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Abstract

Background: The whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), is one of the most widely distributed agricultural pests.
In recent years, B. tabaci Q has invaded China, and Q has displaced B in many areas now. In a number of regions of the
world, invasion by B and/or Q has been followed by outbreaks of tomato yellow leaf curl virus (TYLCV). Our previous study
showed TYLCV directly and indirectly modified the feeding behavior of B. tabaci in favor of Q rather than B.

Methodology/Principal Findings: In this study, we quantified the salicylic acid (SA) titers and relative gene expression of SA
in tomato leaves that were infested with viruliferous or non-viruliferous B and Q. We also measured the impacts of
exogenous SA on the performance of B and Q, including the effects on ovary development. SA titer was always higher in
leaves that were infested with viruliferous B than with viruliferous Q, whereas the SA titer did not differ between leaves
infested with non-viruliferous B and Q. The relative gene expression of SA signaling was increased by feeding of viruliferous
B but was not increased by feeding of viruliferous Q. The life history traits of B and Q were adversely affected on SA-treated
plants. On SA-treated plants, both B and Q had lower fecundity, shorter longevity, longer developmental time and lower
survival rate than on untreated plants. Compared with whiteflies feeding on control plants, those feeding on SA-treated
plants had fewer oocytes and slower ovary development. On SA-treated plants, viruliferous B had fewer oocytes than
viruliferous Q.

Conclusions/Significance: These results indicate that TYLCV tends to induce SA-regulated plant defense against B but SA-
regulated plant defense against Q was reduced. In other words, Q may have a mutualistic relationship with TYLCV that
results in the reduction of the plant’s defense response.
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Introduction

Approximately 80% of plant viruses depend on insect vectors

for transmission [1,2], and the outbreak of plant viruses often

depends on the abundance and distribution of their vectors. Plant-

mediated interactions between pathogens and insect vectors can

greatly affect the abundance of insect herbivores and the

epidemiology of plant diseases [3,4,5]. Although much is known

about the plant-virus interactions, however, less is known about

plant-virus-insect interactions [6]. We are still in the early phase in

understanding mechanisms of plant-mediated interactions be-

tween pathogens and herbivores, especially when the herbivores

are also pathogen vectors [4,7]. In the current study, we consider

how plant responses affect the interactions between tomato yellow

leaf curl virus (TYLCV), the vector of TYLCV (the whitefly Bemisia

tabaci), and tomato plants.

Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is one of

the most destructive and common phloem-feeding insect pests

and is a species complex composed of many biotypes that are

morphologically indistinguishable [8,9]. The two most invasive

and destructive biotypes, B. tabaci biotype B (hereafter referred to

as B) and biotype Q (hereafter referred to as Q), belong to the

Middle East-Minor Asia 1 genetic group and the Mediterranean

genetic group, respectively [9]. B. tabaci was first recorded in the

late 1940s in China [10], but the crop damages and loses caused

by this insect were not serious until the introduction of B. tabaci B

in the 1990s [11]. In recent years, B. tabaci Q has invaded China

[12], and Q has now displaced B in many areas [13,14].

In a number of regions of the world, invasion by B and/or Q

has been followed by outbreaks of TYLCV [15,16], which is

transmitted exclusively by B. tabaci in a circulative and persistent

manner [17,18]. TYLCV causes serious plant diseases in Africa,

the Middle East, Southeast Asia, and Europe [19,20] and, more

recently, in North and South America [21,22]. In China, TYLCV

was first isolated from symptomatic tomato plants in 2006 in

Shanghai [23]. Since then, it has spread to Heilongjiang,

Liaoning, Neimenggu, Hebei, Beijing, Shandong, Shanxi, Jiangsu,
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Zhejiang, and Hubei provinces, where it has caused extensive

damage to tomato crops [15]. TYLCV was not detected in China

until Q became established, even though B is an important vector

of TYLCV elsewhere and has been in China since the mid-1990’s

[14]. Previous research showed that TYLCV directly and

indirectly modifies the feeding behaviors of B. tabaci by altering

the competition between B and Q in favor of Q [24].

