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Abstract

Background: To invade target cells, Trypanosoma cruzi metacyclic forms engage distinct sets of surface and secreted
molecules that interact with host components. Serine-, alanine-, and proline-rich proteins (SAP) comprise a multigene family
constituted of molecules with a high serine, alanine and proline residue content. SAP proteins have a central domain (SAP-
CD) responsible for interaction with and invasion of mammalian cells by metacyclic forms.

Methods and Findings: Using a 513 bp sequence from SAP-CD in blastn analysis, we identified 39 full-length SAP genes in
the genome of T. cruzi. Although most of these genes were mapped in the T. cruzi in silico chromosome TcChr41, several
SAP sequences were spread out across the genome. The level of SAP transcripts was twice as high in metacyclic forms as in
epimastigotes. Monoclonal (MAb-SAP) and polyclonal (anti-SAP) antibodies produced against the recombinant protein SAP-
CD were used to investigate the expression and localization of SAP proteins. MAb-SAP reacted with a 55 kDa SAP protein
released by epimastigotes and metacyclic forms and with distinct sets of SAP variants expressed in amastigotes and tissue
culture-derived trypomastigotes (TCTs). Anti-SAP antibodies reacted with components located in the anterior region of
epimastigotes and between the nucleus and the kinetoplast in metacyclic trypomastigotes. In contrast, anti-SAP recognized
surface components of amastigotes and TCTs, suggesting that SAP proteins are directed to different cellular compartments.
Ten SAP peptides were identified by mass spectrometry in vesicle and soluble-protein fractions obtained from parasite
conditioned medium. Using overlapping sequences from SAP-CD, we identified a 54-aa peptide (SAP-CE) that was able to
induce host-cell lysosome exocytosis and inhibit parasite internalization by 52%.

Conclusions: This study provides novel information about the genomic organization, expression and cellular localization of
SAP proteins and proposes a triggering role for extracellular SAP proteins in host-cell lysosome exocytosis during metacyclic
internalization.
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Introduction

Trypanosoma cruzi is the etiological agent of Chagas disease (also

known as American trypanosomiasis), a potentially life-threatening

illness that affects approximately 10 million people in the world

and accounted for 10,000 deaths in 2008 [1]. The vast majority of

T. cruzi-infected individuals live in Latin America, but the disease

has also spread to non-endemic regions in the United States,

Europe, Australia, Canada and Japan because of population

migration and may pose a new worldwide health problem [2]. T.

cruzi has a complex life cycle involving vertebrate and invertebrate

hosts. Epimastigote forms replicate in the triatomine insect vectors.

On reaching the final portion of the triatomine digestive tract, they

transform into metacyclic trypomastigotes, which are released in

the feces during bloodmeals and can be transmitted through the

bite wound or ocular mucosa. Infection by metacyclic forms,

which can also occur through the oral route, starts when the

parasite adheres to and invades host cells. Metacyclic forms

differentiate into amastigotes, which transform into trypomasti-

gotes upon intracellular replication. These parasite forms, which

are released into the circulation when the host cell ruptures and

disseminate to diverse organs and tissues, can be transmitted by

blood transfusion.
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Most nucleated mammalian cells are susceptible to T. cruzi

invasion, a process that is distinct from classical phagocytosis and

involves Ca+2-dependent F-actin disruption and lysosome exocy-

tosis, both of which contribute to the formation of parasitophorous

vacuoles [3,4]. The metacyclic stage-specific surface glycoprotein

GP82, which is implicated in host-cell invasion of highly infective

T. cruzi strains, is a cell adhesion molecule that binds to host cells

[5,6] and induces Ca+2 mobilization and lysosome exocytosis

[7,8]. Molecules secreted by T. cruzi into the extracellular medium

may also participate in the process of parasite internalization.

Cruzipain, a cysteine protease expressed in all parasite develop-

mental forms [9,10], is constitutively secreted by trypomastigotes.

According to Scharfstein et al. [11], cruzipain cleaves the cell-

bound kininogen, generating bradykinin, which binds to the

bradykinin receptor (B2R) and triggers IP3-mediated Ca+2 influx.

Vesicles released by T. cruzi, either as exosomes or plasma

membrane-derived vesicles that can contain lipids, proteins and

nucleic acids [12,13], have been implicated in infection by this

parasite. Virulence factors, such as GP82 and cruzipain, were

detected in T. cruzi vesicles [14], and inoculation of trypomastigote

membrane vesicles into mice was found to stimulate the

production of cytokines such as IL-4 and IL-10 that modulate

infection [15].

SAP (serine-, alanine- and proline-rich) proteins, which are

released by T. cruzi metacyclic forms into the extracellular

medium, have been implicated in mammalian cell invasion [16].

Members of the SAP multigene family are characterized by a high

serine (7.2 to 11.7%), alanine (12.2 to 17.3%) and proline (7.06 to

13.5%) residue content [17]. SAP genes have been classified into

four groups (SAP1 to SAP4) according to the presence of an

endoplasmic reticulum (ER) and/or glycosylphosphatidylinositol

(GPI) anchor-addition signal peptide(s). Most of the SAP genes

encode both an N-terminal signal peptide and a C-terminal GPI

anchor addition site (SAP1 group). SAP binds to the host cell

through its central domain (SAP-CD) and triggers intracellular

Ca+2 mobilization [16]. In the present study we present further

characterization of SAP proteins, including their genomic

distribution, expression and cellular localization. We also shed

light on the mechanism of action of SAP in host-cell invasion by

metacyclic trypomastigotes.

Materials and Methods

Ethics Statement
All experiments involving animal work were conducted under

Brazilian National Committee on Ethics Research (CONEP) ethic

guidelines, which are in accordance with international standards

(CIOMS/OMS, 1985). The protocol was approved by the

Committee on Ethics of Animal Experiments of Universidade

Federal de São Paulo (Permit Number: CEP 0913/10). During the

experimental procedures, all efforts were made to minimize animal

suffering.

Parasites and mammalian cell culture
T. cruzi epimastigotes (clones CL Brener, Dm28c and the CL

strain) were maintained cyclically in mice and in liver infusion

tryptose (LIT) medium containing 10% fetal bovine serum (FBS).

To obtain metacyclic forms, epimastigotes were grown for one

passage in Grace’s medium (Gibco). Metacyclic trypomastigotes

were obtained from cultures in the stationary growth phase and

were purified by passage through DEAE-cellulose column, as

described previously [18]. HeLa and Vero cells were grown at

37uC in Dulbecco’s modified Eagle medium (DMEM, Gibco)

supplemented with 10% FBS in humidified 5% CO2 atmosphere.

Vero cells infected with metacyclic trypomastigotes (CL strain)

were maintained in DMEM supplemented with 2.5% FBS until

release of tissue culture-derived trypomastigotes (TCTs). To obtain

extracellular amastigotes, TCTs isolated from the supernatant of

infected Vero cell cultures were incubated in LIT medium pH 5.8

for 24 h at 37uC.

Sequence similarity search
A 513 bp sequence from the central domain of SAP (SAP-CD,

accession number AF199419) was used to identify SAP genes in

the genome of T. cruzi clone CL Brener (available in TriTrypDB

database, http://tritrypdb.org/tritrypdb) by the blastn algorithm

[19]. Sequences with alignment .250 bp and similarity .65%

were included in the analysis.

Separation of T. cruzi chromosomal DNA by pulsed-field
gel electrophoresis (PFGE) and chromoblot hybridization

Chromosomal DNA from clone CL Brener and CL strain were

isolated as described [20] and separated by PFGE in 1.2% agarose

gels diluted in 0.56TBE (45 mM Tris/45 mM boric acid/1 mM

EDTA pH 8.3) using Gene Navigator System (Amersham

Pharmacia Biotech, USA) and following the conditions described

by Cano et al. [21]. Gels were stained with ethidium bromide

(0.5 mg/mL) and transferred to nylon filters using Vacuum Gene

XL System (Pharmacia). Nylon membranes were pre-hybridized

at 42uC for 1 h (50% formamide/56 SSC/56 Denhart’s

solution/0.1 mg/mL salmon sperm DNA) and hybridized over-

night at 42uC with the 32P-labeled SAP-CD fragment. Following

hybridization, membranes were washed twice (30 min each wash

at 42uC) in 26 SSC containing 0.1% SDS and 0.1% sodium

pyrophosphate and then underwent one additional wash (30 min

at 56uC) in 0.16 SSC containing 0.1% SDS and 0.1% sodium

pyrophosphate. Membranes were then exposed to X-ray films.

