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Abstract

The major goal of this study was to create easy-to-use, reusable substrates capable of storing any
peptides or bioactive molecules for a desired period of time until cells uptake them without the
need for bioactive molecule or peptide-specific techniques. Nanopore arrays of uniform size and
distribution were machined into fused silica substrates using femtosecond laser ablation and
loaded with peptides by simple adsorption. The nanopore substrates were validated by examining
the effect of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) loaded nanopores on macrophage
phagocytosis and intracellular production of reactive oxygen species (ROS) with and without the
pro-inflammatory lipopolysaccharide (LPS). Our results demonstrated that nanopores were
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generated in a uniform array fashion. Ac-SDKP peptides were stably stored in nanopores and
internalized by macrophages. Significant reductions in ROS production and phagocytosis in
macrophages were observed over control substrates, even in combination with LPS stimulation,
indicating that loading Ac-SDKP peptides in pores significantly improved the anti-inflammatory

effects.
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Background

Methods

Surface-mediated or reverse-transfection is a well-established method to deliver genetic
information to cells more effectively and efficiently by either simple adsorption or covalent
tethering of nucleotide vectors to a culture substrate prior to cell seeding (1). Covalent
attachment is the most common surface-mediated protein delivery method but availability to
cells, long term stability, and bioactivity are questionable with this approach (1-4). Non-
covalent approaches to peptide delivery generally result in burst release of peptide from the
surface and are difficult to tailor for longer-term studies (5-7). We hypothesized that loading
peptides into nanopore arrays would increase the efficacy of peptide treatment similar to
surface-mediated transfection for long-term treatment of cells in vitro. The goal was to
create easy-to-use, reusable substrates capable of storing any peptides or bioactive
molecules for an extended period of time until cells uptake them without the need for
pretreatment or peptide-specific techniques.

The effect of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) loaded nanopores on
macrophage phagocytosis and intracellular production of reactive oxygen species (ROS)
were examined with and without the pro-inflammatory endotoxin lipopolysaccharide (LPS).
Macrophages produce ROS in response to inflammatory stimuli (e.g., LPS treatment) to
destroy foreign materials and then phagocytose the debris to prevent damage to other cells
(8, 9). The tetrapeptide, Ac-SDKP, found in wound fluid, attenuates inflammatory and
fibrotic responses by decreasing infiltration and adhesion of macrophages as well as the
production of inflammatory cytokines (10, 11).

Nanopore arrays of uniform size and distribution were machined into fused silica substrates
using femtosecond laser ablation with a single 160 fs pulse (12). For in vitro experiments,
arrays of 200x200 20pm-spaced nanopores were arranged in a square lattice. Nanopore
substrates were characterized by scanning electron microscopy (SEM). Peptides were loaded
into the nanopores immediately following laser machining. Briefly, a 50 L drop of 6 mg/
mL Ac-SDKP in ultrapure water was deposited on the pattern or on a flat surface for peptide
without pore controls, dried under vacuum overnight, and washed with sterile water prior to
use. Confocal microscopy was used to confirm the presence of the fluorescently-labeled
peptide FITC-SDKP after 48 hour incubation in culture media.

For invitro studies, RAW 264.7 cells (ATCC, Manassas, VA) were cultured as suggested by
the supplier. Cells were seeded onto each substrate at a density of 6.3x103 cells.cm™2. Cells
were allowed to attach for 15 hours, then the media was replaced with normal, LPS (1
mg.mL-1, Sigma-Aldrich, St. Louis, MO), or FITC- SDKP (0.5, 0.25, or 0.125 mg.mL™1)
containing media. Endpoint analysis was carried out 72 hours after treatment.
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Phagocytosis was measured using a Vybrant® Phagocytosis Assay Kit (V-6694, Life
Technologies, Carlsbad, CA) according to the manufacture’s protocol. Intracellular
superoxide was stained with 5 png/mL dihydroethidium (DHE) and counterstained with 5
ug.mL"1 Hoechst. Fluorescence intensities of E. coli particles phagocytized and intracellular
superoxide were quantified using a plate reader (Tecan Group, Ltd Mannendorf,
Switzerland). Results were represented on plots as average + standard deviation of 45
technical replicates per sample (n=2 for nanopore samples loaded with Ac-SDKP).
Statistical analyses were performed by using one-way ANOVA tests followed by one-tailed
t-tests for equal variances. For all tests, significance was designated as p < 0.05.