Plant defenses always play important roles in the interaction of

insects and their vectored viruses. When feeding on virus-infected

host plants, the population growth of arthropod vector species may

be affected positively, negatively or neutrally [3,25,26]. For

example, Belliure et al. (2005) [27] showed that tomato spotted wilt

virus indirectly increase the juvenile survival and developmental

rate of its thrips vector (Frankliniella occidentalis) through the infected

host plant. However, the mechanism of how plant viruses modify

the interaction of plant and its vector is still unknown. Numerous

reports are often correlated with increases in salicylic acid (SA). SA

mediates plant resistance to biotrophic pathogens, hemibiotrophic

pathogens, and some piercing–sucking herbivores [28]. Extensive

reports indicate that SA-induced defenses are important in

regulating both anti-herbivore and anti-pathogen defense respons-

es [29–32].

The interactions among tomato’s defense responses, the

whitefly, and TYLCV were examined in the current study. More

specifically, we quantified endogenous SA levels and gene

expression level in tomato plants infested by non-viruliferous and

viruliferous B and Q and compared the performance of

viruliferous and non-viruliferous B and Q on SA-treated and

control tomato plants. Our goals were to determine how

viruliferous and non-viruliferous vectors affect plant defense

responses and how those responses affect vector performance.

Materials and Methods

Host plants
Tomato plants (Lycopersicon esculentum, cv. Zhongza 9) were

grown in a potting mix (a mixture of peat moss, vermiculite,

organic fertilizer, and perlite in a 10:10:10:1 ratio by volume) at

2561uC, 606100% r.h., and L14: D10 in a glasshouse. TYLCV-

infected plants were produced by Agrobacterium tumefaciens-mediated

inoculation at the 3–4 true leaf stage with a cloned TYLCV

genome (GenBank accession ID: AM282874), which was origi-

nally isolated from Shanghai, China [23]. Viral infection of test

plants was confirmed by the development of characteristic leaf curl

symptoms and by molecular analysis [15].

Populations of Bemisia tabaci B and Q
B populations were originally collected from an infested

cabbage (Brassica oleracea. cv. Jingfeng 1) field in Beijing, China

in 2004 [15], and Q populations were originally collected from

infested poinsettia (Euphorbia pulcherrima Wild. ex Klotz.) in Beijing,

China in 2009 [15]. No specific permits were required for the

described field studies. The locations for sample collection are not

privately-owned or protected in any way and the field studies did

not involve endangered or protected species. The B populations

were maintained on cabbage and Q populations were maintained

on poinsettia in screened chambers in the greenhouse. The purity

of these populations was monitored by sampling 20 adults per

generation using the molecular diagnostic technique CAPS

(cleavage amplified polymorphic sequence) and the molecular

marker mitochondrial cytochrome oxidase I gene (mtCOI) [13].

Establishment of non-viruliferous and viruliferous
B. tabaci colonies

We created four whitefly colonies: non-viruliferous B, non-

viruliferous Q, viruliferous B, and viruliferous Q. We obtained

viruliferous colonies by placing four TYLCV-infected tomato

plants in each of two cages (60660660 cm). We then transferred

300 non-viruliferous B and Q adults to each of the two cages, one

biotype per cage. We simultaneously established non-viruliferous B

and Q colonies by placing 300 non-viruliferous B and Q adults in

cages with virus-free tomato plants, one biotype per cage. All

colonies were maintained for more than six generations in separate

greenhouse at 2561uC, 606100% r.h., and L14: D10.

Quantification of endogenous SA
Endogenous SA was quantified following the reports of Schulze