Cloning of SAP genes by reverse transcriptase PCR
Total RNA from epimastigotes (5.06107 cells), metacyclic

trypomastigotes (1.06108 cells) and extracellular amastigotes

(5.06107 cells) derived from the CL strain was extracted using

TRIzolH, and first-strand cDNA was synthesized using Thermo-

ScriptTM RT-PCR System according to the manufacturer’s

instructions (Invitrogen). Before cDNA synthesis, total RNA was

treated with DNaseI (Invitrogen). The efficiency of the DNAseI

treatment method to remove genomic DNA from RNA samples

was assessed by conventional PCR using specific primers that

amplified the tubulin gene. No amplification was detected in the

RNA samples after treatment with DNAseI, indicating the absence

of DNA contaminants. Transcription of SAP genes was analyzed

by RT-PCR using epimastigote, metacyclic trypomastigote or

amastigote cDNA as a template and 59-GCTCCCCTTT-

CCTCTGCG-39 and 59-TCAGCCCAGTGTCCCGTA-39 prim-

ers to amplify a conserved 135 bp fragment shared by all

full-length copies of SAP genes. Alternatively, 59-ATGCGCCGT-

GTGTTTTGTGTC-39 and 59-TCAGCCCAGTGTCCCGTA-

39 primers were used to amplify the entire open reading frames of

SAP genes. Amplified PCR products were cloned into pGEMH-T

easy vector (Promega) and the nucleotide sequences of cDNA

recombinant clones were determined using the dideoxynucleotide

chain termination method with BigDye Terminator cycle

sequencing chemistry in an ABI PRISM 3100 sequencer (Applied

Biosystems).

SAP Proteins and Host-Cell Lysosome Exocytosis
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Real Time PCR (qRT-PCR)
The same primers used to amplify a conserved 135 bp fragment

shared by all SAP genes were used in qRT-PCR. Primers that

amplify the GAPDH constitutive gene (59- TGGAGCTGCGG-

TTGTCATT-39 and 59-AGCGCGCGTCTAAGACTTACA-39)

were used as an endogenous control. Reactions were performed in

triplicate with 500 nM forward and reverse SAP primers or

200 nM forward and reverse GAPDH primers, SYBR Green

Master Mix (Applied Biosystems) and epimastigote or metacyclic

trypomastigote cDNA synthesized as described above. Reactions

were carried out in an ABI PRISM 7000 (Applied Biosystems)

thermocycler following standard cycling conditions. The data were

analyzed by the -2DDCT method after normalization with GAPDH

using 7000 SDS software (Applied Biosystems).

Construction of the plasmid pTREX/SAP_GFP and
parasite transfection

To construct the plasmid pTREX/SAP_GFP, the entire open

reading frame of a SAP gene (accession number

Tc00.1047053507163.30) was cloned in frame with the green

fluorescent protein (GFP) in the pTREX vector [22]. Two PCR

amplifications were carried out in parallel using primers that

contained artificial restriction enzyme sites (represented in bold)

(SAP: 59-GAATTCATGATGCGCCGTGTGTTTTGTGTCG-

TGTTGGC-39 and 59-CGGCCGCTCAGCCCAGTGTCTCG-

TACGCAAGGACAGCCAGAACAAGCAGCA-39; GFP: 59-
GCATGCTGGTGAGCAAGGGCGAG-39 and 59-GCATGC-

CGTACAGCTCGTCCATGCCGAG-39). As a template, we

used genomic DNA of clone CL Brener or pTREX/GFP vector

[22]. Initially, the PCR products were individually cloned into

pGEMH-T easy vector (Promega). The plasmid pGEM-T easy/

GFP was digested with Sph1, and the GFP_Sph1 fragment was

cloned into the plasmid pGEM-T easy/SAP previously digested

with the same enzyme. The plasmid pGEM-T easy/SAP_GFP

was then digested with EcoRI and NotI, and the SAP_GFP

fragment was cloned into the pTREX vector previously digested

with the same enzymes. Epimastigotes from the CL strain

(1.06108) were washed in electroporation buffer (NaCl

137 mM/HEPES 21 mM/Na2HPO4 5.5 mM/KCl 5 mM/glu-

cose 0.77 mM pH 7.0) by centrifugation at 6 000 g for 5 min and

resuspended in 360 mL of electroporation buffer and 40 mL of the

plasmid pTREX/SAP_GFP or the control pTREX/GFP

(100 mg). Transfection was performed using two pulses of 450 V

and 500 mF in a Gene Pulser Xcell Total System (Bio-Rad). After

electroporation, cells were recovered in 5 mL LIT supplemented

with 20% FBS at 28uC. For selection of the transfected parasites,

500 mg/mL of G418 (Sigma) was added 48 h after transfection.

Immunofluorescence microscopy of parasites
Epimastigotes, metacyclic trypomastigotes, extracellular amas-

tigotes and tissue culture-derived trypomastigotes (CL strain) were

washed in PBS, fixed for 30 min in 4% paraformaldehyde diluted

in PBS and air dried on glass slides. Slides were then washed once

in PBS, permeabilized with PBS containing 1% saponin for

30 min, blocked for 1 h in PBS containing 10% BSA and

incubated with anti-SAP antibodies (diluted 1:50 in PBS) and with

Alexa Fluor 488-conjugated anti-rabbit IgG (diluted 1:200)

containing 10 mg/mL DAPI (49,69-1-diamino-2-phenylindole di-

hydrochloride). For colocalization assays, live epimastigotes were

incubated for 30 min in a buffer containing 116 mM NaCl,

5.4 mM KCl, 0.8 mM MgSO4, 50 mM HEPES (pH 7.4) and

5 mg of concanavalin_A-TRITC/mL at room temperature, as

previously described by Cuevas et al. [23]. Cells were then fixed

and processed as described above. Alternatively, extracellular

amastigotes were incubated with MAb-2C2 (diluted 1:100 in PBS)

for 1 h, following 1-h incubation with Alexa Fluor-568-conjugated

anti-mouse IgG (diluted 1:200). Slides were observed under a

fluorescence microscope (Olympus BX51) and images were

acquired with an Olympus DP71 CCD camera using Image Pro

Plus 6.2 software (Media Cybernetic). Epimastigotes and extra-

cellular amastigotes transfected with the plasmid pTREX/

SAP_GFP or the control pTREX/GFP were labeled with an

anti-GFP monoclonal antibody (Sigma, diluted 1:100) following

the same protocol described above.

Preparation of parasite conditioned medium (CM)
Metacyclic trypomastigotes (CL strain) were incubated in PBS

(1.06108 cells/mL) for 16 h at 28uC. Parasites were centrifuged at

3 000 g for 10 min and parasite-free supernatants were filtered

with 0.22-mm syringe filter (Millipore). Vesicle and soluble-protein

fractions were obtained from epimastigotes and metacyclic

trypomastigotes (Dm28c) conditioned medium as previously

described [14]. Briefly, epimastigotes were harvested from

exponentially growing cultures, washed in DMEM without FBS

and incubated in the same medium at a concentration of 1.06108

cells/mL for 6 h at 28uC. Metacyclic trypomastigote forms were

incubated in TAU3AAG medium at a concentration of 1.06108

cells/mL for 6 h at 28uC. Parasite viability was assessed by

propidium iodide incorporation and more than 98% of cells were

viable at the end of the incubation period. Following 6-h

incubation, parasites were removed by centrifugation at 3 000 g

for 10 min at 4uC. The cell-free supernatant was filtered in 0.45-

mm syringe filter (Millipore), transferred to 13.2-mL polyallomer

tube, and centrifuged at 100 000 g for 2 h at 4uC to obtain the first

pellet, enriched in plasma membrane-derived vesicles (V2). The

resulting supernatant was transferred to another polyallomer tube

and then centrifuged at 100 000 g for 16 h at 4uC, to obtain the

second pellet, enriched in exosomes (V16) and soluble proteins in

the vesicle-free supernatant (VF).