SEM images showed that nanopore substrates were highly uniform in space, distribution,
and pore size. Nanopores had roughly-elliptical openings with average major and minor axes
of 2.95 and 2.56 pm (FIGURE 1A-B). Below the surface the pore diameter reduces to
around 540 nm. Confocal microscopy of empty nanopores indicated that nanopores could be
as much as 40 pm deep (Figure 1C). Confocal microscopy of FITC-SDKP loaded nanopores
showed that nanopore substrates remained loaded with FITC-SDKP after 48 hours of
incubation in culture media (FIGURE 1D, FIGURE 2H). Confocal microscopy also
confirmed that nanopore fluorescence is not due to auto-fluorescence of the pore structure.
FITC-labeled SDKP peptides were visible inside macrophages after 4 day culture on FITC-
SDKP loaded nanopores, whereas peptide delivered in solution was only internalized at the
highest concentration (FIGURE 2).

Ac-SDKP release significantly reduced intracellular superoxide production and
phagocytosis over control substrates, even in the case of LPS stimulation (FIGURE 3).
When loaded in pores, the Ac-SDKP effects were improved significantly compared to
peptide loaded on unpatterned substrates.

Discussion

The nanopore delivery system developed in this study provides a simple and efficient means
to store and deliver bioactive molecules in vitro. This flexible technique is capable of
producing user-defined patterns with nanometer resolution (13). In addition, we
demonstrated that peptide-loaded nanopore substrates were stable enough to be shipped and
stored at room temperature.

Fluorescent peptide (FITC-SDKP) was shown to persist in nanopore arrays after two days of
incubation in culture media but was not detectable in the supernatant medium during release
studies (data not shown). Although peptide release was not measureable, the substrates
produced a significant biological effect on cultured macrophages by cellular uptake of
peptide (FIGURE 2, 3). Ac-SDKP-loaded nanopores significantly limited the inflammatory
activation of macrophages, as measured by ROS production and phagocytosis assays. This
indicates that the peptide is constrained to the pores but can be sequestered by cultured cells
and elicit a biological response. In addition, the total amount of peptide used to load
nanopore substrates was 0.3 mg and most of this was washed away prior to cell seeding.
However, cellular uptake of FITC-SDKP was greater from nanopore substrates than 0.25mg/
mL FITC-SDKP delivered in solution. This indicates the potential to use less reagent, while
eliciting a greater biological response. Macrophages were not influenced by the presence of
empty nanopores compared to flat substrates, indicating this pore feature has minimal effects
on macrophages in vitro.
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Future studies will utilize nanopore substrates to release bioactive molecules with spatial
gradient patterns and expand on the utility of these substrates to store and deliver different
bioactive molecules. This study demonstrated that femtosecond laser-patterned nanopore
substrates are a practical tool for studying the effects of bioactive molecules on cultured
cells and increases the efficacy of treatment akin to surface-mediated cellular uptake.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1.

(A) SEM of 1 million nanopore array showing uniformity of pore size, shape, and
distribution (B) SEM of a single nanopore showing pore morphology (C) Z-stack confocal
micrograph of empty nanopore array (D) Z section of FITC-SDKP loaded nanopore array
after two days of incubation in culture media.
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FIGURE 2.

Uptake of FITC-SDKP by Raw-264.7 from solution and from nanopore substrates
demonstrated enhanced cellular uptake from nanopores. Merged fluorescent and phase
contrast of Raw 264.7 cells cultured with FITC-SDKP dissolved in solution at 0.5 (A), 0.25
(B), and 0.125 (C) mg.mL"1. Fluorescence images of Raw 264.7 cells cultured with FITC-
SDKP in solution 0.5 (A), 0.25 (B), and 0.125 (C) mg.mL"1. (G) FITC-SDKP visualized in a
nanopore array after two days of incubation in culture media (H) Fluorescent image of Raw
264.7 cells cultured on FITC-SDKP loaded nanopore array (1) Merged fluorescent and phase
contrast image of Raw 264.7 cells cultured on FITC-SDKP loaded nanopore array.
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FIGURE 3.

Ac-SDKP loaded nanopores significantly reduced inflammatory activation of RAW 264.7.
Intracellular superoxide as measured by DHE fluorescence and phagocytosis as measured by
fluorescent E. Coli particle uptake (both normalized to cell number) were significantly lower
with Ac-SDKP treatments. In addition, treatment with Ac-SDKP loaded pores significantly
reduced intracellular superoxide and phagocytosis compared to other conditions of Ac-
SDKP treatment. ¥ p<0.05 between groups, * indicates p<0.05 within groups).
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