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Abstract

The horse is an optimal model organism for studying the genomic response to exercise-induced stress, due to its natural
aptitude for athletic performance and the relative homogeneity of its genetic and environmental backgrounds. Here, we
applied RNA-sequencing analysis through the use of SOLiD technology in an experimental framework centered on exercise-
induced stress during endurance races in equine athletes. We monitored the transcriptional landscape by comparing gene
expression levels between animals at rest and after competition. Overall, we observed a shift from coding to non-coding
regions, suggesting that the stress response involves the differential expression of not annotated regions. Notably, we
observed significant post-race increases of reads that correspond to repeats, especially the intergenic and intronic L1 and L2
transposable elements. We also observed increased expression of the antisense strands compared to the sense strands in
intronic and regulatory regions (1 kb up- and downstream) of the genes, suggesting that antisense transcription could be
one of the main mechanisms for transposon regulation in the horse under stress conditions. We identified a large number of
transcripts corresponding to intergenic and intronic regions putatively associated with new transcriptional elements. Gene
expression and pathway analysis allowed us to identify several biological processes and molecular functions that may be
involved with exercise-induced stress. Ontology clustering reflected mechanisms that are already known to be stress
activated (e.g., chemokine-type cytokines, Toll-like receptors, and kinases), as well as ‘‘nucleic acid binding’’ and ‘‘signal
transduction activity’’ functions. There was also a general and transient decrease in the global rates of protein synthesis,
which would be expected after strenuous global stress. In sum, our network analysis points toward the involvement of
specific gene clusters in equine exercise-induced stress, including those involved in inflammation, cell signaling, and
immune interactions.
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Introduction

Intense athletic performance is usually recognized as a stress

factor, as is any environmental change that reduces cells and

tissues viability or fitness. Indeed, prolonged bouts of strenuous

exercise may temporarily depress various aspects of immune

function, inducing an inflammation-like condition that reflects the

intensity and duration of the exercise bout. It has been

hypothesized that the physio-pathological condition that develops

in athletes subjected to heavy training (i.e., overtraining syndrome)

is caused by derangement of cellular immune regulation [1].

Cellular adaptation to a new homeostasis involves the modifi-

cation of certain aspects of cell physiology. Stress responses are

characterized by changes in gene expression, metabolism, cell

cycle progression and protein homeostasis. These responses act

over various time scales, ranging from post-translational effects

that can provide immediate responses, to regulation of gene

expression, which is essential for the slower, long-term adaptation

and recovery phases.

As observed in most adaptive responses, the tight control of

gene expression is coupled with fast response kinetics and

controlled reversibility; this enables the cell to change its

transcriptional direction within minutes in the presence of stress,

and then return to its basal state after the stress source is removed.

After the first few minutes of stress exposure, the transcriptional

pattern of the cell undergoes major changes, including asynchro-

nous activation of multiple genes. Thus, that strong coordination is

needed for the proper regulation of gene expression under stress

conditions [2].

The horse is an optimal in vivo model for studying the response

of the genome to exercise-induced stress, due to its natural

aptitude for athletic performance and the homogeneity of its

genetic and environmental backgrounds. In the past decade,
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endurance racing has become a popular worldwide equestrian

sport.

Endurance is one of the toughest disciplines that a horse can

face: although horses evolved differently from humans, being the

horses more adapted for travel and requiring less training than

humans, the effort that the equine athlete is subjected to is

comparable to that of a human marathoner. Average speeds are

up to 15 km per hour and are maintained during competitions

that range from 20 to 160 km.

During the years, the training and riding techniques have

improved, the management of the horses has evolved, and the

races are run at faster speeds. Moreover, endurance is a truly

challenging discipline in which the horses must exercise for

extended periods without injury, and may experience extreme

weather conditions, difficult terrain, and huge altitude differences.

The two main factors that can limit performance of animals in

endurance races are dehydration/electrolyte imbalance and

glycogen store depletion. Under race conditions, animals can

experience increased oxidative and inflammatory stress [3], altered

transcription of immuno-inflammatory genes, and a coordinated

stress response that arises through multiple genomic mechanisms

[4–8].

RNA-sequencing (RNA-seq) is a whole-transcriptome sequenc-

ing method that can capture the scale and complexity of organ- or

tissue-specific transcriptomes, and is thus the technique of choice

for investigating gene expression during complex phenomena,

such as stress. Many studies have underlined the advantages of

RNA-seq over other consolidated techniques such as microarrays.

These include the identification of differentially expressed genes

(as in microarrays), as well as the analysis of differentially expressed

regulatory elements (non-coding, antisense RNAs, isoforms,

miRNAs, etc.) that are being increasingly recognized as important

in the post-genomic era [9,10]. Furthermore, deep-sequencing

methods such as RNA-seq can discover novel transcripts not

anticipated in the design of the microarray, and also detect and

quantify low-abundance transcripts below the detection threshold

of microarray analysis [11].

This is particularly important because although less than 2% of

the mammalian genome is protein-coding, cells put major effort

into transcribing at low level numerous large nuclear sequences

that were previously considered non-functional [12].

The recent use of next-generation sequencing technologies has

shed new light on these transcription events and introduced a

plethora of non-coding transcripts, including antisense transcripts

[12–14]. Genome-wide studies have shown that many genes have

antisense counterparts, stimulating investigations into their func-

tional significance [15]. Indeed, up to 72% of transcripts have

been demonstrated to have antisense partners in the human and

mouse transcriptomes [16]. The best-known role of endogenous

antisense transcripts is their ability to control gene expression via

transcriptional repression, which can influence the epigenetic

remodeling of neighboring genomic regions. In particular, natural

antisense transcripts (NATs) are involved in controlling develop-

mental processes, various stress adaptations, and the response to

viral infection [17].