Mass spectrometry analysis
Raw data derived from Bayer-Santos et al. [14] was obtained

from proteomecommons.org and analyzed as previously described

[14] with minor modifications. Briefly, all spectra obtained were

searched using Sequest (version v.27; Thermo Fisher Scientific)

and X! Tandem (version 2007.01.01.2; http://www.thegpm.org/

tandem/) algorithms against sequences from Trypanosoma spp.,

BSA, human keratin and porcine trypsin (downloaded from

GenBank on October 10, 2011). Parameters for the database

search were as follows: trypsin cleavage at both termini and two

missed cleavages allowed; 1 Da for peptide mass tolerance; 1 Da

for fragment mass tolerance; and cysteine carbamidomethylation

and methionine oxidation as fixed and variable modifications,

respectively. The Scaffold platform (version 3.4.3; Proteome

Software, Portland, OR) was used to validate peptide and protein

identifications. As Bayer-Santos et al. [14] only validated proteins

identified by two distinct peptides, we searched for SAP proteins

among those data identified by only one peptide. All SAP spectra

found were manually validated and accepted only if the protein

identification probability was greater than 90% for peptides and

90% for proteins; Xcorr (CrossCorr/avg [AutoCorr offset = 275

to 75])$1.5, 2.0 and 2.5, for singly, doubly and triply charged

peptides, respectively; and DCn (Xcorr1 – Xcorr2/Xcorr1)$0.1.

SAP Proteins and Host-Cell Lysosome Exocytosis
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SDS-PAGE and western blot assays
Protein extracts from epimastigotes (3.06107 cells), metacyclic

trypomastigotes (1.06108 cells), extracellular amastigotes (3.06107

cells) and tissue culture-derived trypomastigotes (1.06108 cells)

derived from CL strain and parasite conditioned medium

prepared as described above were separated by SDS-PAGE in a

12% polyacrylamide gel and transferred to nitrocellulose mem-

branes. Western blot assays were carried out with MAb-SAP

diluted 1:100 in PBS containing 5% fat-free milk (PBS/milk 5%)

and anti-mouse IgG peroxidase conjugate (Invitrogen) diluted

1:5000 in PBS/milk 5%. The reaction was revealed by chemilu-

minescence using the ECL Western blot detection reagents and

Hyperfilm MP (GE Healthcare). Alternatively, protein extracts

from epimastigotes transfected with the plasmid pTREX/

SAP_GFP or the control pTREX/GFP were reacted with anti-

GFP monoclonal antibody (Sigma, diluted 1:500) or MAb-SAP

(diluted 1:100) following the same protocol described above.

Expression and purification of central domain SAP-CD
recombinant proteins

The constructs SAP-NT, SAP-CE and SAP-CT, which contain

the amino-terminal, central and carboxy-terminal regions of the

SAP central domain (SAP-CD) in frame with glutathione S-

transferase (GST), were generated by PCR using primers that

contained artificial restriction enzyme sites (represented in bold)

(SAP-NT: 59-CCGGAATTCATCATGATTTGCGACATG-39

and 59-CCGGAATTCATCAACAGAGTTAGCACC-39; SAP-

CE: 59-CCGGAATTCATCATGAAACTCCGGAA-39 and 59-

CCGGAATTCATCAACAGAGTTAGCACC-39; SAP-CT: 59-

CCGGAATTCATCATGAAACTCCGGAA-39 and 59-CCG-

GAATTCATCTAGAGATTCGGATGC-39). As a template, we

used the plasmid pGEX1lT/SAP-CD. The amplified PCR

products were cloned into pGEX1lT/EcoRI vector (GE Health-

care).

The plasmid constructions were transformed into DH5-a
bacterial cells, which were grown in LB (Luria Bertani) medium

for 16 h at 37uC. Expression of recombinant proteins was induced

with 1 mM isopropyl-b-D-thiogalactopyranoside for 4 h at 37uC,

followed by centrifugation at 12 000 g for 10 min at 4uC. After

resuspension in PBS with a protease inhibitors cocktail (Santa

Cruz), the pellet was sonicated and centrifuged at 12 000 g for

15 min at 4uC and the resultant supernatant was passed through

prepacked Glutathione Sepharose 4B columns (GE Healthcare).

To check that the desired protein had been obtained, the purified

samples were analyzed by SDS-PAGE stained with Coomassie

blue. Purified proteins were quantified by reaction with Coomassie

Plus Assay Reagent in 96-well plates and reading at 620 nm. The

purified recombinant proteins SAP-NT, SAP-CE and SAP-CT

were tested in western blot assays using MAb-SAP (diluted 1:100)

and anti-mouse IgG peroxidase conjugate (diluted 1:5000).

Host-cell invasion assay
Cell invasion assays were carried out as previously described

[24]. HeLa cells (1.56105) cultured for 16 h at 37uC in 24-well

plates containing 13-mm diameter round glass coverslips were

incubated with or without the purified recombinant protein SAP-

CE (40 mg/mL) or GST (40 mg/mL) for 30 min before addition of

metacyclic forms (3.06106). After incubation for 1 h, the duplicate

coverslips were washed in PBS, fixed in Bouin solution, stained

with Giemsa and sequentially dehydrated in acetone, a graded

series of acetone:xylol (9:1, 7:3, 3:7) and xylol. The number of

intracellular parasites was counted in 500 cells.

Exocytosis assay
Exocytosis assays were performed as previously described [7].

Semi-confluent HeLa cells grown in 24-well plates in DMEM

without phenol red were incubated for 1 h with or without the

purified recombinant protein SAP-CE (20 mg/mL). After super-

natants were collected, cells were lysed in DMEM containing 1%

NP-40, and 30 mL of 1 M sodium acetate pH 4.0 was added to

lower the pH. Following centrifugation at 13 000 g for 5 min,

supernatants were collected and 20-mL aliquots were diluted in

60 mL citrate buffer and 160 mL of 100 mM 4-nitrophenyl N-

acetyl-b-D-glucosaminide (Sigma). After incubation for 1 h at

37uC, reaction was stopped by adding 720 mL of 200 mM sodium

borate pH 9.8 and absorbance was measured at 405 nm in a

Labsystems Multiskan MS plate reader. Exocytosis was expressed

as a percentage of total b-hexosaminidase activity (supernatant +
cell extract).

Immunofluorescence microscopy for visualization of
lysosomes

HeLa cells were incubated for 1 h with or without 20 mg/mL of

the purified recombinant protein SAP-CE or GST. After fixation

for 30 min with 4% paraformaldehyde diluted in PBS, cells were

incubated with 50 mM NH4Cl in PBS for 30 min, washed three

times in PBS and incubated for 1 h at room temperature with

mouse anti-human Lamp-2 antibody (H4B4 monoclonal antibody)

diluted 1:4 in PGN (0.15% gelatin in PBS containing 0.1% sodium

azide) and 1% saponin. Following three washes in PBS, cells were

incubated for 1 h in PGN with Alexa Fluor 488-conjugated anti-

mouse IgG (Invitrogen) diluted 1:250, 100 ng/mL phalloidin-

TRITC and 10 mg/mL DAPI. Coverslips were mounted on glass

slides and examined under a fluorescence microscope (Olympus

BX51). Images were acquired with an Olympus DP71 CCD

camera using Image Pro Plus 6.2 software (Media Cybernetic).

Statistics
GraphPad InStats program was used to determine significance

by Student’s t-test.

Results and Discussion

SAP genes are widespread in T. cruzi genome
Recently, contigs generated in the sequencing of the T. cruzi

(clone CL Brener) genome were assembled into 41 chromosome-

sized scaffolds (TcChr) by Weatherly et al. [25] (available in the

TriTrypDB database). In a previous work, Baida et al. [16] had

identified 39 full-length copies of SAP genes in the genome of

clone CL Brener. Here, we decided to revisit these data and

allocate SAP sequences in the 41 TcChr. To this end, we used a

513 bp sequence from the central domain of SAP genes (SAP-CD)

as a query in blastn analysis against T. cruzi TriTrypDB database.

