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Abstract

The placenta plays a central role in determining the outcome of pregnancy. It undergoes changes during gestation as the
fetus develops and as demands for energy substrate transfer and gas exchange increase. The molecular mechanisms that
coordinate these changes have yet to be fully elucidated. The study performed a large scale screen of the transcriptome of
the rat placenta throughout mid-late gestation (E14.25–E20) with emphasis on characterizing gestational age associated
changes in the expression of genes invoved in angiogenic pathways. Sprague Dawley dams were sacrificed at E14.25,
E15.25, E17.25 and E20 (n = 6 per group) and RNA was isolated from one placenta per dam. Changes in placental gene
expression were identifed using Illumina Rat Ref-12 Expression BeadChip Microarrays. Differentially expressed genes (.2-
fold change, ,1% false discovery rate, FDR) were functionally categorised by gene ontology pathway analysis. A subset of
differentially expressed genes identified by microarrays were confirmed using Real-Time qPCR. The expression of thirty one
genes involved in the angiogenic pathway was shown to change over time, using microarray analysis (22 genes displayed
increased and 9 gene decreased expression). Five genes (4 up regulated: Cd36, Mmp14, Rhob and Angpt4 and 1 down
regulated: Foxm1) involved in angiogenesis and blood vessel morphogenesis were subjected to further validation. qPCR
confirmed late gestational increased expression of Cd36, Mmp14, Rhob and Angpt4 and a decrease in expression of Foxm1
before labour onset (P,0.0001). The observed acute, pre-labour changes in the expression of the 31 genes during gestation
warrant further investigation to elucidate their role in pregnancy.
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Introduction

A successful outcome to pregnancy depends on establishing an

effective materno-fetal exchange interface. Two processes critical

for materno-fetal exchange are adequate perfusion of the placenta

by maternal blood, and formation of the placental villous tree (the

exchange surface of the placenta) and its vascular network. Failure

to achieve either of these processes is associated with adverse

pregnancy outcome, including: miscarriage; intrauterine growth

restriction; preeclampsia and preterm delivery. Furthermore,

epidemiological studies identify a strong association between

compromised placental structure and function, impaired fetal

growth and the development of adult-onset diseases [1–3].

Development of the vascular network within placental villi

during first trimester is a critical process that involves both

vasculogenesis and angiogenesis. In humans, vasculogenesis starts

during the third week post-conception. Hemangioblastic cell cords

differentiate in situ from placental mesenchymal stem cells in the

villous cores. The cords elongate through proliferation and cell

recruitment, and connect with the vasculature of the developing

fetus. A feto-placental circulation starts around 8 weeks of

gestation and perfusion of the placental villi by maternal blood

occurs 4–6 weeks later. Elongation of the capillaries results in

looping of the vessels. Obtrusion of both capillary loops and new

sprouts results in the formation of terminal villi.

The placental vasculature continues to develop and adapt

during pregnancy in response to the increasing requirements of the

fetus. Reynolds et al., [4] reported that the large increase in

transplacental exchange, that supports the exponential increase in

fetal growth during the last half of gestation, depends primarily on

the dramatic growth of the placental vascular beds and the

resultant large increases in uterine and umbilical blood flow [5].

The microvasculature of the placenta develops by the process of

branching angiogensis that increases capillary numbers and

surface densities. In the human placenta, branching angiogenesis,

the formation of new vessels through sprouting, occurs from 5

weeks gestation through to 24 weeks gestation, while non-

branching angiogenesis, the formation of capillary loops through

elongation, predominates thereafter to term.

Available data supports the hypothesis that fetal growth and

energy demand regulates placental growth and vascularization.

For instance, the activity and expression of some nutrient

transporters, in the mouse placenta, is modulated by fetal nutrient

demands for growth [6]. Mutant mouse small placentae are

capable of increasing glucose and amino acid transfer to meet the
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nutrient demands of the growing fetus, particularly in late

gestation [6]. In human trophoblasts, System A, which includes

the amino acid transport genes such as Slc38A1, Slc38A2 and

Slc38A4 has been shown to increase as pregnancy progresses,

coinciding with increased fetal nutrient demands [7]. During late

gestation in rat, glucose transporter genes Slc2A3 and Slc2A1 are

upregulated and downregulated respectively, in placenta [6]. The

molecular and cellular mechanisms that regulate vascularisation

and angiogenesis within the placental villous tree during pregnan-

cy remain to be fully elucidated. Previous studies have established

the utility of rat and mouse models to eluciate the molecular and

cellular mechanisms involved in placentation and placental

development since it is more difficult to obtain human placenta

at various gestational stages [8–10]. Genome-wide gene expression

in rat placenta has been studied in late pregnancy [11] [12]. At

embryonic day 18.5 (E18.5), RNA sequencing showed differential

gene expression between the rat labyrinth zone, junctional zone

and metrial gland [12]. At E21, Buffat et al. reported changes in

genome-wide placental gene expression in rats exposed to an

isocaloric low protein diet [11]. Goyal et al. (2010), studied global

gene expression in placentae from two different rat species at 17.5

days of gestation and found 272 genes differentially expressed [13].