et al. [33] and Matros et al. [34]. Tomato plants with 6–7 true

leaves were used. Plant leaves in clip cages were treated with one

of the following: non-viruliferous B, non-viruliferous Q, virulifer-

ous B, viruliferous Q, neither B nor Q with water, or neither B nor

Q with SA (as described below). Six leaves on each plant were

placed in clip cages and 50 adults (or no whiteflies) were placed in

the cages according to the treatments. The entire plant received

the same treatment, and each treatment was represented by three

parallel experiments, then the mean value was obtained as one

replicate. The clip cages and the whiteflies within were removed

from each plant after 0.5 h, 1 h, 1 d, 3 d, 5 d, and 7 d, and the

corresponding leaves were collected at the same time; in other

words, exposure time was another variable. The total experiment

was repeated three times, that is to say, the free forms of SA were

determined in 324 plants [6 treatments66 incubation times63

replicates ( = 9 plants)]. Frozen foliar tissue (0.5 g) was ground and

transferred to a 5 mL microfuge tube, and 3 ml of 90% precooled

methanol (90 methanol: 10 water, v/v) were added. The mixture

was centrifuged at 7500 g for 10 min. The supernatant was

transferred and the pellet was re-suspended in 2 ml of 100%

methanol, then the mixture was centrifuged again at 7500 g for

10 min. The supernatant after twice centrifugation was then

mixed and dried under vacuum, and the pellets were dissolved in

1.5 ml 5% trichloroacetic acid. After centrifugation at 7500 g for

10 min, the supernatant was extracted three times with equal

volumes of ethyl acetate and cyclohexane. The organic extraction

was dried, re-suspended in 3 ml of 70% methanol, loaded onto a

C18 column (Waters), and then collected. After evaporation,

500 ml of acetonitrile was added and passed through a 0.45-mm

filter.

All samples were analyzed by HPLC (1100; Agilent Technol-

ogies), and the fractions were collected by injecting 10 ml of the

sample onto a 5-mm C18 reverse phase column

(250 mm64.6 mm; Agilent). SA was detected by excitation at

295 nm and emission at 405 nm and identified by retention time

of the parallel standard SA samples. Quantitative analysis of SA

was completed by plotting the results against a standard curve.

RT-PCR gene expression analysis
Plant leaves in clip cages were treated with one of the following:

non-viruliferous B, non-viruliferous Q, viruliferous B, viruliferous

Q, and no whiteflies. Fifty adults (or no whiteflies) were placed in

the cages according to the treatments for 1 d. Total RNA was

extracted from 0.2 g of treated or control leaves, and 1 mg of RNA

was used to synthesize the first-strand cDNA using the

PrimeScriptH RT reagent Kit (Takara Bio, Tokyo, Japan) with

gDNA Eraser (Perfect Real Time, TaKara, Shiga, Japan)

according to the manufacturer’s protocol. To verify the genes of
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SA pathway were affected by infestion of B. tabaci, we measured

the expression of the downstream genes NPR1 [35] and PR1 [36]

of SA signal pathway with actin (ACT) and ubiquitin 3 (UBI) [37]

as reference genes (Table 1). The 25 ml reaction system was

composed of 1 ml cDNA, 12.5 ml of SYBR H Green PCR Master

Mix (TIANGEN, Corp, Beijing, China), and 0.5 ml of each

primer. Relative quantities of RNA accumulation were calculated

using the comparative cycle threshold (Ct) (22DDCt) method. Three

biological replicates and four technical replicates were analysed.

Salicylic acid application
Healthy tomato plants were evenly divided into two groups: an

SA-treated group and a control group. SA (Sigma-Aldrich) was

dissolved in ethanol and water (1:100, v/v) containing 10% Tween

20 to produce a 1 mM SA solution [38]. We liberally sprayed the

foliage of each plant in the SA-treated group with 1.0 mL/leaf of

SA solution with a hand-sprayer. The plants in the control group

were sprayed with 1.0 mL/leaf of ethanol and water (1:100, v/v)

containing 10% Tween 20. The first spray was applied when the

plants had six completely developed leaves, and the SA titer was

determined in the first four days. According to the determination,

the effect of SA was maintained by repeating the application every

3 days. Twenty-four hours after the spray, the plants were used to

assess the fitness of B and Q as described in the following two

sections.

Effect of exogenous SA on life history traits of viruliferous
and non-viruliferous B and Q

Nymph survivorship, developmental time, female longevity, and

fecundity of non-viruliferous and viruliferous B and Q were

determined on SA-treated and control tomato plants. SA-treated

and control tomato plants were obtained as described in the

previous section. One newly emerged female was collected and

transferred to a clip-cage attached to a leaf (the third to sixth leaf

from the top) of the SA-treated and control tomato plants; four

clip-cages, each with one female, were attached to each plant. The

eggs laid by each female were counted with a stereomicroscope

(Leica, M205C) every 4 days and then the clip cages and whiteflies

were transferred to new plants to maintain the effect of SA. Every

female was checked daily until its death to calculate its longevity as

affected by the virus status of the whiteflies and SA treatment.