Confirming previous results [16], of 51 SAP sequences identified

39 corresponded to full-length copies of SAP genes and 12 to

truncated sequences. The size of full-length SAP genes varied from

813 to 1740 bp (Table S1). Approximately 50% of the SAP

sequences (26/51) were allocated in TcChr41 (22 full-length genes

and 4 truncated sequences), and 14 SAP sequences (12 full-length

copies and 2 truncated sequences) were distributed in chromo-

somes TcChr18, 38, 40, 20 and 16 (Table S2). The remaining 11

SAP sequences (5 full-length genes and 6 truncated sequences)

were found in non-allocated contigs. In summary, our results

showed that SAP genes were distributed among at least six

different T. cruzi TcChr.

We hybridized chromosomal DNA bands of clone CL Brener

and CL strain with the 513 bp SAP-CD fragment, the same

SAP Proteins and Host-Cell Lysosome Exocytosis
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sequence used as a query to search for SAP genes in the

TriTrypDB database. The probe hybridized with twelve chromo-

somal bands (XX, XIX, XVIII, XVII, XVI, XV, XIII, IX, VIII,

VII, V and III) in both isolates (Figure 1), confirming that SAP

genes are spread out across the genome. Our chromoblot results

are in agreement with Souza et al. [20], who mapped TcChr38

and TcChr40/TcChr16 in the clone CL Brener chromosomal

bands XIX and XVI, respectively. Additionally, we found that

TcChr41 maps in the clone CL Brener chromosomal band XVIII,

which exhibited an intense hybridization signal in chromoblot

analysis (Figure 1) and contains almost 50% of the SAP genes

identified in the T. cruzi genome (Table S2). As expected, the

number of chromosomal bands identified by chromoblot analysis

was much higher than the number of TcChr containing SAP

genes, since a considerable number of SAP sequences were

distributed in non-allocated contigs. It is worth mentioning that

the number of SAP sequences in T. cruzi genome may be even

larger than that obtained by bioinformatics analysis, since the

alignment of all the contigs derived from genome sequencing of

clone CL Brener [26] is only partially complete and is represented

by redundant sequences, underestimating the real number of

genes and pseudogenes.

All the genes present in 100 kb genomic regions (TriTrypDB

database) containing each of the 39 full-length SAP genes were

annotated. Confirming previous studies by Baida et al. [16], who

mapped the genes present in 10 kb genomic regions (GeneDB

database), the analyzed genomic regions were found to be rich in

multigene families that encode surface antigens such as mucin-

associated proteins (MASP), mucins, trans-sialidases (TS) and

surface proteases GP63 (Table S3), a feature characteristic of the

T. cruzi genome. These multigene families, together with repetitive

sequences (micro- and minisatellites, retrotransposons and sub-

telomeric repeats), correspond to 50% of the genome of clone CL

Brener [26]. SAP genes constitute a moderately repeated (30–50

copies) multigene family that can be compared with the

glycosyltransferases, RNA helicase (eIF-4a), protein kinases

(NEK group) and MASP-related protein families [26].

SAP genes are differentially expressed in the
developmental forms of T. cruzi

The expression of SAP genes during T. cruzi life cycle was

investigated by performing RT-PCR with primers that amplified a

conserved 135 bp fragment shared by the 39 full-length SAP

genes. Amplification of the 135 bp fragment was detected in

epimastigotes, metacyclic trypomastigotes and extracellular amas-

tigotes (data not shown), indicating that at least one SAP gene is

transcribed in all developmental forms. To further investigate the

repertoire of SAP transcripts, we designed primers that amplified

the entire open reading frame including the sequences encoding

the N-terminal signal peptide and those encoding the C-terminal

GPI anchor addition site in SAP genes. The full-length transcripts

were cloned and sequenced. Eight, six and five different SAP

transcripts were isolated from epimastigotes, metacyclic trypomas-

tigotes and extracellular amastigotes, respectively, which four of

them were shared by the three developmental forms analyzed

(Table 1).

As previous data suggested that SAP proteins play a role in

mammalian cell adhesion and invasion by metacyclic trypomas-

tigotes [16], the profile of SAP transcripts in these parasite forms

was further analyzed and compared with that of noninvasive

epimastigotes by real-time PCR. The level of SAP transcripts in

metacyclic forms was about twice as high as that in epimastigotes

used as reference (SAP/GAPDH ratio = 1) (Figure 2A), support-

ing the idea that the expression levels of genes related to events

such as host-cell adhesion/invasion are higher in infective forms.

Expression of SAP proteins was analyzed by western blot using the

anti-SAP monoclonal antibody (MAb-SAP) produced in mouse

against the purified recombinant protein SAP-CD. In accordance

with quantitative real-time PCR results, SAP expression was

higher in metacyclic trypomastigotes when compared with

epimastigotes (Figure 2B).

To analyze the size of the SAP variants expressed in each

developmental stage we performed a qualitative western blot in

which different amount of cells were used in order to obtain a

detectable signal. In epimastigotes and metacyclic trypomastigotes,

a major 55 kDa protein was detected (Figure 2C). In contrast, in

extracellular amastigotes and tissue culture-derived trypomasti-

gotes (TCTs), MAb-SAP reacted with a major 65 kDa SAP

protein and with other bands of weaker intensity ranging from 40

to 60 kDa (Figure 2C). These results suggest that the expression of

different SAP variants or post-translational modifications vary

during T. cruzi life cycle according to the parasite developmental

stages found in the insect or mammalian host.

SAP proteins are differentially distributed in the
developmental forms of T. cruzi

The cellular localization of SAP proteins was determined by

immunofluorescence microscopy using anti-SAP polyclonal anti-

serum (anti-SAP) produced in rabbit against the recombinant

protein SAP-CD. Anti-SAP antibodies were used because of the

weak reactivity of MAb-SAP in immunofluorescence assays. In

epimastigotes, SAP proteins were concentrated in the anterior

region of the parasite (Figure 3). We also demonstrated that

Figure 1. Mapping of SAP genes in the chromosomal bands of
T. cruzi. Chromosomal bands of clone CL Brener and the CL strain were
separated by PFGE, stained with ethidium bromide, transferred to nylon
membranes and hybridized with the SAP-CD 32P-labeled 513 bp
fragment. The sizes of the chromosomal bands are shown in Mb on
the right, and the chromosomal-band nomenclature described by Cano
et al. [21] is shown on the left in Roman numerals.
doi:10.1371/journal.pone.0083864.g001
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anti-SAP colocalizes with concanavalin_A (Figure 3), which was

previously shown to react with N-glycosylated proteins on the

surface of epimastigotes as well as in the cytostome [27]. In

metacyclic trypomastigotes, anti-SAP recognized components

located between the nucleus and the kinetoplast (Figure 3). By

contrast, extracellular amastigotes and tissue culture-derived

trypomastigotes were labeled on the cell surface (Figure 3),

suggesting that these parasite forms not only produce distinct sets

of SAP proteins (Figure 2C), but direct them to different cellular

locations. Confirming the localization of SAP proteins in the

external face of the amastigote plasmatic membrane, anti-SAP

polyclonal antibody colocalized with MAb-2C2 (Figure 3), a

monoclonal antibody that reacts with carbohydrate epitopes of the

parasite major surface glycoprotein Ssp-4 [28].

The differential localization of SAP proteins was further

confirmed in an experiment with parasites transfected with a

full-length SAP gene that encodes an N-terminal ER signal

peptide and a C-terminal signal peptide for GPI anchor addition

(accession number Tc00.1047053507163.30) in fusion with the

green fluorescent protein (GFP). Epimastigotes were transfected

with plasmid pTREX/SAP_GFP and differentiated into metacy-

clic trypomastigotes, which were used to infect Vero cells.

Transfected extracellular amastigotes as well as epimastigotes

were analyzed by immunofluorescence microscopy using an anti-

GFP monoclonal antibody. The SAP_GFP protein was detected in

the anterior region of epimastigotes and on the cell surface of

extracellular amastigotes (Figure S1). Whether SAP proteins

expressed in amastigotes are attached to the parasite surface

through a GPI anchor, and what functions they play in

epimastigotes and amastigotes, remains to be investigated.

