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Turning up the heat: heat stress induces markers of
programmed cell death in Plasmodium falciparum
in vitro

D Engelbrecht*,1 and TL Coetzer1,2

Malaria is characterised by cyclical febrile episodes that result from the rupture of mature schizont-infected erythrocytes
releasing merozoites. In patients infected with Plasmodium falciparum, fever may reach peak temperatures as high as 41 1C.
Febrile episodes typically have a deleterious effect on parasites and probably benefit the host by aiding parasite clearance;
however, the parasite may also gain advantage from limiting its burden on the host and prolonging infection to ensure
development and transmission of slow-maturing gametocytes. Programmed cell death (PCD) may provide the parasite with a
mechanism of self-limitation, although the occurrence and phenotype of PCD in the erythrocytic stages remain controversial due
to conflicting data. This study aimed to characterise the cell death phenotype of P. falciparum in response to in vitro heat stress.
A variety of biochemical markers of PCD, including DNA fragmentation, mitochondrial dysregulation and phosphatidylserine
externalisation, as well as morphological studies of Giemsa-stained thin smears and real-time microscopy were utilised to
characterise the phenotype. Heat stress decreased P. falciparum growth and development in vitro. Late-stage parasites were
more susceptible, although early stages were more affected than expected. Early-stage parasites exposed to 41 1C exhibited
markers of an apoptosis-like PCD phenotype, including DNA fragmentation and mitochondrial depolarisation. Heat-stressed late-
stage parasites showed no significant DNA fragmentation or mitochondrial dysregulation; however, cytoplasmic vacuolisation
was suggestive of an autophagy-like form of PCD. Our results therefore showed that biochemical and morphological markers of
PCD varied with intra-erythrocytic parasite development and that P. falciparum exhibited facets of both apoptosis- and
autophagy-like phenotypes after exposure to febrile temperatures, which may reflect a unique PCD phenotype.
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Malaria is characterised by acute cyclical febrile episodes
that are triggered by the rupturing of mature schizont-
infected erythrocytes releasing merozoites.1 In Plasmodium
falciparum malaria, fever typically recurs every 48 h,2,3

coinciding with the parasite’s erythrocytic life cycle,2 and
may peak as high as 41 1C for 2–6 h.3 However, multiple
asynchronous infections may lack periodicity3 and febrile
episodes may therefore occur more frequently and last longer.

Elevated temperatures of 40 1C for 6 h or more significantly
inhibited P. falciparum growth in vitro,4–6 with greater than
95% parasite death after 48 h.6 Exposure to 41 1C significantly
decreased parasite survival after only 2 h,7 with parasite death
noticed after as little as 30 min exposure.8 The late develop-
mental stages of trophozoites and schizonts were more
susceptible to hyperthermal damage, whereas the ring stages
were more resistant,4–8 with exposures to 40 1C causing
synchronization towards the ring stage.4,8 Exposure to 41 1C

has been shown to also inhibit the growth of these early
stages.7,8 Although febrile episodes are generally considered
to benefit the host by suppressing parasite growth and
assisting in clearance,5 parasites may also derive benefit
from increased temperatures. In vitro studies have shown that
P. falciparum growth rates and development were accelerated
when parasites were exposed to 40 1C for 2 h, incubated at
37 1C for 10 h and again exposed to 40 1C for 12–24 h.9 The
parasite life cycle was also accelerated after exposure to less
severe temperatures of 38.5–39 1C.10 Incubation at 40 1C for
1–2 h enhanced the cytoadherence of mature P. falciparum-
infected erythrocytes (pRBC) to CD36 and ICAM-1 receptors
and also caused adherence of ring-stage parasites, which do
not normally bind to these receptors.11 Febrile temperatures
have also been shown to reduce the deformability of pRBC,
which may aid in sequestration,12 as well inducing phospha-
tidylserine (PS) externalisation in pRBC.10
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Heat shock triggers activation of the intrinsic apoptosis
pathway in metazoans, resulting in permeabilisation of the
mitochondrial outer membrane with concurrent depolarisation
of the mitochondrial transmembrane potential (DCm)
and the initiation of an enzyme cascade that ends in DNA
fragmentation.13 A growing body of evidence suggests that
P. falciparum may undergo programmed cell death (PCD),
although some conflicting results have suggested a range of
cell death phenotypes, including apoptosis, autophagy-like
cell death, necrosis or simply undetermined. Phenotypes may
also not be exclusive and overlap may occur.14 According to
the best of our knowledge, data regarding the possible
induction of PCD by heat stress are limited to two
studies, which have offered conflicting conclusions, with
an apoptosis-like form of PCD suggested on the one hand7

and the other suggesting that cell death more closely
resembled secondary necrosis, although some form of
PCD was not ruled out.6