These unexpected findings are further complicating the scenario

that was previously shattered by the discovery of widespread

alternative splicing as a major source of RNA plasticity in space

(tissues) and time (situations) [18]. A recent study demonstrated

that antisense transcription not only plays regulatory roles, it can

affect alternative splicing itself [14]. Among the identified

mechanisms of alternative splicing, intron retention and exoniza-

tion events seem to be involved in the stress response [19,20]. It

has been well documented that intron retention may be involved

in the post-transcriptional regulation of gene expression in

response to various stress conditions [21]. Although exonization

is not categorized as a distinct splicing mechanism, it is an

alternative splicing process by which new exons are acquired from

intronic DNA sequences. Furthermore, recent studies have

indicated that such events arise via transposable elements (TEs)

in various species [22]. Thus, transposable elements and intronic

sequences may be used to enrich transcriptomes with limited

genomic resources in response to cellular stress or changing

environmental conditions. Moreover, down-regulation of genes in

response to heat shock was found to be mediated through

antisense transcription driven by the binding of heat shock factors

to antisense repeats [19], suggesting that antisense transcription

may regulate the alternative splicing machinery.

We previously found that repeat-derived sequences are both

highly and differentially expressed during physical effort in horses,

hinting at complicated scenarios in the exercise-associated

regulation of gene expression [5]. Furthermore, numerous human

diseases have been associated with defects in the expression of

alternative mRNA isoforms [23]. These previous findings empha-

size the importance of thoroughly understanding transcription,

RNA regulation, and the involvement of splicing in disease and

stress responses [18].

One important aspect that should be studied further is the

transcriptional response to physical stress in terms of time

(different phases) and space (tissues exposed to the stimulus).

Time-course studies will be particularly helpful in this regard, as

they will allow researchers to study interactions between the

organism and its environment without system-level variables.

Here, we sought to evaluate the broader context of changes in

gene expression by applying strand-specific RNA-seq analysis via

SOLiD technology in an experimental framework that focuses on

the exercise-induced stress of endurance races in equine athletes.

Materials and Methods

Experimental design
To monitor the transcriptional landscape of exercise in the

horse, we used a well-characterized experimental design [4,6,8,24]

to examine RNA expression changes in PBMCs (peripheral blood

mononuclear cells) sampled at two time points: Basal (T1), with the

athlete at rest; and Race (T2), immediately at the end of the race.

For each time point we collected RNA from two biological

replicates.

Sample collection and RNA preparation
The studied animals were handled in accordance with proper

animal welfare, with cooperation from the horse owners, their

private veterinarians, and the official veterinary commission of the

sampled race.

Briefly, Athlete’s Private Veterinarians (APV) and FEI (Fédér-

ation Equestre Internationale) veterinarians approved by FEI

regulation together with the Veterinary surgeons belonging to the

race veterinary service collected the blood samples. Permission for

sampling were required to the owner, to the mentioned vets and

officially authorised by the President of Veterinary commission.

Owners and APV required the clinical haematological examina-

tion and approved blood collection for experimental purposes.

In total, 28 ml of blood were taken from jugular vein using

standard procedure and in particular:

– 163 ml EDTA Blood Collection Tube for full blood count

(Haematocrit and White Blood Cell Count (WBC).

RNA-seq of the Exercise in Horses
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– 2610 ml EDTA Blood Collection Tube for RNA extraction

(used in this study)

– 165 ml serum collection tube for compulsory blood biochem-

ical analysis.

No additional needles were used: blood collection tubes

belonging to this study were inserted in the same needle holder

used to collect blood for the compulsory analysis.

To ensure sample homogeneity, the enrolled subjects had

common genetic and management backgrounds. Top-athlete

Arabian horses were chosen from among the participants of the

highest international endurance race category (160 km), and

monitored during the 2009–2010 training season. Only subjects

that passed FEI (Fédération Equestre Internationale) compulsory

medical checks (pre-, during, and post-race) were considered for

the study. The experiment was designed in great details and

performed under very well defined and monitored environmental

and medical conditions. In fact, each horse owner completed an

epidemiological-anamnestic questionnaire that included training

information, and all horses underwent medical examinations to

exclude any disease, fever or medical treatment that could affect

the immune system. Two study subjects were enrolled, both 11-

year-old Arabian geldings that finished without injuries the same

160 km race. Blood samples were collected from the jugular vein

at rest (Basal, T1) and at the end of the competition (Race, T2).

Immediately after the collection, PBMCs were isolated using the

Ficoll-Hypaque method (GE Healthcare, Pollards Wood, United

Kingdom).

Total RNA was extracted using the Aurum Total RNA Fatty

and Fibrous Tissue kit (Bio-Rad, Hercules, CA, USA) according to

the manufacturer’s instructions. Genomic DNA was eliminated by

DNase treatment using the provided reagents. Successful removal

of DNA contaminants was verified by the absence of PCR

amplification of the MC1R gene (GenBank accession number

X98012, primers as described by Rieder and colleagues [25]).

mRNA was further isolated with the GeneElute mRNA

isolation kit (Sigma, St. Louis, MO, USA). The extracted mRNA

was quantified using the Quant-It RNA assay (Invitrogen, Dorset,

United Kingdom) and a VersaFluor fluorometer (Bio-Rad). The

quality of the ribonucleic acid was checked with a microfluidic

electrophoresis on the BioAnalyzer (Agilent, Santa Clara, CA,

USA).

Library preparation
Samples were prepared for ligation sequencing according to the

protocol provided with the SOLiD whole transcriptome library kit

(Applied Biosystems, SOLiDTM Whole Transcriptome Analysis

Kit, PN 4409491 Rev E). Briefly, the samples were purified with

the RiboMinus Concentration Module (Invitrogen, RiboMinusTM

Concentration Module, K1550-05), subjected to RNase III

digestion for 10 minutes, retrotranscribed, size-selected in acryl-

amide 6% TBE-Urea gels, and barcoded during final amplifica-

tion. The libraries were sequenced using Applied Biosystems,

SOLiDTM 4, which produced reads of 50 nucleotides.

