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Abstract

There is significant clinical and prognostic heterogeneity in the neurodegenerative disorder amyotrophic lateral sclerosis
(ALS), despite a common immunohistological signature. Consistent extra-motor as well as motor cerebral, spinal anterior
horn and distal neuromuscular junction pathology supports the notion of ALS a system failure. Establishing a disease
biomarker is a priority but a simplistic, coordinate-based approach to brain dysfunction using MRI is not tenable. Resting-
state functional MRI reflects the organization of brain networks at the systems-level, and so changes in of motor functional
connectivity were explored to determine their potential as the substrate for a biomarker signature. Intra- as well as inter-
motor functional networks in the 0.03–0.06 Hz frequency band were derived from 40 patients and 30 healthy controls of
similar age, and used as features for pattern detection, employing multiple kernel learning. This approach enabled an
accurate classification of a group of patients that included a range of clinical sub-types. An average of 13 regions-of-interest
were needed to reach peak discrimination. Subsequent analysis revealed that the alterations in motor functional
connectivity were widespread, including regions not obviously clinically affected such as the cerebellum and basal ganglia.
Complex network analysis showed that functional networks in ALS differ markedly in their topology, reflecting the
underlying altered functional connectivity pattern seen in patients: 1) reduced connectivity of both the cortical and sub-
cortical motor areas with non motor areas 2)reduced subcortical-cortical motor connectivity and 3) increased connectivity
observed within sub-cortical motor networks. This type of analysis has potential to non-invasively define a biomarker
signature at the systems-level. As the understanding of neurodegenerative disorders moves towards studying pre-
symptomatic changes, there is potential for this type of approach to generate biomarkers for the testing of neuroprotective
strategies.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative

disorder classically characterized by a loss of upper motor neurons

of the motor cortex and corticospinal tract, and lower motor

neurons of the brainstem nuclei and spinal cord anterior horns. A

clinical, pathological and genetic overlap with frontotemporal

dementia (FTD) is now recognized. The median survival is 3 years

from symptom onset, but clinical and prognostic heterogeneity are

well recognized. There is no highly effective disease-modifying

therapy despite numerous trials [1]. Biomarkers would have

potential for the more rapid and objective assessment of efficacy of

therapeutic interventions in established disease, but also for

identification of pre-symptomatic changes in those known to be

at high risk of ALS [2]. They might also provide evidence for

specific disease mechanisms [3], and thus novel targets for

therapeutic intervention.

Cerebral pathology in ALS has been long-recognized as

widespread [4], despite the obvious clinical predilection for motor

pathways. The mild cognitive impairments detectable in at least

one third of ALS patients have clear overlap with some forms of

FTD [5], and there is a shared pathological link in the form of

cytoplasmic inclusions of TDP-43 found throughout motor, pre-

motor, frontal and temporal lobe regions [6]. ALS appears to be a

systems-level, network-based disorders [7], and a simplistic,

region-of-interest, co-ordinate-based approach will not capture

widespread interconnected brain activity.

Resting-state functional MRI (R-fMRI) reveals temporally

correlated low-frequency spontaneous fluctuations in blood

oxygen level-dependent (BOLD) MRI signal, originating from

several widespread functionally-distinct networks [8,9]. While it

cannot be validated in the same way as very specific task-based

MRI (e.g. a visual task and occipital lobe function), very distinct

and consistent regional networks at rest appear to closely reflect

those seen in activity-based studies [10]. Alterations in R-fMRI

data have been observed in ALS patients [11–18]. We wished to

test the hypothesis that a systems-level signature capturing the core

of ALS pathology, despite its inherent clinical and prognostic

heterogeneity, might be identifiable using R-fMRI data.
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Methods

Subjects
Patients were recruited from the Oxford Motor Neuron Disease

Care and Research Centre as part of the Oxford Study for

Biomarkers in Motor Neuron Disease (‘BioMOx’). All were

apparently sporadic except one who reported a family history of

ALS and FTD and was found to carry an expanded hexanucleo-

tide repeat in C9orf72. All patients were diagnosed by experienced

ALS neurologists according to standard criteria [19,20], and all

were either limb or bulbar in symptom onset. None were

demented. Twenty-five patients overlapped with those used in a

previously published study [15].

