA website. All gene collections can

be inspected and are available in interactive manner at GSEA web

site (see link below). Hypergeometric probability for overlaps of

experimental lists as well as overlaps of experimental lists and

GWAS list were computed using an in-house script and gene

universe size = 15,000; and discussed with reference to p-value

cutoff 0.05. GREAT p-values are calculated using binomial test as

described in [34] and relevant website (see links below).

Web links
Beadarray http://www.bioconductor.org/packages/2.12/bioc/

html/beadarray.html

Limma http://www.bioconductor.org/packages/2.12/bioc/

html/limma.html

FastQC: http://www.bioinformatics.babraham.ac.uk/projects/

fastqc/

UCSC genome browser: http://genome.ucsc.edu/

UCSC LiftOver: http:// genome.ucsc.edu/cgi-bin/hgLiftOver

Ensembl API Core: http://www.ensembl.org/info/docs/api/

core/index.html#api

GENEGO: https://portal.genego.com

GSEA-MSigDB: http://www.broadinstitute.org/gsea/msigdb/

index.jsp

GREAT: http://bejerano.stanford.edu/great/public/html/

Supporting Information

Dataset S1 PvC GEX output (FDR 5%). Differentially

expressed gene probe set in maternal low protein compared to

control.

(TXT)

Dataset S2 GEX PvC, Ontology. Ontology of the mapped

differentially expressed gene set (maternal low protein compared

to control). File C2CGP: Overlap matrix by differentially

expressed gene list (vertical) and gene sets (horizontal) that

represent expression signatures of chemical and genetics pertur-

bation (CGP) in MSigBD collection C2. File C2DWreg: Overlap

matrix by down-regulated gene list (vertical) and gene sets

(horizontal) collected from various sources in MSigBD collection

C2. File C2UPreg: Overlap matrix by up-regulated gene list

(vertical) and gene sets (horizontal) collected from various sources

in MSigBD collection C2. File C3DWreg: Overlap matrix by

down-regulated gene list (vertical) and gene sets (horizontal) that

contain genes that share a conserved cis-regulatory motif in

promoters and 3-UTRs in MSigBD collection C3. File C3UPreg:

Overlap matrix by up-regulated gene list (vertical) and gene sets

(horizontal) that contain genes that share a conserved cis-

regulatory motif in promoters and 3-UTRs in MSigBD collection

C3. File C5DWreg: Overlap matrix by down-regulated gene list

(vertical) and gene sets (horizontal) that are annotated to GO terms

in MSigBD collection C5. File C5UPreg: Overlap matrix by

down-regulated gene list (vertical) and gene sets (horizontal) that

are annotated to GO terms in MSigBD collection C5. File

Summary and Description: Extensive description of the gene sets

shown in Dataset S2. File ReadMeFile: Instruction on how to

reconstitute the ontology workbook from separated text files.

(TXT)

Dataset S3 PvF GEX output (FDR 5%). Differentially

expressed gene probe sets in maternal low protein compared to

maternal low protein supplemented with folic acid.

(TXT)

Dataset S4 GEX PvF, Ontology. Ontology of the mapped

differentially expressed gene set (maternal low protein compared to

maternal low protein supplemented with folic acid). File CP: Results

from overlapping differentially expressed gene list and gene sets from

KEGG pathway database in MSigBD collection C2. File TFBS:

Results from overlapping differentially expressed gene list and gene

sets that share a conserved cis-regulatory motif in promoters and 3-

UTRs in MSigBD collection C2. File GO-processes: Results from

overlapping differentially expressed gene list and gene sets from

Biological processes Ontology in MSigBD collection C2.

(TXT)

Dataset S5 GEX Intersection ontology. Ontology of the

mapped differentially expressed gene set, which are found in both

maternal low protein compared to control and in maternal low

protein compared maternal low protein supplemented with folic

acid. File GeneGo: Results from overlapping differentially expressed

gene list and gene sets from Biological processes Ontology in

MSigBD collection C5. File GeneList: Symbols and descriptions for

the differentially expressed genes in both group comparisons. File

Pathways: Results from overlapping differentially expressed gene list

and gene sets from Canonical Pathway in MSigBD collection C5.

(TXT)

Dataset S6 PvC MBD differential methylation-annotat-
ed, FDR 5%. Differentially methylated regions-associated gene

set in maternal low protein compared to control.