Bioinformatic analyses
The obtained reads were mapped to the Equus caballus genome

(Equcab2.0, http://genome.ucsc.edu/) using the PASS program,

version 1.64 [26]; the percentage identity was set to 90%, and one

gap was allowed. The quality filtering parameters were set

automatically by PASS. Horse gene prediction coordinates

(ENSEMBL version 67) were downloaded from the UCSC web

site (http://genome.ucsc.edu).

To better characterize the distribution of the reads on

Equcab2.0, the genome was partitioned into several regions: the

protein-coding genes, their 59- and 39 untranslated regions (UTRs;

where available), coding sequences (CDS), introns, and 1 kb

upstream and downstream of the genes (to include potential

promoter and terminator) and intergenic regions. Repetitive

elements were considered separately and were not included in

the previous features. Moreover reads mapping on ribosomal

rRNA were removed and not considered in the further analyses.

To assess if the observed distribution of reads across the

genomic regions differed significantly between T1 and T2 samples,

we used a binomial distribution-based test (the prop.test function

of the R package). The test was performed independently on the

two replicates, and, to be considered significant, we required a p-

value,0.05 for both replicates. To be more conservative, for each

comparison we choose to show only the highest p-values between

the two replicates.

To avoid ambiguity in the partitioning process, we dealt

conservatively with alternative splicing, combining the different

isoforms and considering them as a single variant. The distribution

of reads was calculated by counting the number of reads mapped

to each region (in both the sense and antisense directions) using a

custom python script. To calculate the relative read coverage, we

normalized the number of reads mapped to a given region

(multiplied by the read length) with respect to the total length of

the region.

Splicing sites were analyzed with a custom python script that

required at least two independent reads to map to the same site by

at least 15 nt across the exon-exon junction. The reads were

assembled using the Cufflinks suite, version 2.0.2 [27] without

providing the reference annotation. The transcribed fragments

(transfrags) were classified according to gene predictions per-

formed using a home-made python script. We selected fragments

that corresponded to an intergenic or intronic region for more

than 80% of their lengths. For annotation, the BLAST program

was used to perform similarity searches against the non-redundant

nucleotide and protein databases downloaded from the NCBI ftp

site (ftp://ftp.ncbi.nih.gov/blast/), and the NONCODE v3.0

database [28] for annotation of long non-coding RNA. Significant

matches were those with e-values of at least 1e-5 and 1e-30 for the

protein and nucleotide searches, respectively.

Gene expression and pathway analysis
Differential expression between T1 and T2 was analyzed using

the edgeR package, which can be used to estimate biological

variation between replicate libraries and conduct exact tests of

significance on small counts [29]. Pearson correlation between

biological replicates was calculated using ‘cor’ function in R

package (Figure S2 in File S1). The input was a matrix composed

of 29,159 rows representing the Ensembl-annotated transcripts

and 4 columns corresponding to the utilized libraries (two

biological replicates each of T1 and T2). For a given sample,

each cell of the matrix consisted of the number of reads that

uniquely mapped to that transcript (read count was calculated

using htseq-count program (http://www-huber.embl.de/users/

anders/HTSeq/doc/overview.html). The analysis was performed

for both sense and antisense counts, and the threshold level of

statistical significance was set to ,0.05 FDR (False Discovery

Rate).

Gene Ontology (GO) enrichment analysis was performed using

BiNGO 2.44 (Biological Networks Gene Ontology), a Cytoscape

2.8.3 plugin that allows the overrepresentation of GO terms to be

analyzed in a given set of genes within a statistical framework [30].

Ensembl transcript IDs were converted to official gene names, and

RNA-seq of the Exercise in Horses
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ambiguous assignments were manually checked and collapsed to a

unique symbol. Records that were not mapped with the Ensembl

annotation were converted to Uniprot AC and then to GeneID,

(http://www.uniprot.org/?tab = batch&tab = mapping) allowing

us to enrich the list of official gene names. The Homo sapiens

annotation and the last available ontology in OBO format (Open

Biological Ontologies, http://www.geneontology.org/) were used

to perform the analysis for the three GO vocabularies. We

converted the Equus caballus gene names to their Homo sapiens

counterparts according to the HUGO naming system (http://

www.genenames.org).

The enhanced lists of FDRs that were significant up-regulated

(logFC.1; n = 579) and down-regulated (logFC,1; n = 255) were

inserted into BiNGO for analysis. Ingenuity Pathways Analysis

(IPA, IngenuityH Systems, http://www.ingenuity.com) was used to

identify the significantly enriched canonical pathways, and to build

and analyze significantly enriched molecular interaction networks

from the gene list. The list that was used for the BiNGO

annotation was pasted into Ingenuity, and the target tissue was set

as ‘‘Immune Cells’’.

From the IPA library of canonical pathways, we identified the

canonical pathways that were most significantly related to the data

set. The significance of the association between the data set and a

given canonical pathway was measured by: 1) the ratio of the

number of genes from the data set that mapped to the pathway

divided by the total number of genes in the pathway; and 2)

Fisher’s exact test.

To generate networks, we identified genes that showed

significant differential regulation (called focus genes) and laid

them over a global molecular network developed from information

contained in the Ingenuity knowledge base. Networks were

algorithmically generated based on the connectivity of the focus

genes, and then ranked by a score that reflected the number of

genes in the data set and the size of the network, and was the

negative log of the p-value. The higher the score, the lower the

probability of finding the observed data set of genes in a given

network by chance. Functional analyses of the networks were used

to identify the biological functions and/or diseases that were most

significantly related to the genes in the network, as well as the

potential toxicity and safety of the compounds associated with the

genes of a given network.