All participants underwent clinical examination on the day of

study (M.R.T.), and were under active follow-up. Functional status

was measured using the revised ALS Functional Rating Scale

(ALSFRS-R, maximum score 48, falling with increasing disability)

[21]. Disease duration was calculated from symptom onset to scan

date in months. A rate of disease progression was calculated as (48

minus ALSFRS-R)/disease duration [22].

Healthy controls similar to the patients in age, gender,

education and handedness for writing, were scanned under an

identical MRI protocol. Ethical approval for all procedures was

obtained prior to study from the South Oxfordshire Research

Ethics Committee (08/H0605/85), and written informed consent

was obtained from all participants. All data collection was carried

out in the UK.

Image Acquisition
Scans were performed at the Oxford Centre for Clinical

Magnetic Resonance Research using a 3T Siemens Trio scanner

(Siemens AG) with a 12-channel head coil, and in line with

consensus guidelines put forward by the 2010 Neuroimaging

Symposium in ALS (NISALS) [23]. Whole-brain functional

imaging at rest was performed using a gradient echo planar

imaging sequence (repetition time/echo time = 3000/28 ms, flip

angle = 89u, 3 mm isotropic resolution, 9 min acquisition time).

For maximum consistency, subjects were instructed to close their

eyes throughout this latter sequence, but to remain awake.

Image Analysis
Standard preprocessing procedures were performed in SPM8

[24], including image realignment correction for head movements,

normalization to standard 36363 mm Montreal Neurological

Institute space, and spatial smoothing with an 8-mm full width at

half maximum Gaussian kernel. Head motion estimates indicated

that movement did not exceed one voxel in any of the subjects.

Similarly, employing a two sample t-test, no significant difference

was found in average head translation [25] between patients and

controls. xjview (http://www.alivelearn.net/xjview) was used to

visualize whole brain data.

Motor Network Correlation Analysis
Time series were extracted for all grey matter voxels. To

eliminate confounds in the data, the average time series in the CSF

and white matter voxels was computed using the masks provided

with SPM8, and concatenated with the SPM movement param-

eter time series. Next, the first order derivatives were computed for

the eight time series, and all 16 time series were regressed out of

the grey matter data [26,27]. Finally data were linearly de-

trended. The resulting time series were filtered to the 0.03–

0.06 Hz bandwidth [28] using a Butterworth filter (order 4).

Using the WFU pickAtlas [29], the average time course for

motor processing areas –M1, supplementary motor cortex, basal

ganglia and cerebellum - was extracted following the AAL atlas

[30]. Motor time series were used as seeds to compute correlation

maps to all gray matter voxels (one map for each seed). This

resulted in 24 maps (12L+12R), thus given our voxel size using the

AAL masks resulted in 54,130 gray matter voxels for each map,

that is a total of 1,299,120 features for each subject. Each map was

reduced in dimension using principal component analysis (PCA)

across subjects by anatomical region-of-interest (ROI) to comprise

10 scores for each of the 116 AAL regions, leaving a total of

27,840 features for each subject (116624610). We chose not to

scale the number of scores to initial mask size, as there is no

definite correlation between the size of brain areas and their

functional significance (e.g. cerebellum vs. amygdala). Finally, the

reduced maps were concatenated and used as features for

classification.

Classification
Classification was carried out in NeuroClass (http://www.

lcneuro.org/), utilizing block diagonal optimization [31], a

multiple kernel learning (MKL; [32]) support vector machine

(SVM) approach with recursive kernel elimination [33]. The exact

classification procedure is described in greater detail in appendix

S1. In MKL, features are divided to subgroups – in our case

according to anatomical ROIs – and a kernel computed for each

ROI. The resulting kernels are then summed using weights found

via block diagonal optimization. The single resulting kernel is then

used for SVM classification. RCK enables to recursively rank

kernels (ROIs) according to their contribution to the norm of the

weights learned by the SVM.