Nymph survivorship (the total number of emerged adult

whiteflies/the total number of eggs) and developmental time

(from egg to adult) of non-viruliferous and viruliferous B and Q

were measured on the SA-treated and control tomato plants. For

each replicate, 10 pairs of newly emerged adults were collected

and enclosed in a clip-cage with one clip-cage per tomato plant.

The 10 pairs of adults in each cage were allowed to oviposit on the

tomato leaf for 24 h. The adults were then removed. The leaves

were then examined with a stereomicroscope (Leica, M205C), and

the eggs were counted. Leaves bearing the eggs were marked.

From the 16th day onwards, the newly emerged adults were

collected and recorded twice daily (at 9:00 and 15:00) until all the

pupae had developed to adults. The total number of emerged

adult whiteflies in each replicate was calculated at the end of the

experiment. These data were used to calculate developmental time

and survival as affected by the virus status of the whiteflies and SA

treatment.

Development of ovaries
To determine why SA greatly reduced the fecundity of B and Q

(see Results), the ovaries of viruliferous whiteflies on SA-treated

and control plants were compared. The experiment was carried

out using the procedure as described by Guo et al. [39].

Approximately 400 pairs of newly emerged B and Q adult

whiteflies were collected from TYLCV-infected tomato plants and

divided into four groups with 100 pairs of adults per group. In

each group, about forty adults of B or Q were used for inoculating

five tomato plants which were treated by SA or water. For each

treatment, 10 females were dissected every day, and the

developmental phases of the oocytes in the ovaries were assessed

until 15 d after eclosion.

Statistical analysis
The survival rate of whiteflies from eggs to adults was arcsine-

square root transformed for analyses. Repeated-measures ANO-

VAs were used to compare the quantity of endogenous SA in

treated or untreated plants that were not infested with whiteflies or

were infested with non-viruliferous and viruliferous B and Q.

Three-way ANOVAs were used to compare the life history

parameters of non-viruliferous and viruliferous B and Q on SA-

treated and control tomato plants. One-way ANOVA was used to

compare the oocytes of viruliferous B and Q on SA-treated and

control tomato plants. One-way ANOVA was also used to

compare relative gene expression of leaves infested by non-

viruliferous and viruliferous B and Q compared with noninfested

leaves. Means were compared by the least significant difference

(LSD) test at P,0.05. Proportional data were arcsine square root

transformed before analyses. SPSS version 20.0 (SPSS Inc.,

Chicago, IL, USA) was used for all statistical analyses.

Results

Quantification of endogenous SA
SA titers were much higher in leaves infested with viruliferous B

and Q than in leaves infested with non-viruliferous B and Q

(Fig. 1). SA titer in leaves was much higher with viruliferous B than

with the other treatments and was lowest in the control. The

differences in SA titers between leaves infested with viruliferous

and non-viruliferous whiteflies was much greater for B than for Q.

SA titers increased within 0.5 h after infestation, peaked after 1 d,

but were still very high in the leaves infested with viruliferous B

after 7 d (Fig. 1). SA titer in leaves treated with exogenous SA

maintained a high level than control leaves in the first 4 days

(Fig. 2), these results showed that exogenous SA-application had

led to raised SA-levels, so the method of exogenous SA treatment

is feasible.

RT-PCR gene expression analysis
The relative gene expression level of NPR1 and PR1 in

viruliferous B-infested leaves was significant higher than that of the

Table 1. Primer sequences used for qPCR analysis.

Gene
Genebank
Acces No. Primer sequence

NPR1 AY 640378.1 F: 59-ATATAGAATTCCTGCTCCAAAGGATCGGTTA-39

R: 59-ATATACTCGAGCAGACAAGTCATCAGCATCCA-39

PR1 AJ011520 F: 59-ATCTCATTGTTACTCACTTGTC-39

R: 59-AACGAGCCCGACCA-39

ACT BT013707 F: 59-AGGCAGGATTTGCTGGTGATGATGCT-39

R: 59-ATACGCATCCTTCTGTCCCATTCCGA-39

UBI X58253 F: 59-TCGTAAGGAGTGCCCTAATGCTGA-39

R: 59-CAATCGCCTCCAGCCTTGTTGTAA-39

doi:10.1371/journal.pone.0083520.t001
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nonviruliferous B-infested leaves, however, there is no significant

difference between viruliferous Q-infested leaves and nonvirulifer-

ous Q-infested leaves (NPR1: F3, 20 = 35.151, P,0.001; PR1:

F3, 20 = 23.162, P,0.001) (Fig. 3).