Results and Discussion

Genomic landscape
Sequencing of the four libraries produced more than 260

million reads that were submitted in GenBank with the following

BioProject id: PRJNA196393. After filtering out the low-quality

reads, we aligned more than 40% of the remaining sequences to

the genome, yielding a total of almost 80 million uniquely mapped

reads. Mapping statistics are reported in Table 1.

We analyzed tag distribution merging the biological replicates in

order to assess the contribution of the whole libraries. In addition,

to verify the robustness of out results, we tested independently on

the single biological replicates the significance of tag distribution

differences across the genomic regions (details in material and

methods). Row counts and tag distribution statistics of the single

samples are provided as supplementary material (Tables S9 in File

S1). The majority of the uniquely mapped reads aligned with

known genes, covering more than 50% of the coding fraction

(Figure 1A and B). A large portion of the reads mapped to the

intronic and intergenic regions; however, when the number of

reads was normalized to the total length of these regions, the

relative read density was found to be very low (Figure 1 C). This

was as expected, due to the high proportion of intronic versus

exonic sequences in mammals. We also found that the relative tag

density decreased from 1-kb upstream of the 39 end of genes

towards the 59 end. This effect could be due to a bias of poly-A

library preparation [31], casing enrichment at the 39 end.

Moreover, we noticed a higher tag density in the 1-kb region

upstream of the 39 end compared to the 39 UTR. Since our retro-

transcription strategy was based on oligo-dT priming, this finding

was unexpected. We speculate that, together with the 39

enrichment bias due to the poly-A library preparation, it may

reflect incomplete prediction of the 39 UTRs or a general

inaccuracy of the gene annotations in Equcab2.0.

The basal and stressed samples had similar tag distributions (not

shown), but the transcriptome profiles in the exonic and intronic

regions showed substantial differences. We found a significant

decrease in the fraction of reads that mapped to coding sequences

in T1 versus T2 (35.5% vs. 30%; p-value 0.001) (Figure 1A), and a

significant increase in the proportion of reads mapping to intronic

regions under the stressed condition (about 1.3-fold increase, p-

value 0.004). The intergenic regions showed a less marked increase

in the frequency of mapped reads under the stressed condition, but

this variation was not statistically significant. It is worth noting that

the fold-change calculated within each biological replicate has an

average value of 1.05, supporting the robustness of our results. All

together, these results indicate that there was a shift from coding to

non-coding predicted regions, in particular at intron level,

suggesting that the equine response to this stress condition involves

the expression regulation of new transcriptionally active regions.

One of the mechanisms that can activate new transcriptional

regions is the so-called process of ‘‘exonization’’ or ‘‘intron

retention’’ [32], which has been associated with the post-

transcriptional regulation of gene expression in response to various

stress conditions [33,34]. These mechanisms may also be involved

in the exercise-induced expression changes observed in horse. A

comparison of the splicing patterns observed under the basal (T1)

and stressed (T2) conditions revealed that 90% of the spliced reads

from both samples aligned on known splice sites, confirming more

Table 1. SOLiD sequencer throughput and alignment statistics.

Library
Produced
Reads

Filtered (low
quality) Suitable Reads Aligned Reads % Aligned Spliced Reads Unique Reads Alignments

A T1 85049611 19678362 65371249 25766232 39.42 1337871 22331445 36408516

A T2 74329898 15520649 58809249 24610147 41.85 1146753 22505061 32041310

B T1 55817371 8074602 47742769 20789902 43.55 1052474 17913219 29370920

B T2 53072584 8878519 44194065 18829992 42.61 879531 17198453 24211172

doi:10.1371/journal.pone.0083504.t001
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than 30% of the predicted splicing sites in the Ensemble

annotation (Figure 2A).

In addition, we identified 14,429 new splicing sites; of them,

5,551 were shared between the two conditions, 4,718 were

exclusive to the T1 samples, and 4,160 were exclusive to the T2

samples (Figure 2B).

Next, we classified the observed splicing site events on the basis

of the different genomic regions involved (Table 2). In both T1

and T2 samples almost half of the new splicing events occurred

within coding sequences or between coding and intronic regions.

Notably, there was a significant decrease (p-value,0.001) of

‘‘coding-coding’’ splicing events and a moderate increase in

‘‘coding-intron’’ events (p-value,0.05) in T2 versus T1. In

particular, the percentage of intron-repeat junctions versus the

total number of new splicing sites increased from 0.91 at rest to

1.27 after the race (Table 2).

In addition to a transcriptional shift from coding to non-coding

regions, we also investigated repeats matching reads distribution.

We found that the intronic repeats transcription increases from

5% to 7.5% of the total number of reads (p-value,0.02) in T2

compared to T1 (Figure 1A). Our results are consistent with the

hypothesis that transposable elements and intronic sequences may

serve as transcriptional units capable of enriching transcriptomes

with limited genomic resources when necessary, such as under

stress conditions [32].

Otherwise we did not observe significant shift analyzing the

intergenic repeats, in which the proportion remains quite the same

on both conditions.

Our investigation of the sense-antisense ratios for the different

regions of the genome revealed that 99% of the reads in protein-

coding regions were from the sense strand. Higher sense-antisense

ratios were seen in the intronic and regulatory regions (1 kb up-

and down-stream) of the genes (Figure 1D).