To assess the performance of the classifier as well as optimize for

the SVM soft margin parameter and carry out ROI selection, a

two-tiered ‘leave one out’ (LOO) cross validation was carried out.

On each validation fold an additional LOO was carried out to

select the optimal hyperparameters of the SVM, as well as

determine the number of ROIs for which classifier accuracy on the

validation data peaked. The indices of entire peak region were

stored and used to evaluate performance on test examples.

Accordingly when performance was evaluated on test data the

results were averaged and a majority vote applied.

In each training fold, data were initially scaled using a z

transform. The training data means and variances were used to

similarly scale test data. Next, training data features were filtered

using ANOVA to retain only 10% of features in each ROI.

Finally, the resulting feature vectors were normalized to unit

length, a standard preprocessing step in MKL [34]. A radial basis

function (RBF) SVM was used and optimized for the soft margin

parameterc and RBF width s such that c~s and

c, s [½21,22,:::,27�. The classifying scheme above was first tested

on an independent data set of N= 33 schizophrenia patients and

controls that we had previously collected [35], and the parameters

employed here were chosen according to the highest attained

accuracy.

To verify the significance of the classification result a boot-

strapping method was applied: a 1000 sets of permuted labels (with

replacement) were generated such that the number of positive and

negative examples in each of the original classes was balanced.

Next, due to computational constraints, that is the run time

necessary for complete optimization of classifier parameters and

feature number, the classifier was applied with two simplifications;

only the soft margin parameter selected by using the original labels

was employed, and rather than optimizing for feature number, the

maximal accuracy across features families was computed. Note

that this in fact yields a positively biased null-distribution.

A Functional Connectivity Signature in ALS
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Complex Network Analysis
To further probe the nature of the deviant motor functional

connectivity in ALS we carried out complex network analysis

[CNA, 36]. This subset of graph theory enables to explore the

topology of the inter area functional connectivity matrix, and

identify general properties of the functional connectivity pertaining

to the network segregation, integration, resilience and centrality.

To produce functional connectivity graphs, the preprocessed time

series in the 0.03–0.06 Hz band were averaged by ROI. Next the

cross correlation between the 116 signals was computed. The

resulting functional connectivity graphs were then pruned from

negative and auto correlations [36]. The resulting graphs were

thresholded to retain a fraction a of the strongest connections.

Initially the following threshold levels 2a~½0:05,0:1,:::,0:95� -

were used to compute the small world ratio across subjects. Next,

to select a threshold for subsequent analysis, we sought after the

value that would give rise to topological network representations in

which the small world properties would be the most pronounced.

To that end we chose to optimize for an approximate measure of

the signal to noise ratio of the small wordlness index: the ratio

between the mean and standard deviation of the index across our

sample. Accordingly, the threshold level that maximized the ratio

msw=ssw , a~0:35 was chosen (Figure S1). The computation of

both global and local CNA features was done using the toolbox

reported in [36].

Results

Participant characteristics (40 patients, 30 controls) are shown in

Table 1. The groups did not differ significantly in age or gender

balance.

Classification
The classifier resulted in a post hoc accuracy of 87% (CV error

88%, sensitivity 88%, specificity 87%). The significance of the

classification was verified through boot-strapping (see methods),

suggesting that significance was at least p,0.001.

The average number of ROIs to peak discrimination was

12.666.7 SD. The ROIs as ranked by the classifier across

validation folds are shown in Table 2. To graphically represent the

classification result, selected features from the top 13 ROIs

implicated by the classifier were projected to 2D using principal

component analysis (PCA – Figure 1). We compared the

classification performance to classification based on the raw

functional connectivity graphs, as well to local complex network

measures based classification [31], in both cases using the same

classifier build. However both alternative feature sets did not yield

significant results.

Motor Network Connectivity
As expected from the classification result, subsequent analysis of

group differences in motor connectivity patterns (Welch 2-sample

t-tests correcting for unequal variance, significance corrected using

random field theory), indicated profound motor functional

connectivity differences. Major group differences in the pattern

of motor functional connectivity between the right primary motor

cortex and left pallidum and cerebellum were observed (Figure 2,

Table 1. Participant demographics and clinical features.