Performance of non-viruliferous and viruliferous B and Q
on SA-treated and untreated plants

Fecundity was significantly affected by whitefly biotype

(F1, 148 = 17.530, P,0.001), whitefly virus status (non-viruliferous

and viruliferous) (F1, 148 = 4.116, P = 0.044), SA treatment of

plants (F1, 148 = 1789.638, P,0.001), and the interaction between

whitefly biotype and whitefly virus status (F1, 148 = 6.302,

P = 0.013), whitefly biotype and SA treatment of plants

(F1, 148 = 24.093, P,0.001), and whitefly virus-status and SA

treatment of plants (F1, 148 = 5.089, P = 0.026), but not by the

interactions among the three factors (F1, 148 = 1.308, P = 0.255).

Both B and Q laid significantly more eggs on untreated than on

SA-treated plants (Fig. 4A).

Longevity was significantly affected by whitefly biotype

(F1, 167 = 8.146, P = 0.005), whitefly virus status (F1, 167 = 12.823,

P,0.001), SA treatment of plants (F1, 167 = 780.066, P,0.001),

and the interaction between whitefly biotype and whitefly virus

status (F1, 167 = 13.383, P,0.001), whitefly biotype and SA

treatment of plants (F1, 167 = 4.314, P = 0.039), and whitefly

virus-status and SA treatment of plants (F1, 167 = 11.925,

P = 0.001), but not by the interactions among the three factors

(F1, 167 = 0.624, P = 0.431). Longevity of both B and Q was greater

on untreated than on SA-treated plants. On SA-treated plants,

viruliferous Q lived longer than viruliferous B (Fig. 4B).

The mean developmental time of B. tabaci from egg to adult was

significantly affected by whitefly biotype (F1, 155 = 140.444,

P,0.001), whitefly virus status (F1, 155 = 217.204, P,0.001), SA

treatment of plants (F1, 155 = 1154.592, P,0.001), and the

interaction between whitefly biotype and whitefly virus status

(F1, 155 = 33. 840, P,0.001), whitefly biotype and SA treatment of

plants (F1, 155 = 38.526, P,0.001), and whitefly virus-status and

SA treatment of plants (F1, 155 = 30.405, P,0.001), and the

interactions among the three factors (F1, 155 = 564.515, P,0.001).

Developmental time for both B and Q was shorter on untreated

than on SA-treated plants. On SA-treated plants, the develop-

mental time was longer for viruliferous B than for non-viruliferous

B but was shorter for viruliferous Q than for non-viruliferous Q

(Fig. 4C).

Survival rate was significantly affected by whitefly biotype

(F1, 103 = 12.353, P = 0.001) and SA treatment (F1, 103 = 139.551,

P,0.001) and the interaction between whitefly biotype and SA

treatment (F1, 103 = 13.504, P,0.001) but was not affected by the

whitefly virus status or interactions involving whitefly virus status.

Survival for both B and Q was higher on untreated than on

SA-treated plants. On SA-treated plants, survival was higher for

non-viruliferous B than for viruliferous B but was lower for non-

viruliferous Q than for viruliferous Q (Fig. 4D).

Figure 1. Time course of endogenous SA levels in leaves
infested by non-viruliferous and viruliferous whiteflies. Non-
infested leaves were used as the control. CK: control; NVQ: non-
viruliferous Q; VQ: viruliferous Q; NVB: non-viruliferous B; VB: viruliferous
B. Values are the means 6 SE of three replicates.
doi:10.1371/journal.pone.0083520.g001

Figure 2. Time course of endogenous SA levels in SA-treated or
untreated leaves. CK: untreated leaves; SA: SA-treated leaves. Values
are the means 6 SE of three replicates.
doi:10.1371/journal.pone.0083520.g002