Figure 1. (A) Basal (T1) and race (T2) sample reads map to different genomic regions. The majority of the reads map to known genes (CDS,
39 UTR and 59 UTR), while a large fraction maps to non-coding regions (introns, intergenic regions, and the 1-kb regions up- and downstream of
genes). Comparison between T1 and T2 show a transcriptional shift from coding to non-coding predicted regions. (B) Expression density was
calculated as number of reads normalized by the lengths of each genomic region. (C) Fraction of bases covered in the different genomic regions. (D)
Fraction of reads that map to the sense (light) and antisense (dark) strands in each genomic region. In the intergenic region, the fraction was
calculated using the number of reads from the plus and minus strands.
doi:10.1371/journal.pone.0083504.g001
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In contrast, the repetitive elements (e.g., members of the L1

family) showed higher levels of expression from the antisense

orientation compared to the sense strand (Figure 1D), suggesting

that antisense transcription is a main mechanisms for the

regulation of transposons (Table 3) [35].

Otherwise, if this can be considered a general mechanism,

specific classes of transposable elements show different behaviors.

For example, among the most highly expressed transposable

elements we found members belonging to L1 and L2 families,

which account for about 33% and 17%, respectively, of the total

number of repeats matching reads (Tables S9 in File S1). As shown

in Table 3, both L1 and L2 elements show an increased expression

in T2 compared to T1 (p-value of 5.6e27 for L1 family and p-

value,0.01 for L2). However, only L1 members have a higher

antisense transcription (almost three fold) whereas L2 family

elements show an opposite pattern of expression, suggesting

different mechanisms of regulation.

When we compared the strand orientation of L1 and L2

transposable elements with the orientation of their hosting introns,

we observed that 34% of L1 repeats were inserted on the same

strand of the hosting intron, while 66% were inserted on the

opposite strand. L2 elements showed a similar but less evident

unbalance with 44% concordant with the intron strand, while

56% were inserted on the opposite strand. Pandey and colleagues

[19] recently showed that repetitive elements are non-randomly

distributed through the genome, and showed that these elements

retain orientation-specific regulatory sites in genes related to

specific biological processes. In this way, the stress-related down-

regulation of a transcript could be mediated via transcription

factors that bind the antisense repeats [19].

Identification of new transcriptionally active regions
We merged the reads from all the samples and used the

Cufflinks program to assemble the sequences into transcript

fragments called transfrags. We obtained a total of 324,446

transfrags, most likely derived from reads that were only partially

assembled due to low sequencing coverage and the use of single-

end libraries.

Many studies have found that the mammalian genome is

extensively transcribed, giving rise to thousands of non-coding

transcripts [9,10]. It is unclear whether all of these transcripts are

functional, but it is evident that there are many functional non-

coding RNAs (ncRNAs) [36]. In an effort to identify new putative

transcriptional elements, we focused on the transfrags that

localized to intergenic and intronic regions. In the intergenic

regions, we identified 47,194 transcribed elements with an average

sequence length of 326 bp, while the intronic regions yielded

80,184 new transcripts with an average length of 260 bp

(Figure 3A and B). For each fragment, we calculated the

expression value (the number of reads normalized with respect

to the transcript length). We found that most were expressed at

very low levels (Figure 3C and D).

We annotated these novel transcripts by performing similarity

searches against the non-redundant protein database and non-

redundant nucleotide database of the NCBI, and the NONCODE

V3 database (a collection of non-coding transcripts). Only 17.8%

of the intronic transcripts matched similar sequences in at least one

of the three databases, while 25.8% of the intergenic transfrags

had matches. The transcripts that showed similarities to known

proteins most likely represented genes or exons that our analysis

missed due to incomplete gene prediction, or newly annotated

genes outside the official Ensembl release (Table S1 in File S1).

Conversely, we identified significant similarities for numerous

sequences at the nucleotide level, especially to BAC sequences and

genomic regions of other mammalian organisms, suggesting that

the majority of the transcripts are non-coding (Table 3). In

addition, we found 779 intronic and 1,249 intergenic transcripts

that yielded significant similarities with sequences in the NON-

CODE database (Table 4).

The complexity of the mammalian transcriptional landscape is

well known, and recent high-throughput transcriptomic analyses

Figure 2. Venn diagram showing the number of splice sites
identified in the T1 and T2 samples. A) Splicing sites confirmed by
previously reported annotation of horse genes. B) Novel splicing sites.
doi:10.1371/journal.pone.0083504.g002

Table 2. Splicing site events distribution of exclusive splicing
sites.

New SP site (All) exlusive)

T1 T2

3UTR_3UTR 0.25 0.17

3UTR_CDS 0.25 0.14

3UTR_Intergenic 0.45 0.36

3UTR_Intron 0.25 0.17

3UTR_Repeat 0.08 0.07

5UTR_5UTR 0.30 0.41

5UTR_CDS 0.30 0.34

5UTR_Intergenic 1.67 1.63

5UTR_Intron 1.27 1.78

5UTR_Repeat 0.38 0.75

CDS_CDS 29.99 26.83

CDS_Intergenic 4.64 4.11

CDS_Intron 24.44 26.25

CDS_Repeat 6.04 6.54

Intergenic_Intergenic 17.66 18.08

Intergenic_Intron 0.34 0.48

Intergenic_Repeat 4.03 4.33

Intron_Intron 3.58 3.97

Intron_Repeat 0.91 1.27

Repeat_Repeat 3.16 2.33

doi:10.1371/journal.pone.0083504.t002
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Table 3. The left part of the table shows the expression fold-change of intronic L1 and L2 transposable elements in stressed (T2)
compared to the rest (T1) samples.