Large scale molecular analysis of the transcriptome of the normal

rat placenta across mid to late gestation, however, has not been

performed. In particular, gestational variation in the expresssion of

genes known to be involved in angiogenesis within the rat placenta

is yet to be documented.

The aim of this study, therefore, was to characterize gestational

variation in rat placental gene expression using microarray

analysis (22,000 gene probes) and specifically identify changes in

the molecular pathways involved in angiogenesis. The hypothesis

to be tested was that genes involved in regulating angiogenesis are

differentially expressed during late gestation compared to late mid-

gestation. Placentae were collected at four gestational ages

(E14.25; E15.25; E17.25 and E20) and gene expression was

compared.

Materials and Methods

Animals and Diets
All animal experiments were performed at the Department of

Anatomy and Developmental Biology, Monash University (Mel-

bourne, Australia) with the approval of The School of Biomedical

Sciences Animal Ethics Committee of Monash University.

Experiments were carried out in accordance with the National

Health and Medical Research Council of Australia ‘‘Australian Code

of Practice for the Care and Use of Animals for Scientific Purposes’’ (7th

edition, 2004).

Sprague Dawley dams were allowed to adapt to the animal house

for one week, consuming standard chow diet and water ad libitum

prior to start of the study. The animals were maintained in a light

controlled environment (12 h light/dark cycle) throughout this

study and fed on a standard chow diet. Animals were time mated

in a 3 hour period, with male Sprague Dawley rats. This was

designated as Day 0 of pregnancy. The rationale of using a 3 h

window mating time is to reduce variability of gestational age

among the offspring and to maximize the accuracy in staging of

gestation. Pregnancy was confirmed at the time of sacrifice. After

mating, dams were housed individually. All animals had access to

food and water ad libitum throughout this study.

Tissue Collection
The pregnant dams were anaesthetized (Isoflurane Rhodia

Australia P/L, VIC, Australia) and sacrificed at embryonic day (E)

14.25, 15.25, 17.25 and 20 (n= 6 per gestational age). Whole

placentae were collected from the pregnant dams, weighed and

then snap frozen in liquid nitrogen. Tissues were stored at 280uC
until processed and analysed.

RNA Isolation
Total RNA was extracted from 30 mg of pulverized frozen

placental tissue (n = 6 placentae per gestational age group, one

placenta per dam), using the AllPrep DNA/RNA Mini Kit

(Qiagen) as per manufacturers’ instructions. Genomic DNA was

removed by On-column Dnase1 treatment. Following extraction,

total RNA was quantified via NanoDrop ND-1000 spectropho-

tometer (Thermo Scientific, DE, USA). RNA quality was verified

using an Agilent 2100 Bioanalyzer (VIC, Australia) prior to the

analysis. RNA samples that fulfilled the following criteria were

selected for microarray analysis: (i) RIN .8.5; (ii) 260/280 ratio

.2; (iii) 260:230.1. RIN (RNA Integrity Number) values were

greater than 8.7. For qPCR, the RNA was reverse transcribed

using the QuantiTect Reverse transcription kit (Qiagen) using

1 mg of RNA per sample.

Microarray Analysis on Illumina Rat Ref Arrays
For the microarray analysis, 500 ng of total RNA was

converted to double stranded cDNA and this was used to

generate biotinylated cRNA probes using the Illumina Total-

Prep RNA Amplification Kit. Biotin-labelled cRNA were then

hybridized to Illumina RatRef-12 Expression BeadChip (San

Diego, CA, USA). Slides were scanned on a BeadStation 500

System using Beadscan software Version 3.5.31. No RNA

samples were pooled in this analysis, each of the placental

samples was analyzed independently. Samples were hybridized

into wells at random. Two chips of 12 wells were used for the

Figure 1. Differentially genes expression during gestation. A)
The total number of differentially expressed genes that were up and
down regulated between the 3 gestational groups i.e. E14.25 vs. E15.25,
E15.25 vs. E17.25 and E17.25 vs. E20 are displayed as fold change (cut-
off.2 and FDR,1%). B) Overall gene expression fold changes from the
earliest time point under study E14.25 right up to E20.
doi:10.1371/journal.pone.0083762.g001

Angiogenic Gene Expression in the Rat Placenta
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experiment. Illumina Whole-Genome Gene Expression Bead-

Chips consist of oligonucleotides immobilized to beads held in

microwells on the surface of an array substrate. Labelled sample

cRNA were detected by hybridization to 50 mer probes on

BeadChip. Post washing and staining, BeadChips were scanned

on a BeadArray reader. Array experiment readout deposited on

ArrayExpress. ArrayExpress Accession number is E-MTAB-

1987.