Figure 3. Relative gene expression in leaves infested by non-
viruliferous and viruliferous whiteflies. Values were normalized to
ACT and UBI. NVB: non-viruliferous B; VB: viruliferous B; NVQ: non-
viruliferous Q; VQ: viruliferous Q. Values are the means 6 SE of six
replicates.
doi:10.1371/journal.pone.0083520.g003
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Figure 4. Life history traits of non-viruliferous and viruliferous whiteflies on SA-treated plants and control plants. (A) Fecundity (the
total number of eggs laid by each female). (B) Longevity (from newly emerged adult until its death). (C) Developmental time (from egg to adult). (D)
Survival rate (the total number of emerged adult whiteflies/the total number of eggs expressed as a percentage). NVQ: non-viruliferous Q; VQ:
viruliferous Q; NVB: non-viruliferous B; VB: viruliferous B. Values are means 6 SE. Different lowercase and uppercase letters indicate significant
differences between treatments on control plants and SA-treated plants, respectively (LSD test at P,0.05).
doi:10.1371/journal.pone.0083520.g004
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Development of ovaries of viruliferous B and Q on
SA-treated plants

Whiteflies feeding on control plants (Fig. 5A and C) had a

significantly more total oocytes (F3, 596 = 28.731, P,0.001; Fig. 6)

and faster ovary development than whiteflies feeding on SA-

treated plants (Fig. 5B and D; Fig. 6). On control plants,

viruliferous B had significantly more total oocytes than viruliferous

Q (F1, 298 = 0.268, P = 0.001) (Fig. 5A and C; Fig. 6). On SA-

treated plants, viruliferous B had fewer oocytes than viruliferous Q

(F1, 298 = 15.102, P = 0.089) (Fig. 5B and D; Fig. 6).

Discussion

Insect herbivores and microbial pathogens may manipulate

plant defense responses for their own benefits [40,41]. For insect

vectors, the effect of virus can be direct or indirect. Gutiérrez et al.

(2013) reported that plant viruses can influence vector physiology

and behavior so as to increase virus transmission either directly or

through modification of the host plant [6]. For example, Moreno-

Delafuente et al (2013) found that TYLCV can directly modify the

behavior of its insect vector, B. tabaci to facilitate its own

transmission [42]. In some cases, virus transmission by insect

vectors can be increased through virus-induced changes in the

plant [43], and the indirect interaction reflects a plant-mediated

mutualistic relationship between vectors and pathogens [3,4]. In

the present study, we demonstrated that the fecundity, longevity

and developmental time was similar for viruliferous Q and non-

viruliferous Q but was lower for viruliferous B than for non-

viruliferous B. This result is consistent with our previous finding

that Q is a better vector of TYLCV than B and that the spread of

TYLCV in China is closely related with the rapid establishment

and spread of Q [15]. Our results showed that the growth and

development of B and Q was differently affected by virus through

different defense response of plants.

A number of studies have shown that phloem-feeding insects,

such as aphids and whiteflies, induce SA-dependent responses

[44–47]. SA can have neutral or negative effects on the growth of

aphids and whiteflies [48]. Transcriptome analyses indicated that

feeding by these insects elicits SA-regulated transcripts [49–51].

Avila et al. (2012) [35] showed that FAD7 enhances plant defenses

against aphids that are mediated through SA and NPR1. In our

research we also found that the relative expression of NPR1 and

PR1 were induced by the feeding of whiteflies. There is a great

similarity between pathogen- and herbivore-induced signal events.

For example, Huang et al. (2012) [52] reported that TYLCV

infection significantly increased SA levels in tomato plants. Abe et

al. (2011) [53] demonstrated that tomato spotted wilt virus infection

elevated SA contents and induced SA-regulated gene expression in

Arabidopsis plants. Rodriguez-Saona et al. (2010) [54] showed that

the SA-mediated defense responses are effective against both

pathogens and aphids in tomato, because tobacco mosaic virus

infection reduces plant susceptibility to aphids in wild-type tomato

but not in SA-deficient transgenic plants.

In our current study, the SA titer in leaves was higher when they

were infested with viruliferous B or Q than with non-viruliferous B

or Q, although the difference was relatively small for Q but large

for B. The similar trend was determined on the relative gene

expression in SA signaling pathway. These results indicate that

TYLCV and B. tabaci infection simultaneously increased the

endogenous SA levels and induced the SA-regulated defense

system. In our research the basal SA-levels in control plants are

very high in comparison to other published studies [35,53], the

possible reason is that there are differences between plants,

besides, different light, temperature, humidity and experiment

conditions may also be associated with the SA titer.