Fold Change Antisense/Sense Ratio

T2/T1 A2/A1 B2/B1 T1 T2 A1 B1 A2 B2

L1 1.56 1.62 1.49 L1 3.55 3.21 4.10 3.34 3.03 3.04

L2 1.46 1.54 1.35 L2 0.76 0.82 0.66 0.76 0.89 0.90

Tot 1.48 1.54 1.40 Tot 1.69 1.69 1.72 1.68 1.66 1.70

Fold-change for the single biological replicates are also reported (A1: sample A at time point 1; A2: sample A at time point 2; B1: sample B at time point 1; B2: sample B
at time point 2) For each sample, the reads counts were normalized to the total number of mapped reads. In the right part of the table are indicated the results of the
analysis performed considering reads aligning on both sense and antisense direction respect to the repeat strand. The third row refers to the read distribution
considering the whole set of repetitive elements. The results show an higher increasing on the expression of the antisense compared to the sense strand for L1 repeat
elements. On the other hand this pattern of expression is not visible for L2 members.
doi:10.1371/journal.pone.0083504.t003

Figure 3. Histogram showing intergenic and intronic fragment lengths (A and B) and distribution of expression (C and D panel).
doi:10.1371/journal.pone.0083504.g003
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have revealed that eukaryotic genomes undergo transcription of

up to 74% of their genomic DNA [9]. The functional significance

of these transcripts is still controversial; it has been reported that

more than 95% show little evidence of evolutionary conservation

and are expressed at extremely low levels. These transcripts were

previously thought to be just transcriptional noise, with no

function [37,38]. However, emerging evidence indicates that they

represent novel classes of non-coding RNAs that can be very

tissue-specific and may influence transcription through a variety of

mechanisms [10,39].

The identification and annotation of non-coding RNAs

(ncRNAs) is quite complex and requires integration of the coding

potential of the RNA and the chromatin modifications of the

corresponding genomic region. As it can be challenging to

determine if transcripts are non-coding and whether they have

biological function, we focused on transcripts that showed

differential expression before and after the stress event. Such

differential expression is likely to reflect genuinely functional

transcripts. We identified 167 intergenic transcripts that were

down-regulated and 635 that were up-regulated at T2 versusT1.

Similarly, we found 177 intronic transcripts that were down-

regulated versus 705 that were up-regulated in the stressed sample.

The large majority of these transcripts did not have any

homologous sequence in the databases. Interestingly, however,

30 intronic transcripts and 39 intergenic transcripts showed

significant similarities with known long non-coding RNA

(lncRNA) sequences (Table S2 in file S1, Sequences S1 in file

S2, and Sequences S2 in file S3).

Many studies have found that lncRNAs can critically affect gene

expression or guide chromatin-modifying complexes to specific

genomic loci, thereby establishing cell-type-specific epigenetic

states [36,40,41]. These findings suggest that ncRNAs, particularly

lncRNAs, may play important roles in regulating gene expression

in response to stress.

Gene expression and pathway analysis
A transcriptome comparison of the two samples was performed

in order to test the variation between horses. We calculated the

Pearson correlation (Figure S2 in File S1) between the samples

with the aim of assaying the extent of similarity of the gene

expression profile of the two horses. We found that the correlation

is as high as 0.97 at time T1 and 0.94 at time T2, demonstrating

that the two horses give rise to very similar profiles and they

behave similarly in response to stress. This finding confirms that

our experimental data are robust and consistent with the gene

expression changes that occur between animals at rest and after

competition.

Our edgeR-based analysis of differential gene expression

between T1 and T2 identified 1,154 differentially expressed

transcripts from the sense counts: 579 up-regulated [with a log

fold-change (logFC).1] and 255 down-regulated (logFC,21).

From the antisense counts, we identified 16 differentially expressed

transcripts: 11 that were up-regulated and 5 that were down-

regulated. Complete lists of significant FDR transcripts (both sense

and antisense) can be found in the Supplementary Materials

(Table S3 in File S1). Top genes like (IL8, IL18, MMP1, CCL5 etc.)

were found to be differentially expressed between the two

conditions confirming previous results on the same experimental

design with other subjects [4].

We analyzed the above-described (material and method section)

enriched list with the Biological Networks Gene Ontology

(BiNGO) program to identify the ontologies involved in the gene

networks, including all the three Gene Ontology (GO) vocabular-

ies (cellular components, molecular functions and biological

processes). The BiNGO analysis identified several biological

processes that may be involved with exercise-induced stress in

the equine athlete. The up-regulated processes included the

‘‘response to stress’’ as the most significant node (146 of the 457

annotated genes), followed by the ‘‘defense response,’’ ‘‘response to

stimulus’’ and ‘‘response to wandering’’. The down-regulated

biological processes included ‘‘positive regulation of biological

processes,’’ ‘‘regulation of immune system processes’’ and ‘‘positive

regulation of cellular processes’’ (Table S4 in File S1).

The results of our ontology clustering reflected some well-known

stress-activated factors, including chemokines (small secreted

cytokines), Toll-like receptors (which play key roles in the innate

immune system), and protein kinases. Consistent with these results,

our analysis of ontology revealed that the most significantly up-

regulated functions were ‘‘nucleic acid binding’’ and ‘‘signal

transduction activity.’’ In response to severe stress, we would

expect to see a transient decrease in the production of growth-

related proteins and a general decrease in global protein synthesis

[2]. Indeed, we observed this pattern in the down-regulated

biological processes and molecular function ontologies (Table S4

in File S1).

We further used Ingenuity Pathway Analysis (IPA) to identify

the biological mechanisms, pathways and functions most relevant

to the 1,154 putative differentially expressed genes. A total of

1,001 genes were mapped and included in the analysis, whereas

the remaining 153 unmapped genes were excluded. The results

are summarized in Table 5. The analysis comprised 10 networks

(Table S5 in File S1); the two most significant networks were

identified as Network 1, ‘‘Cellular Function and Maintenance,

Cell-To-Cell Signaling and Interaction, Hematological System

Development and Function’’ (score 76, focus molecules 70/70),

and Network 2, ‘‘Inflammatory Response, Cell-To-Cell Signaling

and Interaction, Hematological System Development and Func-

tion’’ (score 27, focus molecules 43/70). The two most important

bio-functions for the category ‘‘Diseases and Disorders’’ were

‘‘inflammatory response’’ (1.54E-20,p-value,1.98E-02) with 154

molecules, and ‘‘inflammatory diseases’’ (8.92E-13,p-

value,1.39E-02) with 59 molecules. The most important bio-

function for the category ‘‘Molecular and Cellular Functions’’ was

‘‘cell-to-cell signaling and interaction’’ (1.54E-20,p-value,1.59E-

02) with 137 molecules (Table 5).