We present a comprehensive in vitro study that utilised a
variety of biochemical and morphological markers of cell
death, as well as heat stress of different duration and intensity,
to provide extensive characterisation of the response of
P. falciparum to conditions similar to febrile episodes
experienced during malaria. P. falciparum exhibited markers
of PCD, including DNA fragmentation, mitochondrial dysre-
gulation, PS externalisation and cytoplasmic vacuolisation.
However, early and late intra-erythrocytic stages differed in
their response to heat stress and exhibited different pheno-
types, which may represent different facets of a single PCD
mechanism unique to P. falciparum. Febrile temperatures
may induce self-limitation of parasite populations through
PCD in vivo to the benefit of both the host and parasite.
Elucidation of a PCD mechanism distinct from metazoans in
P. falciparum may yield novel drug targets to be exploited in
manipulating parasite fate.

Results

Heat stress inhibits P. falciparum growth and development.
Parasitised cultures were exposed to heat stress to mimic
either the extended fever periods experienced during
prolonged malaria (40 1C for 6 or 24 h, Figure 1) or the
occasional high peaks of fever paroxysms (41 1C for 2 h,
Figure 2), and the response of the parasites was char-
acterised with biochemical markers of PCD (Table 1).
We observed time-dependant inhibition of growth and
development by exposure to 40 1C, with late-stage parasites
more severely affected. After 6 h exposure, an apparent
delay was noted in the development of ring-stage parasites
to late stages between 24 and 48 h (Figure 1). Ring-stage
parasites became more vulnerable to heat stress at 41 1C
and were more affected than previously thought: B75% of
early-stage parasites exposed to 41 1C for 2 h (Figure 2)
failed to develop, compared with a 25% reduction in parasite
survival previously shown under the same conditions.7 The
effect of heat stress on late-stage parasites also became
more pronounced at 41 1C, with very few parasites observed
24 h after exposure, in comparison with control parasites
maintained at 37 1C, which replicated to form new rings
(Figure 2).

Heat stress induces markers of PCD in P. falciparum.
P. falciparum exposed to heat stress exhibited a number of
markers of PCD, including DNA fragmentation, mitochondrial
dysregulation, PS externalisation and cytoplasmic vacuolisa-
tion, which varied with the developmental stage and in some
instances with the temperature and duration of heat stress
(see Table 1 for summary).

DNA fragmentation, quantified by the flow cytometric
TUNEL (terminal deoxynucleotidyl transferase dUTP nick
end labelling) assay, was observed in mixed-stage cultures
exposed to 40 1C for 24 h (Figures 3aii and bii) but not for 6 h
(Figures 3ai and bi). Therefore, 24 h was chosen for further
experiments involving exposure to 40 1C. DNA fragmentation
was also observed in synchronised ring-stage parasites
exposed to 41 1C for 2 h (Figures 3aiii and biii). Surprisingly,
late-stage parasites exposed to the same stress exhibited
insignificant DNA fragmentation (Figures 3aiv and biv) at 24 h,
despite a significant decrease in parasitaemia (Figure 2).
Therefore, exposure to 41 1C may have caused the formation
of nonviable merozoites that failed to invade new cells,
whereas surviving parasites likely sustained little or no
damage.

Mitochondrial depolarisation, generally considered to be
characteristic of apoptosis,15–20 was observed immediately
following heat stress in early-stage parasites exposed to 40 1C
for 24 h (Figures 4ai and bi), although it was not noted the
following day (Figures 4aii and bii). Early-stage parasites
exposed to 41 1C for 2 h exhibited slight mitochondrial
depolarisation immediately after heat stress (Figures 4aiii
and biii) that was significant the next day (Figures 4aiv and
biv). Many of the ring-stage parasites exposed to 40 1C
developed further (Figure 1), whereas B75% of ring-stage
parasites exposed to 41 1C did not (Figure 2aiii). Surprisingly,
late-stage parasites exposed to 40 1C for 24 h exhibited
mitochondrial hyperpolarisation (Figures 5ai and bi), that
was less prominent the following day (Figures 5aii and bii). No
change was observed in the DCm of late-stage parasites
exposed to 41 1C (Figures 5aiii-iv and biii-iv). In accordance
with previous studies,10 increased PS externalisation was
observed in late-stage pRBC exposed to 41 1C a day after
heat stress was withdrawn (Figures 6avi and bvi). No increase
was noted in synchronised ring-stage pRBC immediately after
exposure to 41 1C for 2 h (Figures 6aiii and biii), with an
apparent decrease noted at 48 h (Figures 6aiv and biv);
however, when comparing the heat-stressed culture at both
time points (iii and iv), no change was apparent. PS
externalisation was also noted in mixed cultures immediately
after 24 h exposure to 40 1C (Figures 6ai and bi).