Patients Healthy controls

N 40 (36 ALS, 4 PLS) 30

Mean age 5569 50614

Gender 24M:16F 13M:17F

Site of symptom onset 5B:15UL:20LL NA

Disease duration (months) 51655 NA

ALSFRS-R 3465.8 NA

Rate of disease progression
(ALSFRS points/month)

0.5660.64 NA

ALSFRS-R: revised ALS Functional Rating Scale.
BO: bulbar.
LL: lower limb.
PLS: primary lateral sclerosis.
UL: upper limb.
doi:10.1371/journal.pone.0085190.t001

Figure 1. A graphical representation of classification results.
The features and ROIs implicated by the classifier were embedded into
2D using principal component analysis.
doi:10.1371/journal.pone.0085190.g001

Table 2. Anatomical regions contributing to peak
classification.

ROI Participation

Right supp. motor area 100%

Left hippocampus 100%

Right inferior temporal gyrus 97%

Left temporal Pole: superior gyrus 100%

Left middle frontal gyrus 100%

Left inferior frontal gyrus, orbital 99%

Left paracentral lobule 100%

Right paracentral lobule 100%

Right middle frontal gyrus, orbital 100%

Left anterior cingulate 86%

Vermis 97%

Left para-hippocampal gyrus 89%

Left cuneus 27%

Participation indicates the fraction of training folds in which a region was
selected during optimization. Ranking reflects recursive kernel selection
employed by the classifier. Rows highlighted in gray designate motor regions.
doi:10.1371/journal.pone.0085190.t002
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Figure S2). In general, patients exhibited hyper-connected sub-

cortical motor networks spanning the basal ganglia and cerebel-

lum, extending to involve additional cortical areas such as the

infra-orbital gyrus rectus. This sub-cortical motor network

exhibited reduced functional connectivity to motor cortices.

Finally, the motor system at large exhibited reduced functional

connectivity to frontal areas, occipital areas such as the cuneus and

temporal lobe regions (fusiform and limbic cortices). In contrast we

did not find a significant correlation between the clinical measures

(ALSFRS-R, disease duration and progression) and the derived

motor functional connectivity maps.

Complex Network Analysis
In the complex network analysis, local differences were found

mainly in the motor cortices (Figure 3). The motor cortices of

patients (SMA L M1 R) exhibited reduced node degree compared

to controls, reflecting impoverished functional connectivity.

Additionally, the motor cortices (SMA L/R M1 L/R) exhibited

increased path length (average shortest path to all other network

Figure 2. Aberrant functional connectivity in ALS. Top left: Group differences in gray matter functional connectivity to the right motor cortex
(patients.control). Patients exhibited significant (p,0.01 random field corrected [61]) clusters of reduced connectivity in the 0.03–0.06 Hz frequency
band mostly in the cerebellum, cuneus, rectus and fusiform gyri. Top right: Group differences in gray matter functional connectivity to the left
Pallidum (patients.control). Patients exhibited significant (p,0.01 random field corrected) clusters of increased connectivity in the 0.03–0.06 Hz
frequency band mainly in the cerebellum and rectus and reduced connectivity to cingulate and frontal areas as well as right SMA. Bottom: Group
differences in gray matter functional connectivity to the left cerebellum (area 4/5 according to AAL classification - patients.control). Patients
exhibited significant (p,0.01 random field corrected) clusters of decreased functional connectivity in the 0.03–0.06 Hz frequency band in the motor
and somatosensory cortices together with clusters of increased connectivity mostly in the basal ganglia and cerebellum. Image was thresholded at
p= 0.001 and cluster extent of 5 voxels.
doi:10.1371/journal.pone.0085190.g002
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nodes) indicating compromised capacity for functional integration.

Finally, global analysis revealed significant increase in patients in

binary assortativity ([37]; figure 4) - a measure of the correlation in

degree between connected nodes - reflecting the widespread

increase in functional connectivity in both the basal ganglia and

cerebellum, whereas we did not find differences in the small world

properties of the functional networks between the two groups In

contrast no correlation was found between the derived CNA

measures and the clinical measures employed in this study

(ALSFRS-R, disease duration and progression).