SAP proteins are released into the extracellular medium
In experiments with T. cruzi G and CL strains, Baida et al. [16]

showed the presence of a 55 kDa SAP protein in the supernatant

of metacyclic trypomastigote culture using anti-SAP antibodies. In

the present study we confirmed that a 55 kDa protein is detectable

by MAb-SAP in metacyclic trypomastigote conditioned medium

(Figure 4A). Recently, Bayer-Santos et al. [14] performed the

proteomic analysis of T. cruzi secretome in which two populations

of extracellular vesicles (exosomes and plasma membrane-derived

vesicles/ectosomes) and soluble proteins released by epimastigotes

and metacyclic trypomastigotes were characterized. In eukaryotes,

Table 1. SAP transcripts isolated from epimastigotes,
metacyclic trypomastigotes and extracellular amastigotes of
the T. cruzi CL strain by RT-PCR amplification.

Developmental form of the
parasite Accession number(1) TcChr(2)

Epimastigotes Non-annotated(3) Tcruzi_21632

Epimastigotes Tc00.1047053510013.200(3) 41

Epimastigotes Tc00.1047053508219.90(3) 41

Epimastigotes Tc00.1047053510021.80(3) 41

Epimastigotes Tc00.1047053506667.30 20

Epimastigotes Tc00.1047053511487.150 41

Epimastigotes Tc00.1047053508871.51 41

Epimastigotes Tc00.1047053507953.70 41

Metacyclic trypomastigotes Non-annotated(3) Tcruzi_21632

Metacyclic trypomastigotes Tc00.1047053510013.200(3) 41

Metacyclic trypomastigotes Tc00.1047053508219.90(3) 41

Metacyclic trypomastigotes Tc00.1047053510021.80(3) 41

Metacyclic trypomastigotes Tc00.1047053506499.190 41

Metacyclic trypomastigotes Tc00.1047053508221.260 41

Extracellular amastigotes Non-annotated(3) Tcruzi_21632

Extracellular amastigotes Tc00.1047053510013.200(3) 41

Extracellular amastigotes Tc00.1047053508219.90(3) 41

Extracellular amastigotes Tc00.1047053510021.80(3) 41

Extracellular amastigotes Tc00.1047053508247.1104(4) 18

Tc00.1047053511233.160(4)

Tc00.1047053508853.30(4)

1) Accession number according to the TriTrypDB database.
(2) Localization of SAP genes based on the 41 chromosome-sized scaffolds [25].
(3) SAP transcripts shared by epimastigotes, metacyclic trypomastigotes and
extracellular amastigotes.
(4) The accession numbers represent the three copies of the same gene.
doi:10.1371/journal.pone.0083864.t001

Figure 2. Expression of SAP proteins in the developmental
forms of the T. cruzi CL strain. (A) The levels of SAP transcripts in
epimastigotes (Epi) and metacyclic trypomastigotes (Meta) were
estimated by qRT-PCR using primers that amplified a conserved
135 bp fragment shared by all SAP genes. The values, which were
calculated after normalization with GAPDH transcripts and using
epimastigotes as the reference sample (SAP/GAPDH ratio = 1), are the
means 6 standard deviations of four independent experiments
performed in triplicate. The difference between epimastigotes and
metacyclic trypomastigotes was significant (*p,0.0001). (B) SAP
expression was determined by quantitative western blot using total
protein extracts from epimastigotes and metacyclic trypomastigotes
(15 mg protein/lane) reacted with MAb-SAP (diluted 1:100). As loading
control, a-tubulin was used. (C) Difference in size of SAP variants
expressed in the different T. cruzi developmental forms. Total protein
extracts from epimastigotes (3.066107 cells), metacyclic trypomasti-
gotes (1.06108 cells), extracellular amastigotes (3.06107 cells) and
tissue culture-derived trypomastigotes (1.06108 cells) were separated
by SDS-PAGE, transferred to nitrocellulose membranes and incubated
with MAb-SAP (diluted 1:100). The relative molecular masses (kDa) of
the immunoreactive proteins are shown on the right.
doi:10.1371/journal.pone.0083864.g002
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Figure 3. Cellular distribution of SAP proteins in the developmental forms of the T. cruzi CL strain. Epimastigotes, metacyclic
trypomastigotes, extracellular amastigotes and tissue culture-derived trypomastigotes were fixed with 4% paraformaldehyde, permeabilized with
saponin and incubated with anti-SAP polyclonal antibodies diluted 1:50, followed by incubation with Alexa Fluor 488-conjugated anti-rabbit IgG
(green). The figure also shows the colocalization of anti-SAP with concanavalin_A in epimastigotes (red) and with MAb-2C2 in extracellular
amastigotes (red). Parasite DNA was stained with DAPI (blue). Scale bar, 5 mm.
doi:10.1371/journal.pone.0083864.g003

Figure 4. Release of SAP proteins into the extracellular medium. (A) Metacyclic trypomastigotes (CL strain) were incubated overnight in PBS
at 28uC (1.06108 parasites/mL). After centrifugation, the conditioned medium (CM) was filtered and analyzed by western blot using MAb-SAP (diluted
1:100). (B) Epimastigotes and metacyclic trypomastigotes (Dm28c) were incubated for 6 h at 28uC in DMEM or TAU3AAG (1.06108 parasites/mL),
respectively. After centrifugation the conditioned medium was filtered and submitted to ultracentrifugation according to the protocol described by
Bayer-Santos et al. [14]. Vesicles and soluble-protein fractions (2 mg of protein from each fraction) were analyzed by western blot using MAb-SAP
(diluted 1:100) or a monoclonal antibody against the flagellar calcium-binding protein (FCaBP). The relative molecular masses (kDa) of the
immunoreactive proteins are shown on the right. V2, fraction enriched in plasma membrane-derived vesicles/ectosomes; V16, fraction enriched in
exosomes; and VF, vesicle-free fraction enriched in soluble proteins.
doi:10.1371/journal.pone.0083864.g004
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the classical protein secretion pathway is dependent on the

presence of an N-terminal sequence (ER signal peptide) that

directs the protein to the secretory pathway (endoplasmic

reticulum/Golgi). Proteins that lack‘‘ the N-terminal signal peptide

can be released by ‘non-classical secretion pathways [29], such as

vesicle-mediated secretion. Vesicles can be released by (1) fusion of

multivesicular bodies with the plasma membrane and the

subsequent release of exosomes, (2) shedding of plasma mem-

brane-derived vesicles and (3) release of apoptotic bodies [30]. In

this context, we decided to investigate whether SAP proteins were

released as soluble proteins or associated with vesicles. Using the

same protocol described previously [14], parasite conditioned

medium derived from epimastigote and metacyclic trypomastigote

cultures (Dm28c) was fractionated by ultracentrifugation, and total

protein from plasma membrane-derived vesicles (V2), exosomes

(V16) and vesicle-free fractions containing soluble proteins (VF)

was analyzed by western blot using MAb-SAP. As shown in

Figure 4B, a 55 kDa SAP protein was detected in vesicle-free

fractions (VF) secreted by both parasite forms. In order to assess

that the fractionation protocol was successful, we incubated the

same epimastigote extracts with a monoclonal antibody against the

flagellar calcium-binding protein (FCaBP), which was previously

shown to be enriched in plasma-membrane derived vesicles (V2)

[14]. Results revealed that FCaBP was mainly found in V2

fraction while SAP was enriched in VF fraction, thus confirming

the differential fractionation.

SAP proteins were not reported in the analysis of T. cruzi

secretome using mass spectrometry because only proteins identi-

fied by two distinct peptides were considered in that study [14].