Most late-stage parasites exposed to 41 1C for 2 h were
observed outside erythrocytes on Giemsa-stained thin
smears at 24 h, whereas many intracellular parasites exhib-
ited jagged borders and prominent vacuoles within the
cytoplasm (Figure 7). Real-time microscopy showed that
many of the remaining intracellular parasites, despite not
replicating to new ring stages, presented with continued rapid
movement (Supplementary Videos) similar to that observed in
37 1C controls and considered characteristic of healthy
parasites.21 A clear recovery, evidenced by increased
parasitaemia (Supplementary Figure 1), was noted 5 days
after heat stress. Ring-stage parasites exposed to the same
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stress conditions also showed abnormal morphology on
Giemsa-stained thin smears (Figure 7), although morpholo-
gically normal parasites were also observed.

Discussion

In vitro P. falciparum exhibited various biochemical markers of
PCD, including DNA fragmentation, mitochondrial dysregula-
tion and PS externalisation, as well as some abnormal

morphological features including cytoplasmic vacuolisation,
in response to heat stress. Different stages of the parasite life
cycle exhibited a different combination of PCD markers, which
also varied depending on the temperature and the duration of
the heat stress.

Heat stress in P. falciparum: a single degree makes a
difference. Several previous studies have shown that febrile
temperatures inhibit P. falciparum growth in vitro4,5,8,22 and
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Figure 1 Exposure to 40 1C inhibited growth and development in mixed-stage P. falciparum in an exposure-dependant manner. Compared with control parasites kept at
37 1C (ai), cultures exposed to 40 1C for 6 or 24 h (aii and iii, respectively) showed an exposure-dependant inhibition in the formation of new ring-stage parasites (Early) from
late-stage parasites (Late) at 24 h, with a correspondingly smaller late-stage population at 48 h (b). Late-stage parasites were more affected by heat stress. However, a delay
in the development of ring-stage parasites to late stages was apparent between 24 and 48 h after 6 h exposure, which resulted in a broad, indiscrete peak at 48 h
(aii), indicating a population of intermediate development. Furthermore, after 24 h exposure, few early-stage parasites at 24 h appeared to progress to late stages at 48 h
(aiii and bii). Raw flow cytometry histograms (a) and stacked bar graphs (b) are shown. Stacked bar graphs show changes in parasitaemia (total bar height) and relative
composition of the parasite population with respect to early- and late-stage parasites. For (bi) n¼ 2, for (bii) n¼ 6 at 24 h and n¼ 4 at 48 h. Data points represent arithmetic
mean±S.E.M. Heat stress was applied at 0 h
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have noted that the effect varies with temperature.5,8

However, only two studies have investigated the appearance
of PCD markers in response to heat stress and those studies
utilised different strains, cell death markers and heat stress

conditions, and have offered conflicting conclusions.6,7

We utilised heat stress conditions similar to both previous
studies and scored a variety of biochemical and morpholo-
gical markers to characterise the cell death phenotype in

0 hours 2 hours 24 hours

R
el

at
iv

e 
ce

ll 
co

un
t

Early Late Early Late Early LateRBC RBC RBC

Early Late Early Late Early LateRBC RBC RBC

Early Late Early Late Early LateRBC RBC RBC

Early Late Early Late Early LateRBC RBC RBC

S
yn

c early stag
es

S
yn

c late stag
es

S
yn

c early stag
es

S
yn

c late stag
es

37°C
41°C

 2 h
o

u
rs

(ii)

(iii)

(iv)

0 hours 2 hours 24 hours 0 hours 2 hours 24 hours

P
er

ce
nt

ag
e 

pR
B

C
 

37°C Early stages

37°C Late stages

Time interval

41°C Late stages

41°C Early stages

(i) Early stages, 41°C for 2 hours (ii) Late stages, 41°C for 2 hours

(i)

10

8

6

4

2

0

10

8

6

4

2

0

FL 1 Fluorescence: Thiazole orange (log)