Quantitative Real-Time PCR Validation Experiments
qPCR was used to validate the expression of three placental

genes (Ptgs2, Pla2g2a and Nos2) known to display gestational

age changes in expression. Each experiment was performed in

duplicate and normalized against the expression of b-Actin
(Actb) using the ddCt method [14]. RNA was reverse

transcribed into complentary DNA strands, using the Quantitect

Reverse transcription kit (Qiagen, VIC, Australia) following

manufacturers instructions. Primers used for qPCR throughout

the study are detailed in Table S1 and were all designed using

PRIMER-BLAST/ncbi against Rattus Norvegicus mRNA. qPCR

analyses was performed using ABI 6000 using standard SYBR

green from Life Technologies (VIC, Australia). Normalized Ct

ratios were subjected to ANOVA. Spearman’s Rank Correla-

tion, p,0.05 was used for correlation plots. Prior to statistical

analysis of gene expression during gestation, homogeneity of

variance and normality were assessed using Bartlett’s and

Shapiro-Wilk tests, respectively. Normally distributed and

homogenous data were assessed by ANOVA otherwise data

were analysed using non-parametic Kruskal-Wallis tests.

BioInformatic Anayses and Statistics
Bioinformatic analysis was performed by using the Illumina

Beadstudio and Significance Analysis of Microarry (SAM,

Stanford University) software. Data were normalized by perform-

ing a probe-intensity transformation and normalization via the

Lumi package, Bioconductor. After normalization, differentially

expressed placental genes (i.e. .2 fold expression, false discovery

rate of ,1%) were identified using SAM and were further

analysed using Web-based Gene Set Analysis Toolkit (WebGestalt,

http://bioinfo.vanderbilt.edu/webgestalt/). Genes were assigned

to their respective functional classes based on the Gene Ontology

(GO) database. Differences in group means were assessed by post-

hoc comparisons (Bonferroni tests).

Normalized expression data were subjected to Principal

Component Analyses (PCA, XLSTAT). 2D observation plots

were generated for individual gestational age samples and

correlation circles for the 31 angiogenic genes analyzed.

Figure 2. Heat Map of relative expression of Angiogenic genes. Of the 31 differentially expressed genes, 22 were up regulated (A) and 9 were
down regulated (B). The heat map diplays data for 6 individual placentae for each gestational age. The genes correspond to the gene list in Table 1,
where a change from green, black to red indicates and increase in signal. The colour legend above each map shows relative microarray signal ranges
between 0 to 1. Each coloured rectangular box within the heat map represents a separate rat placenta sample. The samples are grouped according to
gestational age i.e. E14.25, E15.25, E17.25, E 20.
doi:10.1371/journal.pone.0083762.g002

Angiogenic Gene Expression in the Rat Placenta
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Results

Mircoarray Analysis
To characterize gestational age dependent changes in gene

expression, microarray analysis was performed on placental cDNA

obtained from pregnant rats at gestational days E14.25, E15.25,

E17.25 and E20. A cutoff of .2 fold change in expression and

false discovery rate of less than 1% was used to ascribe the

differential expression of genes. Between gestational age E14.25

and E15.25, 40 gene transcripts were differentially expressed,

between E15.25 vs E17.25, 143 gene transcripts were differentially

expressed and between E17.25 vs E20, 678 were differentially

expressed using SAM Analyses (Figure 1). Specific differentially

expressed angiogenic genes were then selected from the SAM

readout and a heat map (Figure 2) displays expression changes

over time.

Quantitative RT-PCR Validation of Gestational-age
Dependent Genes
qPCR data were consistent with microarray data and estab-

lished that both Ptgs2 and Pla2g2a remain relatively constant

throughout E14.25, E15.25 and E17.25 and increase dramatically

(and also consistent with literature) towards the end of gestation at

E20 (Figure 3). Nos2 on the other hand, is downregulated towards

E17.25 and E20 (Figure 4 and Figure S2).