Discussion

A multiple kernel learning classifier - block diagonal optimiza-

tion [31] – was able to define a pattern of motor and extra-motor

functional connectivity in the 0.03–0.06 Hz BOLD frequency

range at rest. The signature derived enabled the accurate

classification of a large group of ALS patients across a range of

clinical sub-types, and healthy controls. Complex network analysis

provided further evidence for a profound disintegration of cerebral

network organization in ALS, including evidence of hyper-

connected sub-cortical motor networks, with compromised func-

tional coupling between motor and somatosensory cortices, the

cerebellum and basal ganglia as well as widespread non-motor

cortical networks.

Previous Observations in the Resting-state in ALS
Studies of R-fMRI in ALS have also noted changes extending

well beyond the primary motor cortex. The analysis methods have

varied significantly, and the findings typically dichotomous, with

regions of apparently increased as well as decreased functional

connectivity (summarized in Table 3). Notwithstanding the need

to optimize, standardize and ultimately harmonize R-fMRI

analysis if it is to become a widely applicable tool, the common

theme among the studies to date is that the ALS brain lesion

represents a widespread system failure. An obvious hypothesis is

that extra-motor changes, particularly increased functional con-

nectivity, reflect compensatory processes in relation to the core

structural disintegration within the motor cortex. However, at least

two studies [13,15] have specifically observed increased functional

connectivity in those with faster rates of progression, at least

raising the possibility that it has a more primary role in

pathogenesis. Loss of interneuronal, inhibitory, cortical circuits is

one hypothesis in this regard [38].

Evidence for a Wider, Clinically Silent Motor Network
Pathology in ALS?

The patterns of altered functional motor connectivity in this

study demonstrate the interconnected nature of the motor system.

The loss of upper and lower motor neurons changes not only the

functional connectivity within the motor cortex in which these

upper motor neurons are embedded, but also in other motor areas

such as the basal ganglia and the cerebellum, whose involvement is

Figure 3. Altered topology of functional connectivity in the motor cortices in the 0.03–0.06 Hz frequency band. Right motor cortex
and left supplementary motor cortex exhibited reduced degree i.e. extent of functional connectivity to other brain areas. Motor cortex and SMA
exhibited increased path length bilaterally, indicating a reduced capacity for functional integration. *denotes p,0.05 corrected for ROI number (4)
using an FDR approach.
doi:10.1371/journal.pone.0085190.g003

Figure 4. Complex network analysis. ALS results in global changes
in the topology of inter-area functional connectivity. Inter area
functional connectivity in the 0.03–0.06 Hz band exhibited increased
assortativity i.e. correlation in degree between connected nodes in ALS
patients. This reflects the existence of hyper-connected sub-cortical
motor networks. We present the differences in the neighborhood of the
chosen threshold (o.35). * denotes p,0.05 corrected using an FDR
approach.
doi:10.1371/journal.pone.0085190.g004
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not visible as part of typical ALS symptomatology. In a previous

fMRI study of motor task performance in ALS that revealed an

increase in activation of the contralateral basal ganglia, this was

interpreted as a recruitment in order to compensate for the limited

primary motor cortex activation [39]. Similarly increased cere-

bellar activation was also found in a previous R-fMRI study [17],

and changes have been observed in the cerebellar gray matter [40]

and white matter longitudinally [41]. ALS associated with repeat

expansions in C9orf72 has characteristic cerebellar p62-positive

cellular inclusions [42], and structural imaging changes in the

cerebellum and thalami are prominent at least in cases of FTD

associated with this mutation [43]. The present results suggest that

cerebellar and basal ganglia network involvement may be more

generalized and common to apparently sporadic ALS cases as

well.