Hence, it is possible that some proteins were excluded from the

analysis. We therefore decided to reanalyze these proteomic data

in the present study and search for SAP proteins among those

identified by only one peptide. Ten peptides with similarity to SAP

proteins released by epimastigotes and metacyclic forms, either as

soluble proteins or associated with plasma membrane-derived

vesicles (V2) and/or exosomes (V16), were identified (Table 2). In

epimastigotes, three peptides were identified in V2 and two

peptides in V16 and one additional peptide in the soluble fraction;

whereas in metacyclic forms, two SAP peptides were identified in

V2 and two peptides were in the soluble fraction (Table 2). As

some peptides have high similarity with more than one SAP

variant, it was not possible to establish to what SAP variant they

corresponded. The reason why only SAP proteins released as

soluble proteins were detected in the western blot (Figure 4B)

remains to be elucidated. One possible reason is that MAb-SAP

does not recognize all SAP variants, reacting predominantly with

the soluble variants.

Gonçalves et al. [12] demonstrated that T. cruzi is continuously

releasing vesicles enriched in surface antigens involved in host-cell

invasion, such as glycoproteins of the GP85/TS superfamily. Since

then, many proteins secreted by T. cruzi have been characterized

[12,13,31–39]. Among these is cruzipain, the main T. cruzi papain-

like cysteine protease, which is constitutively secreted by trypo-

mastigotes into the extracellular medium as free cruzipain and

cruzipain-chagasin complexes. Secreted cruzipain plays a role in

host-cell invasion [11,40,41], inflammation [42,43] and host

immune system evasion [44–46]. Released vesicles inoculated in

mice elicited an intense inflammatory response by stimulating IL-4

and IL-10 synthesis, increasing the number of amastigote nests

and inducing severe heart lesion [15]. These data support the

hypothesis that T. cruzi-secreted molecules act as important signals

between the parasite and host cell and as modulators of the host

immune system during infection. As several proteins identified in

T. cruzi secretome are associated with infectivity [14], it is possible

that parasite coordinates the secretion of functionally related

proteins.

SAP-CE attaches to host cell and induces lysosome
exocytosis required for invasion by T. cruzi metacyclic
forms

A previous study with CL strain metacyclic forms showed that

SAP proteins are implicated in host-cell invasion and that the SAP

central domain (SAP-CD), which comprises 155 amino acids, is

responsible for cell adhesion [16]. To further identify the region

within SAP-CD involved in target cell adhesion/invasion, we

generated recombinant proteins corresponding to amino-terminal

(SAP-NT), central (SAP-CE) and carboxy-terminal (SAP-CT)

Table 2. SAP proteins secreted into the extracellular medium by epimastigotes and metacyclic trypomastigotes (clone Dm28c)
identified by mass spectrometry.

Peptide sequence Accession number(1) Sample Xcorr(2) DCn(3)

IEDGAEHGVFTINVSTFTQNQVK - Epi-V2(4) 2.53 0.187

INVTSPTPNILEIWWK Tc00.1047053508219.90 Epi-V2 2.71 0.179

AVTVAIVPAKPPEVPRSPPDDK Tc00.1047053507953.70 Epi-V2 2.79 0.114

SLWYDCTAEAGGLGSVICGMGVGNCEPEDVERR Tc00.1047053510373.30 Epi-V16(5) 2.74 0.222

INVTSPTPNILEIWWK Tc00.1047053508219.90 Epi-V16 2.72 0.194

DGAKDGVFTINVTSPNPSAVKSWWQR Tc00.1047053506499.90 Epi-VF(6) 2.25 0.181

DSRDTSTPDSESPADAANSAGARSLAETPPGGAGESVPATR Tc00.1047053510373.30 Meta-V2 2.38 0.148

GFGQMICGMGVGNCASEDFKK Tc00.1047053504081.440 Meta-V2 2.08 0.244

KNSVSPTAGAEVAAGAPSPA - Meta-VF 2.02 0.197

GKPLWYNCTDAASDAGKMICDMGVGNCAPEDVEK - Meta-VF 2.67 0.261

(1) Accession number according to the TriTrypDB database.
(2 and 3) To validate the quality of protein identification, the following parameters were used: (2) Xcorr (CrossCorr/avg [AutoCorr offset = -75 to 75]) $1.5, 2.0, and 2.5,
for singly, doubly and triply charged peptides, respectively. (3) DCn (Xcorr1 – Xcorr2/Xcorr1) $0.1.
(4) Sample enriched in plasma membrane-derived vesicles/ectosomes.
(5) Sample enriched in exosomes.
(6) Sample enriched in soluble proteins (vesicle-free, VF).
doi:10.1371/journal.pone.0083864.t002
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regions of SAP-CD (Figure S2). The SAP-CE protein consisted of

54 amino acids (SAP-CD residues 61–114), shared by SAP-NT

and SAP-CT proteins, of which thirty one were either serine,

alanine or proline residues (Figure S2). All constructs expressed as

GST fusion proteins reacted with MAb-SAP (Figure S2). To

examine whether SAP-CE protein exhibited cell adhesion

properties, HeLa cells were incubated with this recombinant

protein at varying concentrations and bound protein was revealed

with MAb-SAP. As shown in Figure 5A, SAP-CE bound to HeLa

cells in a dose-dependent and saturable manner. In cell invasion

assays, CL strain metacyclic forms were incubated with HeLa cells

in the absence or presence of SAP-CE or GST. Parasite

internalization was inhibited by 52% in the presence of SAP-CE

compared with the control, which contained no recombinant

protein or GST (Figure 5B).

SAP-CD shares with GP82, a metacyclic trypomastigote surface

molecule, the ability to trigger a Ca+2 signal upon binding to HeLa

cells [16]. Here, we examined whether SAP-CE, which comprises

the core 54 amino acids of SAP-CD, shared with GP82 another

property that is essential for promoting metacyclic trypomastigote

entry into host cells, namely, the ability to induce lysosome

exocytosis. HeLa cells were incubated with or without purified

recombinant SAP-CE protein. After 1 h, the supernatant was

collected and the activity of lysosome-specific enzyme b-hexosa-

minidase was measured. As shown in Figure 5C, a significant

increase in lysosome exocytosis was detected in cells treated with

SAP-CE. Using immunofluorescence microscopy with a mono-

clonal antibody to the ubiquitous lysosomal protein Lamp-2, we

ascertained that lysosomes were mobilized to the cell periphery

upon interaction with SAP-CE, but not with GST (Figure 5D).

Lysosome distribution, similar to that induced by recombinant

SAP-CE has been observed upon incubation of HeLa cells with

recombinant proteins based on molecules implicated in promoting

metacyclic trypomastigote internalization, such as GP30 and

GP82 [47,48]. Addition of SAP-CE protein did not result in

marked pH change that could influence the lysosome mobiliza-

Figure 5. Cell adhesion and lysosome exocytosis-inducing properties of SAP-CE associated with T. cruzi metacyclic trypomastigote
internalization. (A) Increasing amounts of the purified recombinant protein SAP-CE or GST were added to 96-well plates covered with HeLa cells.
After fixation and washes in PBS, the cells were incubated with MAb-SAP (diluted 1:100) and with anti-mouse IgG peroxidase conjugate. The bound
protein was revealed by o-phenylenediamine. Values are the means 6 standard deviations of triplicates. (B) HeLa cells were incubated for 30 min
with or without the recombinant protein SAP-CE or GST (40 mg/mL) and then incubated with metacyclic forms. After incubation for 1 h, cells were
washed in PBS, fixed, and stained with Giemsa. The number of internalized parasites was counted in 500 cells. The values represent the means 6
standard deviations of three independent experiments performed in duplicate. SAP-CE significantly inhibited parasite invasion (*p,0.05). (C) Semi-
confluent HeLa cell monolayers were incubated in absence or in the presence of GST or the purified recombinant protein SAP-CE (20 mg/mL) for
60 min. The supernatant was collected and the release of b-hexosaminidase measured. Exocytosis was expressed as a percentage of the total b-
hexosaminidase activity (supernatant + cell extract). Values are the means 6 standard deviations of four independent experiments performed in
duplicate. b-hexosaminidase activity was significantly higher in the presence of SAP-CE (*p,0.05). (D) HeLa cells were incubated with or without the
purified recombinant protein SAP-CE (20 mg/mL) and processed for indirect immunofluorescence using anti-Lamp-2 antibody and Alexa Fluor 488-
conjugated anti-mouse IgG (green), phalloidin-TRITC (red) for actin visualization and DAPI (blue) for DNA. Scale bar, 10 mm.
doi:10.1371/journal.pone.0083864.g005
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tion. When we measured the pH of the supernatants from cells

incubated for 1 h with GST or SAP-CE, the difference between

them was in the 0.01–0.02 range.