Classification of Genes Involved in Blood Vessel
Morphogenesis and Angiogenesis
Genes were classsified into pathways using GO (gene ontology)

based upon their Entrez IDs. Within the Blood Vessel Morphogenesis

and Angiogenesis pathway a total of 31 differentially expressed genes

were identified (GO:0048514 : blood vessel morphogenesis [412

gene products] and GO:0001525 : angiogenesis [333 gene

products]). 22 of these genes displayed increased expression and

Figure 3. Comparison of qPCR andmicroarray expression data. qPCR and Microarray data for Ptgs2 are shown in panels A and B respectively;
statistical significance (p values) is presented in panel G. C represents linear correlation between qPCR and microarray data for Ptgs2 (p,0.05). qPCR
and microarray results for Pla2g2a are shown in panels D and E respectively; statistical significance (p values) are presented in panel G. Panel F
indicates the linear correlation (Spearman’s rank correlation) between qPCR and microarray data (p,0.05). Both genes display late gestational
increase. Where * =p,0.05, p,0.0005 = **; p,0.0001 = *** and ns =p.0.05 using one-way ANOVA and post-hoc tests (Bonferroni test).
doi:10.1371/journal.pone.0083762.g003

Angiogenic Gene Expression in the Rat Placenta
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9 genes decreased expression across the gestational age groups.

Between E14.25 and E15.25 none of the 31 genes were

differentially expressed, between E15.25 and E17.25, 15 genes

were differentially expressed and between E17.25 and E20, 26

genes were differentially expressed (Table 1, Figure 2, Figure S1

and S2). Figure S4 displays the mean centroid analyses of A)

upregulated and B) downregulated genes.

Quantitative RT-PCR of Angiogenic Genes
The expression of five angiogenic genes (Mmp14, CD36, Angpt4,

Rhob and Foxm1) was confirmed by qPCR (Figure 5). For all genes

examined, a significant correlation between microarray and qPCR

data was established (Spearman’s Rank Correlation, p,0.05).

Principal Component Analysis
PCA of placental angiogenic gene expression separated data

into three distinct groups. E14.25 and E15.25 samples clustered

together, while E17.25 and E20 samples partitioned independently

(with F1 accounting for up to 70% of sample variation, Figure 6).

These data are consistent with the hypothesis that the expression

profile of Blood Vessel Morphogenesis and Angiogenesis genes in the rat

placenta changes significantly after 70% of gestation is reached

and continues to change thoughout the remainder of gestation.

Gestational age based PCA analyses are presented in Figure S3.

Furthermore, PCA indicates that the biological variation within

the gestational age category for these genes is small (n = 6). This

conclusion was additionally supported by ANOVA where the

variance in microarray data was partitioned between, gene

(p,0.00001), gestational age (p,0.00001) and biological replicates

(p.0.9).

Discussion

The aim of this study was to identify mid-late gestation changes

in the expression of genes in the whole rat placenta using

microarray analysis. In particular, this study focused on changes in

genes involved in angiogenic pathways. During mid-late gestation,

fetal demand for energy substrates and gas exchange increases

dramatically in the absence of a concomitant increase in placental

mass. An increase in branching angiogenesis contributes to

placental accommodation during this later gestational period.

The data obtained establish that the expression of approximately

7% of genes profiled (22,000) within the placenta change

significantly between E14.25 and E20 days of gestation. Of this

7%, 42% of genes increased expression and 58% decreased

expression. A subset of 31 genes known to be involved in the Blood

Vessel Morphogenesis pathways were identified, of which ,70%

displayed increased expression with gestational age. RNA

sequencing of different rat placental regions at E18.5 showed that

the blood vessel development pathway was prominent in genes

that were differentially expressed in the labyrinth zone versus the

junctional zone and the metrial gland [12]. In the metrial gland,

the vascular development pathway was enriched [12]. These

results indicate that the vasculature in the rat placenta is

developing late into gestation.

The microarray expression data for eight genes were orthog-

onally validated by qPCR. These genes included three genes

previously known to display gestational age and labour-associated

changes and five genes identified in this study that displayed

altered expression during gestation. Previously, we and others,

have identified late gestation and pre-labour changes in the

expression of enzymes involved in the biosynthesis of eicosanoids

(i.e. prostaglandin synthase 2, Ptgs2 ([15–18] and phospholipase A2

(Pla2a) [19]) and in nitric oxide (i.e. inducible nitric oxide synthase,

Nos2 [20]). Consistent with these observations, the gene expression

of prostaglandin synthase 2 and secretory Pla2a increased (from

Figure 4. Comparison of qPCR and microarray data for Nos2. qPCR and microarray results of Nos2 are presented in panels A and B,
respectively. Statistical significance (p values) is presented in panel D. Panel C depicts linear correlation (Spearman’s rank correlation) between qPCR
and microarray data (p,0.05) Both qPCR and microarray data display a significant decrease in expression with gestational age. (* = p,0.05,
p,0.0005 = **; p,0.0001 = *** and ns =p.0.05).
doi:10.1371/journal.pone.0083762.g004