The networks and bio-functions reflect two well-described

phenomena observed during exercise-induced stress: inflammation

and immune cell signaling [42,43].

Network 1, which was the highest ranked network, was

composed of genes related to immune responses, cell defense, cell

cycle processes, and the movement, trafficking and differentiation

Table 4. Annotation results according to cufflinks intronic
and intergenic fragments output.

Annotation

Intron Intergenic

NONCODE db 779 1249

NT 13473 11389

NR 2765 3208

The transcripts were search against the non redundant nucleotide database
(NT), non redundant protein database (NR) and a database of non coding
sequences (NONCODE).
doi:10.1371/journal.pone.0083504.t004
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Table 5. IPA networks summary results.

Associated Network Functions

Name Score

Cellular Function and Maintenance, Cell-To-Cell Signaling and Interaction,
Hematological System Development and Function

76

Inflammatory Response, Cell-To-Cell Signaling and Interaction,
Hematological System Development and Function

27

Cellular Movement, Hematological System Development and Function,
Immune Cell Trafficking

26

Cell-To-Cell Signaling and Interaction, Infectious Disease,
Hematological System Development and Function

21

Cell-To-Cell Signaling and Interaction, Hematological System Development
and Function, Immune Cell Trafficking

20

Diseases and disorders

Name p-value # of Molecules

Inflammatory Response 6.69E-21 - 2.06E-02 154

Infectious Disease 1.45E-15 - 1.46E-02 49

Respiratory Disease 1.45E-15 - 1.45E-15 31

Connective Tissue Disorders 1.00E-12 - 1.26E-03 47

Inflammatory Disease 1.00E-12 - 1.41E-02 59

Molecular and Cellular Functions

Name p-value # of Molecules

Cell-To-Cell Signaling and Interaction 6.69E-21 - 2.06E-02 137

Cell Death and Survival 1.01E-17 - 1.69E-02 91

Cellular Function and Maintenance 1.79E-16 - 1.69E-02 118

Cellular Development 2.59E-14 - 2.01E-02 127

Cellular Growth and Proliferation 2.59E-14 - 1.69E-02 100

Physiological System Development and Function

Name p-value # of Molecules

Hematological System Development and Function 6.69E-21 - 2.06E-02 203

Immune Cell Trafficking 6.69E-21 - 2.06E-02 149

Tissue Morphology 1.63E-15 - 1.47E-02 109

Hematopoiesis 1.22E-11 - 2.01E-02 91

Tissue Development 4.43E-11 - 2.06E-02 83

Molecules

Name Expression Value (log10)

IL22RA2 8.907

PDK4 6.544

MARCO 5.334

MMP27 5.038

MMP8 5.026

RETN 4.862

IL1R2 4.753

KMO 4.481

COL4A1 4.178

PGLYRP1 4.117

FLT4 26.645

CD34 25.711

EEF1A2 24.506

BMP2 24.315
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Table 5. Cont.

Molecules

Name Expression Value (log10)

DAPK2 24.149

GATA2 23.88

GZMB 23.428

GPR56 23.077

PTPRO 22.936

CD7 22.901

doi:10.1371/journal.pone.0083504.t005

Figure 4. Network 1 and 2 results from IPA analysis. Genes or gene products are represented as nodes, and the biological relationship
between two nodes is represented as an edge. All connections are supported by at least one reference from the literature or canonical information
stored in the Ingenuity knowledge base. The intensity of the node color indicates the degree of up-regulation (red) or down-regulation (green).
doi:10.1371/journal.pone.0083504.g004
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of immune cells. The pro-inflammatory actions of various

chemokines and Toll-like receptor signaling pathways play a

central role and appear to interact with critical cell cycle regulators

(Figure 4).

The genes of Network 2 were associated with inflammatory

responses, cellular movement, and immunological disease. These

include pro-inflammatory factors related to the NF-kB pathway

(e.g., CXCL1, IL1R1, CCR2, TLR1, CCL5) and molecules

necessary for the extravasation of leukocytes during inflammation

(e.g., ITGAL and MARCO) (Figure 5). When we superimposed

‘‘diseases and functions’’ on the merged cores of Networks 1 and 2

in IPA, we obtained 101 genes associated with the ‘‘inflammatory

response’’ (1.54E-42,p-value,2.49E-01) and 86 genes associated

with ‘‘cell-to-cell trafficking’’ (1.54E-42,p-value,2.49E-01). The

most significantly represented canonical pathway (2.05E-4), which

was associated with Network 1, was ‘‘communication between

innate and adaptive immune cells’’. This highlights the importance

of different modes of cross-talk between the innate and adaptive

immune systems, such as via soluble factors (chemokines and

cytokines) and cell-to-cell communication (Figure S1 in File S1).

The immune response to an infection or other stress (i.e.,

physical stress) can be divided into the innate and adaptive phases.