To our knowledge, the metacyclic trypomastigote surface

molecule GP82 and SAP proteins are the only molecularly

defined T. cruzi components with cell adhesion capacity that have

been shown to induce a Ca+2 signal and lysosome exocytosis,

events associated with parasite internalization. A synergistic effect

of SAP and GP82 in the process of host-cell invasion is an

interesting possibility.

Conclusions

Although many proteins that participate in host cell-T. cruzi

interactions have been characterized, there are many novel

proteins expressed by this parasite, whose functions are unknown

and require elucidation. Taken together, our results showed that

SAP proteins are released into the extracellular medium by

epimastigotes and metacyclic trypomastigotes as soluble factors or

as components of secreted vesicles. We also identified different sets

of SAP variants that are directed to the parasite surface in

extracellular amastigotes and tissue culture-derived trypomasti-

gotes. In addition, we proposed a role for SAP proteins during

internalization of metacyclic forms that relies on the interaction of

the 54-amino acid SAP-CE fragment with target cells and

induction of host-cell lysosome exocytosis. SAP proteins probably

act synergistically with GP82 during host-cell invasion by up-

regulating intracellular Ca+2 signaling.

Supporting Information

Figure S1 Expression and cellular distribution of the
protein SAP_GFP in transfected parasites. (A) Epimasti-

gotes were transfected with a full-length SAP gene (accession

number Tc00.1047053507163.30) encoding an N-terminal ER

signal peptide (blue) and a C-terminal GPI anchor addition site

(black) in fusion with the green fluorescent protein (GFP). Sph1

restriction site presented in the SAP sequence was used to insert

the GFP gene (green). The arrows denote the annealing site of the

primers used in PCR amplification and the respective restriction

sites added to them. (B) Total protein extracts from epimastigotes

transfected with pTREX/SAP_GFP, pTREX/GFP or untrans-

fected controls (CL strain) were separated by electrophoresis in

polyacrylamide gel, transferred to nitrocellulose membrane and

incubated with anti-GFP monoclonal antibody (diluted 1:500).

The recombinant protein SAP_GFP was also recognized by MAb-

SAP. (C) Epimastigotes transfected with pTREX/SAP_GFP or

the control pTREX/GFP and extracellular amastigotes transfect-

ed with pTREX/SAP_GFP were fixed with 4% paraformalde-

hyde and incubated with anti-GFP monoclonal antibody (Sigma)

diluted 1:100, followed by incubation with Alexa Fluor 488-

conjugated anti-mouse IgG (green). Parasite DNA was stained

with DAPI (blue). Scale bar, 5 mm.

(TIF)

Figure S2 Amplification by PCR of three fragments of
the SAP central domain (SAP-CD). (A) Schematic represen-

tation of the SAP-CD 513 bp fragment (accession number

AF199419) and fragments SAP-NT, SAP-CE and SAP-CT

amplified by PCR. The amino acid size (aa) of each fragment is

shown on the right. The amino acid sequence of SAP-CE and the

serine, alanine and proline residues indicated in red are also

represented. (B) The purified recombinant proteins SAP-NT, SAP-

CE and SAP-CT were separated by electrophoresis in a 12%

polyacrylamide gel, transferred to a nitrocellulose membrane and

incubated with MAb-SAP (diluted 1:100). The antigen-antibody

complexes were detected with anti-mouse IgG peroxidase conjugate

(diluted 1:5000) and revealed with DAB and hydrogen peroxide.

(TIF)

Table S1 Full-length SAP genes identified in the T. cruzi
genome (clone CL Brener).

(DOCX)

Table S2 Genomic localization of SAP sequences iden-
tified in the T. cruzi genome.

(DOCX)

Table S3 Frequency and gene content of 100 kb geno-
mic regions containing SAP genes.

(DOCX)

Acknowledgments

We would like to thank Renan M. Alves for his help with the exocytosis

assay and Pilar S. Tavares Veras for kindly providing the tissue culture-

derived trypomastigotes used in the immunofluorescence and western blot

assays.

Author Contributions

Conceived and designed the experiments: TZ EBS CC ICA NY JFS.

Performed the experiments: TZ EBS CC. Analyzed the data: TZ EBS CC

NY JFS. Contributed reagents/materials/analysis tools: ICA NY JFS.

Wrote the paper: TZ NY JFS. Helped with discussions and manuscript

elaboration: EBS CC ICA.

References

1. Chagas disease (American trypanosomiasis) fact sheet (revised in June 2010).

Wkly Epidemiol Rec 85: 334–336.

2. Coura JR, Vinas PA (2010) Chagas disease: a new worldwide challenge. Nature

465: S6–7.

3. Rodriguez A, Samoff E, Rioult MG, Chung A, Andrews NW (1996) Host cell

invasion by trypanosomes requires lysosomes and microtubule/kinesin-mediated

transport. J Cell Biol 134: 349–362.

4. Tardieux I, Webster P, Ravesloot J, Boron W, Lunn JA, et al. (1992) Lysosome

recruitment and fusion are early events required for trypanosome invasion of

mammalian cells. Cell 71: 1117–1130.

5. Ramirez MI, Ruiz Rde C, Araya JE, Da Silveira JF, Yoshida N (1993)

Involvement of the stage-specific 82-kilodalton adhesion molecule of Trypano-

soma cruzi metacyclic trypomastigotes in host cell invasion. Infect Immun 61:

3636–3641.

6. Yoshida N (2006) Molecular basis of mammalian cell invasion by Trypanosoma

cruzi. An Acad Bras Cienc 78: 87–111.

7. Martins RM, Alves RM, Macedo S, Yoshida N (2011) Starvation and rapamycin

differentially regulate host cell lysosome exocytosis and invasion by Trypano-

soma cruzi metacyclic forms. Cell Microbiol 13: 943–954.

8. Ruiz RC, Favoreto S, Jr., Dorta ML, Oshiro ME, Ferreira AT, et al. (1998)

Infectivity of Trypanosoma cruzi strains is associated with differential expression

of surface glycoproteins with differential Ca2+ signalling activity. Biochem J 330

(Pt1): 505–511.

9. Murta AC, Persechini PM, Padron Tde S, de Souza W, Guimaraes JA, et al.

(1990) Structural and functional identification of GP57/51 antigen of

Trypanosoma cruzi as a cysteine proteinase. Mol Biochem Parasitol 43: 27–38.

10. Paiva CN, Souto-Padron T, Costa DA, Gattass CR (1998) High expression of a

functional cruzipain by a non-infective and non-pathogenic Trypanosoma cruzi

clone. Parasitology 117 (Pt 5): 483–490.

11. Scharfstein J, Schmitz V, Morandi V, Capella MM, Lima AP, et al. (2000) Host

cell invasion by Trypanosoma cruzi is potentiated by activation of bradykinin

B(2) receptors. J Exp Med 192: 1289–1300.

12. Goncalves MF, Umezawa ES, Katzin AM, de Souza W, Alves MJ, et al. (1991)

Trypanosoma cruzi: shedding of surface antigens as membrane vesicles. Exp

Parasitol 72: 43–53.

13. Jazin EE, Bontempi EJ, Sanchez DO, Aslund L, Henriksson J, et al. (1995)

Trypanosoma cruzi exoantigen is a member of a 160 kDa gene family.

Parasitology 110 (Pt1): 61–69.

SAP Proteins and Host-Cell Lysosome Exocytosis

PLOS ONE | www.plosone.org 10 December 2013 | Volume 8 | Issue 12 | e83864



14. Bayer-Santos E, Aguilar-Bonavides C, Rodrigues SP, Cordero EM, Marques

AF, et al. (2013) Proteomic analysis of Trypanosoma cruzi secretome:
characterization of two populations of extracellular vesicles and soluble proteins.

J Proteome Res 12: 883–897.

15. Trocoli Torrecilhas AC, Tonelli RR, Pavanelli WR, da Silva JS, Schumacher
RI, et al. (2009) Trypanosoma cruzi: parasite shed vesicles increase heart

parasitism and generate an intense inflammatory response. Microbes Infect 11:
29–39.