Angiogenic Gene Expression in the Rat Placenta

PLOS ONE | www.plosone.org 5 December 2013 | Volume 8 | Issue 12 | e83762



E17.25 to E20) and Nos2 decreased (from E15.25 to E20) during

gestation (as determined by both microarray analysis and real-time

PCR). This finding is consistent with current literature. Further-

more, the data for Ptgs2 are consistent with the literature where

expression is known to increase prior to the onset of labour

[10,12,13]). Phospholipases hydrolyze phospholipids into fatty

acids. Phospholipase A2 is an important mediator of arachidonic

acid formation, which are the substrates of eicosanoids such as

prostaglandins. It has been reported that there is a relative

abundance of phospholipase protein in late pregnancy [19].

Of the 31 Blood Vessel Morphogenesis pathway genes that displayed

differental expression during gestation in this study, the expression

of Cd36, Mmp14, Angpt4, Rhob and Foxm1 was confirmed by qPCR

on same samples. In all cases, concordance between microarray

and qPCR data was confirmed. These five genes were chosen on

the basis of their function and the fold changes shown in Table 1.

CD36 is a, cell membrane scavenger receptor involved in

angiogenesis, inflammation and lipid metabolism [21]. In micro-

vascular endothelial cells it functions as a receptor for Thrombos-

pondin-1 (TSP-1) [22]. CD36 has been implicated in inflamma-

tory processes via the activation of phospholipases and the

formation of prostaglandins [23] and the cellular uptake of fatty

acids via the activation of peroxisome proliferator–activated

receptor c [24]. In this study, Cd36 expression increased by 2.8

Table 1. List of Angiogenic genes identified and pairwise comparison of gene expression between gestational age groups.

Gene Identifiers E14.25 vs E15.25 E15.25 vs E17.25 E17.25 vs E20 E14.25 vs E20

Gene name Entrez ID Fold change p value Fold change p value Fold change p value Fold change p value

Up- regulated
22 genes

Bmp4 25296 – ns – ns 3.8 *** 6.77 ***

Vegfa 83785 – ns ,2 * – ns 3.04 ***

Mmp14 81707 – ns ,2 *** – ns 3.44 ***

Acvrl1 25237 – ns 2.8 *** – ns 3.42 ***

Edn1 24323 – ns – ns ,2 *** 3.61 ***

IL18 29197 – ns – ns 6.4 *** 6.74 ***

Gpx1 24404 – ns – ns 3.7 *** 3.69 ***

Id1 25261 – ns – ns ,2 *** 4.27 ***

Cd36 29184 – ns 2.8 *** ,2 *** 4.87 ***

Hs6st1 316325 – ns – ns ,2 *** ,2 ***

Emcn 295490 – ns ,2 ** ,2 *** 2.94 ***

Rhob 64373 – ns – ns ,2 *** 2.31 ***

Prl7d1 84377 – ns – ns ,2 *** 9.29 ***

Angptl4 362850 – ns 3.1 *** 3.7 *** 6.93 ***

Sox18 311723 – ns ,2 ** – ns ,2 ***

Klf5 84410 – ns ,2 * ,2 ** ,2 ***

Pf4 360918 – ns – ns 3.0 *** 2.38 ***

Cav1 25404 – ns 6.7 *** ,2 *** 15.46 ***

Sgpl1 286896 – ns – ns ,2 *** 2.64 ***

Notch4 406162 – ns – ns ,2 *** ,2 ***

Tek 89804 – ns ,2 * 2.2 *** 4.72 ***

Tgm2 56083 – ns ,2 ** ,2 *** 2.34 ***

Down-regulated
9 genes

Itgb2 309684 – ns – ns .0.5 ** .0.5 ***

ItgaV 296456 – ns – ns .0.5 * 0.41 ***

Itga4 311144 – ns .0.5 * 0.4 *** ns ***

Foxm1 58921 – ns .0.5 ** 0.4 *** 0.20 ***

Anpep 81641 – ns – ns 0.2 *** 0.2 ***

Gbx2 114500 – ns – ns 0.2 *** 0.13 ***

Atg5 365601 – ns .0.5 ** – ns .0.5 ***

Cited2 114490 – ns – ns 0.5 *** 0.5 ***

Nos2 24599 – ns .0.5 * 0.2 *** 0.16 ***

E14.25 vs E15.25 - no significant differences in gene expression. E15.25 vs E17.25–15 of 31 genes were differentially expressed. E17.25 vs E20–26 of 31 genes were
differentially expressed. E14.25 vs E20 shows gene expression changes for each gene from E14.25 vs E20. Significance was ascribed where gene expression was changed
by ,2 (* = p,0.05, p,0.0005 = **; p,0.0001 = *** and ns = p.0.05). The order of the genes listed in the table corresponds to the Heat Map on Figure 2.
doi:10.1371/journal.pone.0083762.t001
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fold during E15.25 to E17.25 days of gestation and remains

significantly elevated till labour onset. Interestingly, increased

expression of Cd36 mRNA and protein is observed in cord blood

from late pregnancy compared with early pregnancy samples.