Figure 5. Network 1 and 2 results from IPA analysis. Genes or gene products are represented as nodes, and the biological relationship
between two nodes is represented as an edge. All connections are supported by at least one reference from the literature or canonical information
stored in the Ingenuity knowledge base. The intensity of the node color indicates the degree of up-regulation (red) or down-regulation (green).
doi:10.1371/journal.pone.0083504.g005
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Activation of the innate immune system results in rapid action,

whereas the adaptive immune response develops after a time lag,

but results in the activation of cells that are highly specific. Our

experimental findings fit within this framework, as the response to

exercise is known to mimic the response to various other stresses,

wherein the immune system attempts to defend the organism

against destructive forces [4,8,44,45]. Various molecules involved

in this pathway were found in Networks 1 and 2 and were all

strongly modulated by stress in our system; these include the

down-regulated factors, CCL4, CCL5, CD4 and CD8, and the

up-regulated factors, IL8, IL18 and TLR (Table S6 in File S1).

Another canonical pathway that showed a low p-value (2.34E-

04) and is known to be involved in exercise-induced stress is

‘‘leukocyte extravasation signaling,’’ which is the process by which

leukocytes migrate from blood to tissues during inflammation.

Strenuous exercise leads to a transient inflammatory status in

human athletes [46–49] and model animals [50,51], including the

horse [4,7,8]. This pathway involves molecules for the capture,

adhesion and transmigration of leukocytes. As many as 21 of the

genes found to be strongly modulated in our data set encode

proteins related to this transient inflammatory status, including

CXCR4, integrins (ITGAL and ITGAM), kinases (MAP3K4 and

MAPK14) and metalloproteinases (MMP1, -8, -25, and -27) (Table

S7 in File S1).

Superimposition of the canonical pathways with Network 1

showed that the IL6 signaling pathway is involved, with eight

highly up-regulated molecules (Figure 4). Interleukin 6 (IL6) is a

regulator of acute-phase responses, a lymphocyte-stimulating

factor and a central chemokine in exercise-response modulation

[52–54]. Our data set revealed the up-regulation of many IL6-type

cytokines, including IL8, IL18, IL1 receptors, and the inducible

negative regulator of cytokine signaling, SOCS3. IL6 also activates

the mitogen activated protein kinase (MAPK) pathway, which was

represented here by the up-regulations of MAPK4 and MAPK14

(Table S8 in File S1).

The most highly up-regulated and down-regulated genes

identified by our IPA analysis (Table 5) were all consistent with

the phenomena of stress and inflammation. The most highly up-

regulated gene was IL22A2, which encodes IL22 binding protein

(IL22BP; a soluble receptor of IL22). The true biological relevance

of these soluble cytokine receptors remains unclear. One possibility

is that they could function as neutralizing agents by blocking

cytokines. Another possibility is that they could serve as carrier

proteins, prolonging the half lives of cytokines and enhancing long-

distance signaling [55]. IL22 and its receptors have been

implicated in several chronic inflammatory diseases, and

IL22RA2, which regulates shared central pathways, is a common

risk gene for several immune disorders [56]. Additional studies will

be required to fully characterize these disease-related functions.

Based on our observation that IL22A2 was the top up-regulated

gene, we hypothesize that it acts via immune deregulation

(phenomenon known as overreaching and overtraining in athletes)

in race-stressed horses. [1,57]. Finally, the most highly down-

regulated genes were related to protein synthesis (EEF1A2),

growth factors, signal transducers, and cell cycle regulators

(GATA2, BMP2, GPR56, FLT4), all of which are known to be

suppressed during severe stress [2].

Conclusions

Monitoring of the transcriptional landscape before and after

physical stress in equine athletes revealed differential expression of

numerous genes related to inflammation and immune system

activation, along with a sharp shift in expression from coding to

non-coding transcripts. The latter finding suggests that the stress

response involves the regulation and activation of new and

uncharacterized transcriptionally active regions.

Together with the post-stress increases in the expression levels of

repeats (L1 and L2) and antisense strands compared to the sense

strands, both in intronic and regulatory regions, our results suggest

that repeat-driven exonization may be a stress response in the

horse, and that antisense transcription could be one of the main

mechanism of transposon regulation. Although preliminary, our

experimental data contribute to our detailed understanding of the

complex transcriptional changes that occur following physical

stress in equine athletes. In the future, similar results in additional

horses and other livestock species may facilitate the inclusion of

stress response potential in selection plans, allowing breeders to

choose more stress-resistant subjects in the hopes of improving

performance and preserving animal welfare. Moreover, an

improved understanding of how and when remodeling of the

genome structure modifies the transcriptome in response to

stresses may facilitate the diagnosis of inflammatory-related

diseases (e.g., autoimmune issues, cancer, etc.) and certain

overtraining syndromes in human athletes.
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File S1 Figure S1. Canonical pathway enrichment from IPA

analysis. Red and green are respectively up-regulated and down-

regulated fraction of the genes of the dataset. Pathways are

ordered in 2log(p-value) –wise form. Figure S2. Scatterplot of

the logarithmic reads count between the samples. Pearson

correlation coefficient (r) is reported for each comparison. Labels

A and B represent the samples (biological replicates), while labels 1

and 2 represent the time points (at rest and after the competition).

Table S1. Similarities of new transcripts with known proteins.
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cells’’. Table S7. Canonical pathway ‘‘leukocyte extravasation
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56. Beyeen AD, Adzemovic MZ, Öckinger J, Stridh P, Becanovic K, et al. (2010) IL-

22RA2 Associates with Multiple Sclerosis and Macrophage Effector Mecha-
nisms in Experimental Neuroinflammation. J Immunol 185: 6883–6890.

doi:10.4049/jimmunol.1001392.

57. Lakier Smith L (2003) Overtraining, excessive exercise, and altered immunity: is
this a T helper-1 versus T helper-2 lymphocyte response? Sports Med Auckl NZ

33: 347–364.

RNA-seq of the Exercise in Horses

PLOS ONE | www.plosone.org 14 December 2013 | Volume 8 | Issue 12 | e83504