16. Baida RC, Santos MR, Carmo MS, Yoshida N, Ferreira D, et al. (2006)

Molecular characterization of serine-, alanine-, and proline-rich proteins of
Trypanosoma cruzi and their possible role in host cell infection. Infect Immun

74: 1537–1546.
17. Carmo MS, Santos MR, Cummings LM, Araya JE, Yamauchi LM, et al. (2001)

Isolation and characterisation of genomic and cDNA clones coding for a serine-,
alanine-, and proline-rich protein of Trypanosoma cruzi. Int J Parasitol 31: 259–

264.

18. Teixeira MM, Yoshida N (1986) Stage-specific surface antigens of metacyclic
trypomastigotes of Trypanosoma cruzi identified by monoclonal antibodies. Mol

Biochem Parasitol 18: 271–282.
19. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local

alignment search tool. J Mol Biol 215: 403–410.

20. Souza RT, Lima FM, Barros RM, Cortez DR, Santos MF, et al. (2011) Genome
size, karyotype polymorphism and chromosomal evolution in Trypanosoma

cruzi. PLoS One 6: e23042.
21. Cano MI, Gruber A, Vazquez M, Cortes A, Levin MJ, et al. (1995) Molecular

karyotype of clone CL Brener chosen for the Trypanosoma cruzi genome
project. Mol Biochem Parasitol 71: 273–278.

22. Vazquez MP, Levin MJ (1999) Functional analysis of the intergenic regions of

TcP2beta gene loci allowed the construction of an improved Trypanosoma cruzi
expression vector. Gene 239: 217–225.

23. Cuevas IC, Rohloff P, Sanchez DO, Docampo R (2005) Characterization of
farnesylated protein tyrosine phosphatase TcPRL-1 from Trypanosoma cruzi.

Eukaryot Cell 4: 1550–1561.

24. Yoshida N, Mortara RA, Araguth MF, Gonzalez JC, Russo M (1989) Metacyclic
neutralizing effect of monoclonal antibody 10D8 directed to the 35- and 50-

kilodalton surface glycoconjugates of Trypanosoma cruzi. Infect Immun 57:
1663–1667.

25. Weatherly DB, Boehlke C, Tarleton RL (2009) Chromosome level assembly of
the hybrid Trypanosoma cruzi genome. BMC Genomics 10: 255.

26. El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, et al. (2005)

The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease.
Science 309: 409–415.

27. Vatarunakamura C, Ueda-Nakamura T, de Souza W (2005) Visualization of the
cytostome in Trypanosoma cruzi by high resolution field emission scanning

electron microscopy using secondary and backscattered electron imaging. FEMS

Microbiol Lett 242: 227–230.
28. Andrews NW, Hong KS, Robbins ES, Nussenzweig V (1987) Stage-specific

surface antigens expressed during the morphogenesis of vertebrate forms of
Trypanosoma cruzi. Exp Parasitol 64: 474–484.

29. Nickel W, Seedorf M (2008) Unconventional mechanisms of protein transport to
the cell surface of eukaryotic cells. Annu Rev Cell Dev Biol 24: 287–308.

30. Simpson RJ, Mathivanan S (2012) Extracellular Microvesicles: The Need for

Internationally Recognised Nomenclature and Stringent Purification Criteria.
Journal of Proteomics & Bioinformatics 05: 1.

31. Abuin G, Colli W, Alves MJ (1996) Turnover and shedding of the Tc-85 surface
glycoprotein of Trypanosoma cruzi trypomastigotes. Braz J Med Biol Res 29:

335–341.

32. Affranchino JL, Ibanez CF, Luquetti AO, Rassi A, Reyes MB, et al. (1989)

Identification of a Trypanosoma cruzi antigen that is shed during the acute

phase of Chagas’ disease. Mol Biochem Parasitol 34: 221–228.

33. Andrews NW, Abrams CK, Slatin SL, Griffiths G (1990) A T. cruzi–secreted

protein immunologically related to the complement component C9: evidence for

membrane pore-forming activity at low pH. Cell 61: 1277–1287.

34. Bastos IM, Grellier P, Martins NF, Cadavid-Restrepo G, de Souza-Ault MR, et

al. (2005) Molecular, functional and structural properties of the prolyl

oligopeptidase of Trypanosoma cruzi (POP Tc80), which is required for parasite

entry into mammalian cells. Biochem J 388: 29–38.

35. Moro A, Ruiz-Cabello F, Fernandez-Cano A, Stock RP, Gonzalez A (1995)

Secretion by Trypanosoma cruzi of a peptidyl-prolyl cis-trans isomerase involved

in cell infection. EMBO J 14: 2483–2490.

36. Norris KA, Schrimpf JE (1994) Biochemical analysis of the membrane and

soluble forms of the complement regulatory protein of Trypanosoma cruzi.

Infect Immun 62: 236–243.

37. Ouaissi A, Guevara-Espinoza A, Chabe F, Gomez-Corvera R, Taibi A (1995) A

novel and basic mechanism of immunosuppression in Chagas’ disease:

Trypanosoma cruzi releases in vitro and in vivo a protein which induces T

cell unresponsiveness through specific interaction with cysteine and glutathione.

Immunol Lett 48: 221–224.

38. Reina-San-Martin B, Degrave W, Rougeot C, Cosson A, Chamond N, et al.

(2000) A B-cell mitogen from a pathogenic trypanosome is a eukaryotic proline

racemase. Nat Med 6: 890–897.

39. Umezawa ES, Shikanai-Yasuda MA, Stolf AM (1996) Changes in isotype

composition and antigen recognition of anti-Trypanosoma cruzi antibodies from

acute to chronic Chagas disease. J Clin Lab Anal 10: 407–413.

40. Andrade D, Serra R, Svensjo E, Lima AP, Ramos ES, Jr., et al. (2012)

Trypanosoma cruzi invades host cells through the activation of endothelin and

bradykinin receptors: a converging pathway leading to chagasic vasculopathy.

Br J Pharmacol 165: 1333–1347.

41. Aparicio IM, Scharfstein J, Lima AP (2004) A new cruzipain-mediated pathway

of human cell invasion by Trypanosoma cruzi requires trypomastigote

membranes. Infect Immun 72: 5892–5902.

42. Savino W, Villa-Verde DM, Mendes-da-Cruz DA, Silva-Monteiro E, Perez AR,

et al. (2007) Cytokines and cell adhesion receptors in the regulation of immunity

to Trypanosoma cruzi. Cytokine Growth Factor Rev 18: 107–124.

43. Scharfstein J (2006) Parasite cysteine proteinase interactions with alpha 2-

macroglobulin or kininogens: differential pathways modulating inflammation

and innate immunity in infection by pathogenic trypanosomatids. Immunobi-

ology 211: 117–125.

44. Doyle PS, Zhou YM, Hsieh I, Greenbaum DC, McKerrow JH, et al. (2011) The

Trypanosoma cruzi protease cruzain mediates immune evasion. PLoS Pathog 7:

e1002139.

45. Giordanengo L, Guinazu N, Stempin C, Fretes R, Cerban F, et al. (2002)

Cruzipain, a major Trypanosoma cruzi antigen, conditions the host immune

response in favor of parasite. Eur J Immunol 32: 1003–1011.

46. Stempin C, Giordanengo L, Gea S, Cerban F (2002) Alternative activation and

increase of Trypanosoma cruzi survival in murine macrophages stimulated by

cruzipain, a parasite antigen. J Leukoc Biol 72: 727–734.

47. Cortez C, Martins RM, Alves RM, Silva RC, Bilches LC, et al. (2012)

Differential infectivity by the oral route of Trypanosoma cruzi lineages derived

from Y strain. PLoS Negl Trop Dis 6: e1804.

48. Maeda FY, Cortez C, Yoshida N (2012) Cell signaling during Trypanosoma

cruzi invasion. Front Immunol 3: 361.

SAP Proteins and Host-Cell Lysosome Exocytosis

PLOS ONE | www.plosone.org 11 December 2013 | Volume 8 | Issue 12 | e83864