Figure 5. qPCR validation of 5 Angiogenic genes. For Mmp14, qPCR are microarray data are presented in panels A and B, respectively; for Rhob
in panels C and D; for CD36 in panels E and F; for Angpt4 in panels G and H; for Foxm1 in panels I and J. Statistical significance (p values) is presented
in panel K. Where p,0.05 = *; p,0.0005= **; p,0.0001= *** as assessed by one way ANOVA and post-hoc tests (Bonferroni test). The x-axes in all
graphs represent the 4 gestational age groups. Y-axes for qPCR graphs denote relative fold change normalised to b-actin. The y-axes for the
microarray bar charts denote microarray hybridisation signals.
doi:10.1371/journal.pone.0083762.g005

Angiogenic Gene Expression in the Rat Placenta
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Mmp14 encodes for MMP14 (EC 3.4.24.80, also known as

MT1-MMP) which is a key extracellular matrix-remodeling

enzyme that promotes collagen remodeling. MMP14 is a

dominant cell-surface protease required for endothelial cell tube

morphogenesis, invasion and for the creation of vascular guidance

tube [23]. However, there is only limited information about the

specific role of MMP14 role in placental angiogenesis. In mouse

placentae, MMP14 is strongly expressed in the labyrinth region

[25]. This region of the placenta is critical for the formation of

syncytiotrophoblast and the subsequent formation of fetal vessels.

In human placentae, immunoreactive MMP14 is expressed in

term and preterm syncytiotrophoblast cells, where it may

contribute to the cleavage and release of endoglin [26] and in

the endothelium of feto-placental vessels. Endoglin has been

suggested to be a major factor in the development of preeclampsia

[27]. Placental expression of MMP14 is greater in pregnancies

complicated by gestational diabetes mellitus [28] and, in vitro it is

induced by insulin and IGF-II in vitro [28] and HIF-1a [24]. In this

study, Mmp14 mRNA expression increased from E15.25 to

E17.25 (the peak of trophoblast invasion takes place at this stage)

[29]. Another gene that is involved in prostaglandin regulation is

Sgpl1 (SGPL1, EC 4.1.2.27) which catalizes the irreversible

degradation of the sphingosine-1-phosphate (S1P) [30]. S1P is a

bioactive lipid mediator that promotes cell proliferation, survival,

migration, adherence, inflammation and angiogenesis [31].

SGPL1, thus, regulates the available pool of S1P and inhibits its

signalling activities. SGPL1 may regulate S1P-induced Ptgs2

expression in the rat myometrium [32]. In this study, Sgpl1

expression increased 2.6 fold during gestation from E14.25 to E20.

Angiopoeitin like Protein 4 (EC 2.6.1.2) expression was low at

E14.25 and E15.25 and increases at E17.25 remaining constant till

E20. Over the gestational period assessed in this study, Angpt4 gene

expression increased,7-fold. Angpt4, like the other angiopoietins 1

and 2 has been reported to play a role in angiogenesis [33].

Yamakawa et al., reported that ANGPT4 increased endothelial

cell migration and tube formation in vitro and reduced vascular

leakage [34]. Angiogenic effects of ANGPT4 have also been

observed in glioblastoma [35]. To date little is known about the

biological functions of ANGPT4 in the placenta. However,

ANGPT1 has been shown to potentiate VEGF activity and work

together to increase the luminal diameter of blood vessels in sheep

placenta [36]. In this study, the receptor for ANGPT1, ANGPT2

[36] and ANGPT4, TEK (Tek) showed an increase in placental

expression during from E15.25 to E17.25 and further from E17.25

to E20 (fold change 2.2) of gestation. TEK has been implicated in

the regulation of angiogenesis and cell proliferation, migration and

survival [36]. Tek expression was significantly, positively correlated

(p,0.05) with Angpt4 expression during gestation, (upregulated

prior to labour) indicating the possibility that they are working

together to promote late gestational angiogenesis. TIE 1 is the

other receptor for ANGPT4 and in our Microarray study,

interestingly, Tie1 expression does not change from E14.25 right

up to E20 (Data not shown).