(TXT)
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Dataset S7 DMR-neighbouring genes (MBD-Seq), On-
tology, PvC. Ontology of the mapped differentially methylated

regions-associated gene set (maternal low protein compared to

control). File C2CGP: Overlap matrix by differentially expressed

gene list (vertical) and gene sets (horizontal) that represent expression

signatures of chemical and genetics perturbation (CGP) in MSigBD

collection C2. File C3: Assuming an hypothetical differential

expression for the DMR-neighbouring genes, overlap matrix by

this gene list (vertical) and gene sets (horizontal) that contain genes

that share a conserved cis-regulatory motif in promoters and 3-

UTRs in MSigBD collection C3. File Summary and Description:

Extensive description of the gene sets shown in Dataset S7. File

outputgreat H19 basal+extension: Results from annotating human

orthologs regions with GREAT rule basal+extension. File out-

putgreat H19 nearest: Results from annotating human orthologs

regions with GREAT rule nearest gene. File outputgreat H19 two

nearest: Results from annotating human orthologs regions with

GREAT rule nearest two genes. File outputgreat MM9 basal+exten-

sion: Results from annotating mouse orthologs regions with GREAT

rule basal+extension. File outputgreat MM9 nearest: Results from

annotating mouse orthologs regions with GREAT rule nearest gene.

File outputgreat MM9 two nearest: Results from annotating mouse

orthologs regions with GREAT rule nearest two genes.

(DOCX)

Dataset S8 PvF MBD differential methylation-annotat-
ed, FDR 5%. Ontology of the mapped differentially methylated

regions-associated gene set (maternal low protein compared to

maternal low protein supplemented with folic acid).

(TXT)

Dataset S9 Primers for GEX validations. The primers

used for validation of differentially expressed gene probes in both

maternal low protein compared to control and in maternal low

protein compared maternal low protein supplemented with folic acid.

(DOCX)

Dataset S10 Primers for MBD validations. The primers

used for validation of differentially methylated regions in maternal

low protein compared to control, as illustrated in panel A of Figure 2.

(DOCX)

Dataset S11 U-statistics for BS-Seq validations. Statistical

evaluation of the differential CGs methylation depicted in panel A

of Figure 2. File Agtrap1: calculations for region annotated to

Agtrap1. File Dnmt1: calculations for region annotated to Dnmt1.

File Fgf5: calculations for region annotated to Fgf5. File Mcm6:

Calculations for region annotated to Mcm6. File Sfmbt1:

calculations for region annotated to Sfmbt1.

(TXT)

Table S1 Stats of MBD regions, PvC. Descriptive statistics

of hypermethylated regions, which are found in maternal low

protein compared to control and the relevant numbers of Human

and Mouse orthologous regions employed in ontological analysis.

(DOCX)

Table S2 Diet-phenotype association. Description of the

dam diets and of the pup phenotypes associated with dam diets.

Folic acid supplementation (extra folate) = 4 mg/kg. Diets are

matched for energy. No evidence of fetal programming due to

high COH.

(DOCX)

Table S3 Number of total and unique reads per library.
Number of total and unique reads per library.

(DOCX)

Figure S1 15 DEX genes that bear DMRs. Genomic details

and functional information for 15 differentially expressed genes

bearing methylation marks (DMRs) in Maternal Low Protein

compared to Control at P1 (FDR 5%). Up/Down-regulation is

indicated by red and green highlights respectively. The overlap

between the total number of mapped DMRs-neighboring genes

and the total number of differentially expressed genes was not

statistically significant (p = 0.69).

(TIFF)

Figure S2 GENEGO picture, Word file with color keys.
Comparative ontological analysis of DMR-neighboring and

differentially expressed gene sets, which are respectively repre-

sented in blue and orange in the bar chart.

(TIFF)

Figure S3 GEX quality control: heatmap, PvC. Heatmap

of the top highly expressed gene probes, average signal after

filtering low quality probes. Diet of control C represented by green

bars, MLP+F group by blue bars, and MLP diet group by red

bars.

(TIFF)

Figure S4 GEX quality control: volcano plot, PvC.
Volcano plot of the differentially expressed gene probes in

comparison to C of programmed group P = MLP. The top 200

highly significant gene probes are depicted with red dots. Vertical

red lines correspond to fold changes equal to +1 and 21 (Log

FC = +20.01) and horizontal green lines corresponds to proba-

bility 0.75 (odds = 3, log-odds = 1.098612).

(TIFF)
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