Patient-deviant functional connectivity was characterized by

hyper-connected networks spanning non-cortical motor areas

(notably putamen and cerebellum), as well as extra-motor cortical

areas. These hyper-connected networks showed compromised

connectivity to the motor cortices. In turn, not only did the motor

cortices exhibit an intrinsic hypo–connectivity, but the motor

system at large showed compromised functional connectivity to

widespread cortical networks, reflected in complex network

measures applied to the motor cortices. We speculate that this

impoverished connection topology might be associated with

reduced efficiency in the motor cortices. A previous study

postulated that the brain has a ‘‘rich club’’ organization, involving

dense interconnections formed by the major connectivity hubs in

the brain which extend into the basal ganglia though the putamen

[44]. The authors suggest this connectivity core may serve as a

functional relay coupling the modular structures comprising the

Table 3. Summary of resting-state functional MRI studies in ALS.

Participants Methodology Main finding Clinical correlation Reference

20 ALS 20 HC 9 LMN
disease controls

Whole-brain ICA Decreased activation in sensorimotor and
default-mode networks compared to both
HC and LMN disease controls

– [11]

20 ALS 20 HC Parcellation of PMC in to
paired hemispheric ROIs

Decreased interhemispheric PMC FC Decreased FC strength with
increasing hand strength
disparity

[12]

12 ALS 12 HC Whole-brain graph analysis,
combined with DTI and SBM

Decreased interhemispheric PMC FC,
callosal FA and PMC thickness

Increased PMC FC linked to
faster progression rate

[13]

26 ALS 15 HC SMC ‘seed’ for wider whole-
brain FC, combined with DTI

Increased FC between left SMC and right
cingulate/parahippocampal gyri and
cerebellum; more widespread pattern
in those without CST DTI changes

Increased disability linked to
decreased SMC FC

[14]

25 ALS 15 HC Whole-brain dual-regression
analysis of connectivity
to a DTI-defined ‘ALS-specific’
cortical network

Increased FC in regions of decreased
structural connectivity spanning
motor, pre-motor and
frontotemporal cortices

Increased FC linked to
faster progression rate

[15]

20 ALS 20 HC Whole-brain ICA
combined with VBM

Decreased activation in sensorimotor
(PMC) and right fronto-parietal networks,
with associated grey matter
volume reductions

Loss of the normal negative
modulation of age on default-
mode network (specifically PCC)
activity

[16]

20 ALS 15 HC Whole-brain ICA
combined with VBM and
correlated to ‘RSN
templates’

1. Default-mode network: decreased FC
of right orbitofrontal gyrus
and increased FC of left
precuneus; 2. Right fronto-parietal network:
decreased FC of left anterior
insula/inferior frontal cortex and
increased FC of right
angular gyrus; 3. Left fronto-parietal
network: increased FC of left inferior
parietal lobule and middle
cingulum

1. Default-mode network:
decreased right precuneus FC
with increasing disability and
increased left precuneus/angular
gyrus FC with worse cognitive
function; 2. Right fronto-parietal
network: increased right angular
gyrus and left PCC FC with worse
cognitive function

[17]

20 ALS 20 HC Whole-brain amplitude of
low-frequency fluctuation
combined with VBM

Decreased amplitude fluctuation in inferior
occipital lobe, fusiform gyri and right post-
central gyrus; Increased amplitude fluctuation
in left middle frontal gyrus

Increased amplitude fluctuations
with increased disease duration
and slower rate of progression
in left middle frontal gyrus

[18]

CST: corticospinal tract.
DTI: diffusion tensor imaging.
FC: functional connectivity.
HC: health controls.
ICA: independent component analysis.
LMN: lower motor neuron.
PCC: posterior cingulated cortex.
PMC: primary motor cortex.
RSN: resting-state network template.
SBM: surface-based morpometry.
SMC: supplementary cortex.
VBM: voxel-based morphometry.
doi:10.1371/journal.pone.0085190.t003
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CNS. Thus, it is possible that the decoupling of the motor cortices

from the basal ganglia in particular has far-reaching implications.