Ras homolog family member B, Rhob has not been extensively

studied in the placenta. The data obtained in this study (both

Figure 6. Principal Component Analysis (PCA). Principal components F1 vs. F2 for individual gestational age groups (n = 6, E14.25, E15.25,
E17.25 and E20) for all 31 angiogenic genes are plotted to identify variation in gene expression. Day E14.25 and E15.25 samples cluster together,
indicating a similar genes expression profile between these 2 groups. Samples within the E17.25 and E20 groups, however, display independent
clustering, indicative of significantly altered gene expression profiles. Biological replicates within each gestational age group are tightly clustered.
doi:10.1371/journal.pone.0083762.g006
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microarray and qPCR) establish that Rhob expression gradually

increases during gestation (from E14.25 to E20), by a fold change

of 2.3. Recently, RHOB (EC 3.6.1.47) was shown to regulate

endothelial cell migration, sprouting, and capillary morphogenesis

[37], although the mechanism by which RHOB regulates

angiogenesis is not well understood. Howe and Addison (2012)

concluded that RHOB plays a significant role in VEGF-induced

endothelial cell morphogenesis, in part, by negatively modulating

the activity of RHOA, [37]. Both RHOA (Ras homolog family

member A) and RHOB are essential downstream effectors of

VEGF signalling in the angiogenic process. siRNA-inhibition of

RhoB results in increased RHOA activation in response to VEGF

(vascular edothelial growth factor) stimulation [37]. Vegf was also

seen to upregulate the expression of RhoB [26]. In our study, we

see that both RhoB and Vegf are up regulated towards late gestation,

first Vegf expression increases at E15.25 and then Rhob expression

increases downstream at E17.25, indicating a positive correlation.

Placental expression of Vegfa was increased 3-fold between E14.25

and E20 in the present study. VEGF is known to be an important

regulator of angiogenesis in placenta [38], [39] and its increased

expression during late gestation has been previously reported [5],

while its receptor Flk (i.e VegfR2) is downregulated from E14.25 vs

E20, prior to labour (Microarray data not shown).NOTCH-4 is a

modulator of angiogenesis in human placenta and regulates

placental cell fate [40–42]. Similar to RHOB expression, Notch

signalling acts downstream of VEGF. Notch signalling helps to

regulate endothelial cell morphogenesis via activation of MMPs

[43]. In this study, Notch-4 expression doubled between E15.25

and E20, where its expression is elevated prior to term/labour.

The transcriptional regulator Foxheadbox M1 (Foxm1) was

expressed during late midgestation (E14.25–E15.25, as assessed by

both microarray and qPCR) but decreased 5-fold by E20. Little,

however, is known about FOXM1 function in angiogenesis in the

placenta. Interestingly, the onset of labour in humans is associated

with decreased placental expression of Foxheadbox O4, (both

FoxO4 mRNA and protein) where it may function as a negative

regulator of Ptgs2 expression and prostaglandin biosynthesis [44].

In cancer development and progression, FOXM1 has been

implicated in regulating the expression of the human endothelial

cell caveolae-marker CAV-1 and Foxm1 expression has also been

linked to growth of glioma cells in tumour angiogenesis [45,46].

Placental Cav-1 mRNA expression increased during gestation in

this study. Caveolin has been reported to facilitate VEGF/NO-

mediated angiogenesis [47]. Our data show, Cav-1 expression

increased 6.7 fold between E15.25 and E17.25 and further

increased till E20. CAV-1 is known to interact with FGFR1which

modulates FGF2 related placental angiogenesis [48]. Unlike in

cancer progression we show that an increase in Cav-1 and Vegf

expression is negatively correlated with Foxm1 expression. An

increase in FOXM1 could have a negative effect on CAV-1

expression or its expression is perhaps acutely switched off prior to

labour onset. Figure S5 shows CAV-1 protein localised intensively

around placental blood vessels indicating its important role in

Angiogenesis.

Angiogenic genes of significance that were upregulated (based

on microarray data alone) during gestation included: bone

morphogenetic protein 4 (Bmp4); transglutaminase (Tgm EC

2.3.2.13); sphingosine-1 phosphate lyase (Sgpl1, EC 4.1.2.27);

endomucin (Emcn); Interleukin-18 (IL-18) and glutathione perox-

idase 1 (Gpx1, EC 1.11.1.9).

Microarray analysis also identifed a suite of Blood Vessel

Morphogenesis pathway genes that were downregulated during late

gestation, prior to labor onset. These included, Itga4, Itgb2, Anpep

and Cited2. The integrin subunits alpha 4 (Itga4) and beta 2 (Itgb2)

have been previously identified in placentae [26,28] [49]. ITGA4

forms a heterodimer with integrin beta 1 to function as a receptor

for collagen. Increased expression of ITGA4 has been implicated

in inhibition of endothelial cell migation during angiogeneis [49].