To combat pathogens and insect herbivores, plants have

evolved sophisticated mechanisms that ensure early detection

and induction of appropriate defense responses [55]. At the same

time, pathogens and herbivores have evolved mechanisms to

evade or suppress host resistance [56,57]. The plant evidently uses

the SA signal to inform plant components that attack is imminent

or ongoing. In the current study, the SA titer was much higher in

leaves infested with viruliferous B than with viruliferous Q, while

the SA titer was not very different in leaves infested with non-

viruliferous B and Q. From such results we can conclude that the

defense response of plants induced by viruliferous B maybe

stronger than that induced by viruliferous Q. In other words,

viruliferous Q may be better able than viruliferous B to reduce the

plant’s defense response. More experiments are required to reveal

why host plants respond differently to these and other viruliferous

vectors.

Vectors often perform better on plants infected with pathogens,

and this promotes the spread of pathogens. One possible

mechanism is that many herbivores have acquired traits, often

in the form of secreted substances, those interfere with the plant’s

ability to organize its defenses. For example, the fungal pathogen

Fusarium oxysporum releases ‘‘effectors’’ that specifically interfere

with the plant’s defense hormone signaling [58], and the bacterial

pathogen Pseudomonas syringae DC3000 [59] uses the plant’s JA-SA

defenses to its own advantage. Similarly, the saliva of some aphids

[60] contains proteins that prevent feeding site occlusion [61].

Perhaps the difference of whitefly-secreted substances explains the

different defense responses to viruliferous B vs. viruliferous Q.

Another possibility to consider is that fatty acids have been

proposed to participate in defense signaling either directly or

indirectly [62] and are also precursors for the synthesis of azelaic

acid and numerous oxylipins that contribute to plant immunity

[63]. The endosymbiotic bacteria may also play an important role

in the interaction. As we know, the transmission of viruses by B.

tabaci to plants is related to a protein created by an endosymbiotic

bacteria [64]. Previous research showed that at the same time, the

virus titers harbored in the body of Q is higher than that in B [15].

Figure 5. The ovaries of viruliferous whiteflies on SA-treated
and control plants 14 d after eclosion. Ovaries from (A) a
viruliferous B whitefly on a control plant, (B) a viruliferous B whitefly
on an SA-treated plant, (C) a viruliferous Q whitefly on a control plant,
and (D) a viruliferous Q whitefly on an SA-treated plant. Mature oocytes
are indicated by bidirectional arrows. Immature oocytes are indicated
by unidirectional leftward arrows. Bacteriocyte spheres are indicated by
unidirectional rightward arrows. Scale bar: 0.10 mm.
doi:10.1371/journal.pone.0083520.g005
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As we know, virus can also induce the SA defense, but the SA titer

and expression of VQ is lower than that of VB (Fig. 1 and Fig. 3).

We speculate the different distribution of endosymbiotic bacterias

between B and Q contributes to this difference [65].

Plant defenses often affect whitefly activity and performance

[40]. In the present study, both B and Q had reduced fecundity,

reduced longevity, slower development, and lower survival rates

on SA-treated plants than on non-treated plants. In addition,

viruliferous B performed worse than viruliferous Q on SA-treated

tomato plants. Previous research showed that SA was an effective

chemical defense response against aphids [66]. However, Zarate et

al. (2007) [40] showed that whitefly nymphs were able to feeding

and growth well on up-regulation of SA-dependent defense. One

possible reason is that there may be some difference between

nymphs and adults because nymphs have a long-term interaction

with their host plants. Another possible reason is that different

amount of SA may have different effect. The SA treatment in our

research may trigger much stronger defense which is different

from the physiological defense, therefore the exogenous defense

activated by spaying of SA maybe different from endogenous SA-

dependent defense.

In conclusion, tomato plants responded to B. tabaci attack by

activating the endogenous SA-regulated defenses, and the response

was stronger against B than Q. Application of SA decreased the

performance of both B and Q but this effect was modified by

TYLCV, i.e., the negative effect of SA tended to be enhanced for

B but reduced for Q. The results suggest that B. tabaci Q has a

mutualistic relationship with TYLCV that results in the suppres-

sion of the plant’s defense response. The possible reason is that the

secreted substances or endosymbiotic bacterias of B. tabaci were

different changed by virus, and this may help to change SA

pathway of plant defense. Additional research is required to clarify

the nature of this three-way interaction and of other plant–virus–

vector interactions. Such research should enhance the develop-

ment of crop protection strategies.
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