Similar complexity analysis has been applied to ALS using DTI,

rather than R-fMRI data. Studies have identified an impaired sub-

network of reduced white matter connectivity centered around the

primary motor cortex and paracentral lobule, but also specifically

involving pallidum, middle frontal gyri and and hub regions

represented by the posterior cingulate and precuneus [45], and

with progressive disintegration over time [46].

A Tool for Pre-symptomatic Studies?
The ALS R-fMRI signature defined in this study showed a

striking lack of relationship to clinical variables. This has been a

common finding in many ALS neuroimaging studies, across a

range of techniques [47]. Clinical heterogeneity, with a bias

towards atypical slowly-progressive cases in clinic-based studies

like ‘BioMOx’, is an obvious concern. It is inherently challenging

to capture ALS patients soon after symptom onset. The mean

delay in diagnosis is resistant at one year [48], and only the most

aggressive of cases present rapidly to specialists. However it also

seems highly likely that, as in Alzheimer’s [49] and Huntington’s

diseases [50], pathological events in ALS occur long before the

onset of symptoms, and we suspect there is a significant ‘floor

effect’ in pathological studies of symptomatic cases as a result,

compounded by the fact the functional rating scales seem likely to

reflect very downstream consequences of network dysfunction.

In what is an essentially sporadic disorder, a potential window

on the earliest pathological changes is provided by the study of

pre-symptomatic carriers of dominant genes linked to familial ALS

[2]. In the few neuroimaging studies carried out in these

individuals, there is already evidence for GABA-ergic cortical loss

[51], white matter disorganization [52] [51], and spinal cord

metabolite alterations [53]. Longitudinal R-fMRI studies in these

individuals, using the unbiased approach outlined here has major

potential to unravel the sequence of cerebral network changes, and

to serve as biomarkers for future neuroprotective strategies.

Prospects for Clinical Translation
These classification results add to a growing body of work

targeted at exploring the potential of MRI-derived biomarkers to

serve in the clinical setting, not only in ALS [54], but in other

diseases such as depression, autism and schizophrenia [55–57].

Machine learning in the paradigm of MRI is intrinsically

challenging. Data on the one hand are extremely high dimen-

sional, yet the restrictions inherent to collecting fMRI data

currently result in small sample sizes. Applying state-of-the-art

machine learning algorithms greatly increases performance,

especially in conjunction with feature selection as in this study.

However, this comes at the cost of even larger data sets to allow for

robust out of sample generalization, moving further away from the

ultimate goal of single-subject analysis. The presence of numerous

confounds known to influence functional connectivity-based

measures, such as sex, age, motion [58], and ‘intelligence’ [59],

not only calls for explicit modeling of demographic factors, but

places even more demands on the volume and richness of data.

Multi-center, international initiatives for data sharing and

standardization are needed to attempt to address such issues,

and these have begun in ALS [23] [60].

Conclusions

These results demonstrate the unique potential of R-fMRI data

to capture degeneration in ALS at the systems-level. The data can

be acquired non-invasively in less than 10 minutes and in theory as

part of a routine clinical work-up. The diagnostic biomarker value

of the ALS resting-state signature will depend upon its perfor-

mance in distinguishing disease mimics rather than healthy

controls, and its monitoring value in its sensitivity to longitudinal

change compared to clinical assessment. Meanwhile, this type of

network analysis of cerebral functional connectivity confirms that

ALS pathology has impact on widespread non-cortical areas

whose involvement is not apparent on clinical examination.

Supporting Information

Figure S1 Small world properties of subject data. Left.

The small world ratio as a function of connection threshold across

subjects. As shown by numerous previous studies, the topology of

the functional network during rest exhibits small world properties.

Right. The mean to variance ratio across subjects as a function of

connection threshold. The threshold value 0.35 that maximized

this ratio was employed for the subsequent analysis.

(EPS)

Figure S2 Aberrant functional motor connectivity in
ALS. Top. Right primary motor cortex Middle. Left pallidum

Bottom. Bottom right cerebellum. Image was thresholded at

p= 0.001 and cluster extent of 5 voxels.

(TIF)

Appendix S1 Multi kernel Block Diagonal optimization.
The classification pipeline employed in this study is described in

greater detail.

(DOCX)
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