In this study, Itga4 gene expression decreases during gestation

(from E15.25 right up to E20) and Itgb2 expression decreases

acutely prior to labour onset. Cited2 gene expression also decreases

during late gestation from E17.25 to E20 by two fold. In the mouse

placenta, lack of CITED2 is characterized by disorganization of

the placental fetal vasculature and a fewer trophoblast giant cells,

spongiotrophoblasts and glycogen cells [50]. Hence Cited2 is

important for normal placental vascularisation.

Additionaly, during late gestation in rat, glucose transporter

genes Slc2A3 and Slc2A1 are upregulated and downregulated

respectively, in placenta [6]. This is consistent with our microarray

data where Slc2A3 expression increases from E15.25 to E17.25

and further increases at E20 and Slc2A1 is increased from E15.25

to E17.25 and then gets downregulated at E20 (data not shown).

Amino acid transport genes such as Slc38A1, Slc38A2 and Slc38A4

have been shown to increase with gestation, coinciding with

increased fetal nutrient demands [7], which is also consistent with

our microarray data. We can relate the Angiogenic expression

changes in this study to the expression of several transporter genes.

In conclusion, the data obtained in this study extends our

understanding of placental genes that may contribute to placental

vascular accommodation during mid-late gestation and late-

gestation, in particular, those involved in regulating placental

angiogenesis. Several of these gene products work together either

directly or indirectly. However, we are not able to ascertain that

the pre labour associated changes seen in these 32 angiogenic

genes, has any link with the actual labour process, even though

some of the changes are acute. Further studies need to be carried

out to prove a link between some or all of these genes with the

onset or trigger of labour. The study identified gestational age-

dependent changes in placental gene expression within the Blood

Vessel Morphogenesis pathways that have not previously been

characterized in rat placenta. Furthermore, it confirms and

extends data for genes previously reported to display gestational

and potential labor-associated changes. We also observed that,

most expression changes for these genes, occurred between E17.25

and E20, prior to labour onset. One caveat that must be

considered in interpreting the results obtained in this study is that

mRNA was extracted from whole placental tissue. Therefore, it is

not possible to attribute observed changes in gene expression to

specific cell types that comprise the rat placenta. Nevertheless, the

data obtained identify lead candidate genes for subsequent cell

specific analyses (e.g. based cell selection using laser capture

microscopy) and provide opportunity to further elucidate func-

tional pathways that may be of significance in mid-late placental

function in both normal and pathological pregnancies.

Supporting Information

Figure S1 Gestational Variation in Angiogenic gene
expression of 22 genes that display a late gestational
increase. The x-axis indicates the gestational ages whereas the y-
axis indicates the signal obtained from the microarray hybridisa-

tion using the Illumina Bead reader. These 22 genes had SAM p

values ,0.0001.

(TIF)

Figure S2 Gestational Variation in Angiogenic gene
expression of 9 genes that display a late gestational
decrease. The x-axis indicates the gestational ages in days

whereas the y-axis indicates the signal obtained from the
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microarray hybridisation using the Illumina Bead reader. SAM p

values were ,0.0001.

(TIF)

Figure S3 Two Dimensional PCA Observational plots
for Gestational Age Comparison Groups: A) E14.25 vs.

E15.25. PCA plot F1 vs. F2. B) E15.25 vs. E17.25. PCA plot F1 vs.

F2. C) E17.25 vs E20. PCA plot F1 vs. F2. Data were analyzed

using Pearson Correlation Matrix (XLSTAT, p,0.05).

(TIF)

Figure S4 Mean Centroid of Angiogenesis. A) for upregu-
lated genes B) for down regulated genes using Kruskal-Wallist test

of Mean Centroid. A)E20 vs E14.25= ***, E20 vs E15.25= ***

and E20 vs E17.25= ns and B)E20 vs E14.25= *, E20 vs

E15.25= *** and E20 vs E17.25= ns. (* = p,0.05,

p,0.0005= **; p,0.0001= *** and ns = p.0.05).

(TIF)

Figure S5 Immunohistochemical Localization of CAV-1
and BMP4. Intense staining for CAV-1 around placental blood

vessels (A and B), BMP4 (C and D) in endothelial cells lining blood

vessels and Rabbit IgG Isotype Negative Control (E). Haemotox-

ylin staining of nuclei shown in blue.

(TIF)

Table S1 List of Primer oligonucleotide sequences used
for qPCR experiments.

(TIF)
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