Figure 2 Exposure to 41 1C for 2 h inhibited replication and development of both early- and late-stage synchronised P. falciparum. Representative flow cytometry
histograms (a) showed the progression of early (i) and late (ii) stage parasites kept at 37 1C, in comparison with early (iii) and late (iv) stage parasites exposed to 41 1C for 2 h.
Time intervals are indicated on top, whereas synchronisation and treatment conditions are indicated on the right. (b) Stacked bar graphs show changes in parasitaemia (total
bar height) and relative composition of the parasite population with respect to early- and late-stage parasites. A small portion of ring stage (Early) parasites exposed to 41 1C
developed to late stages (Late), while most remained as ring-stage parasites. Late stages exposed to 41 1C failed to produce viable merozoites to infect erythrocytes and
virtually no parasites were detected at 24 h, compared with 37 1C control parasites, which showed a large new ring population. Data points represent arithmetic mean±S.E.M.
(n¼ 4 for bi and n¼ 5 for bii). Heat stress was applied at 0 h
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intra-erythrocytic P. falciparum after heat stress. An apoptosis-
like phenotype was previously suggested based on gene-
expression studies in asynchronous parasites and DNA
fragmentation detected in schizont-stage parasites by the
in situ TUNEL assay, after exposure to 41 1C for 2 h.7 After
the same exposure, our data showed no significant DNA
fragmentation in late-stage parasites; however, we did
observe DNA fragmentation in ring-stage parasites, which
Oakley et al.7 did not consider. We also utilised flow
cytometry to quantify the TUNEL assay, rather than
fluorescence microscopy.7 After exposure to 40 1C for
various durations up to 48 h, Porter et al.6 reported a lack
of DNA fragmentation or caspase activation, mitochondrial
depolarisation in late-stage parasites as well as food vacuole

swelling and lysis. Although heat-induced PCD was not ruled
out, it was suggested that the parasite cell death response
more closely resembled secondary necrosis.6 In contrast, we
observed significant DNA fragmentation in mixed-stage
cultures after exposure to 40 1C for 24 h, quantified by the
TUNEL assay, which is more sensitive than the agarose gels
utilised previously.6 Furthermore, we surprisingly found
mitochondrial hyperpolarisation in late-stage parasites,
whereas only early-stage parasites showed depolarisation.
It is worth noting that, although we utilised similar mitochon-
drial staining methods, we discriminated between early- and
late-stage pRBC based on hydroethidine (HE) uptake,
whereas Porter et al.6 used synchronised cultures. Our data
showed that differences in heat stress conditions may at

Table 1 Summary of biochemical markers of cell death observed in P. falciparum after exposure to increased temperatures

Parasite life stage Early stages at 0 h Late stages at 0 h

Exposure conditions 40 1C for 24 h 41 1C for 2 h
Time of measurements Immediately after heat

stress
22 h after heat stress Immediately after heat

stress
22 h after heat stress

Growth and development Slight growth inhibition.
Progression to late stages
was similar to 37 1C control
parasites (Figure 1)

Inhibition of growth. A small
number developed to late
stages (Figure 2)

Severe growth inhibition
with very few ring parasites
observed (Figure 1)

495% growth inhibition, with
no new ring-stage parasites
formed (Figure 2)

DNA fragmentation * Yes (Figure 3aiii) * Slight (Figure 3aiv)
Mitochondrial
polarisation

Depolarised (Figure 4bi) Depolarised (Figure 4bii) Hyperpolarised (Figure 5bi) No change (Figure 5bii)

PS externalisation * No (Figures 6c and d) * Yes (Figure 6f)

Parasite life stages, incubation conditions and relevant figures for each result are indicated. Asterisks (*) indicate no data, as effects were observed in mixed-stage
cultures
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Figure 3 Heat stress induced DNA fragmentation in P. falciparum, as measured by the TUNEL assay. Control parasites, incubated at 37 1C, are indicated in green,
whereas heat-stressed parasites are indicated in red. All samples were collected at 24 h. TUNEL results indicated significant DNA fragmentation in mixed-stage parasites
exposed to 40 1C for 24 h and synchronised ring-stage parasites exposed to 41 1C for 2 h, with only slight fragmentation in synchronised late-stage parasites exposed to the
same stress, compared with control parasites at identical time intervals. (a) Overlaid fluorescence histograms of the TUNEL assay indicate the FL1 (dUTP-FITC) fluorescence
of isolated parasites from individual heat-stressed (red) or control (green) data sets. Fragmentation resulted in a higher fluorescence, indicated by a shift towards the right. Heat
stress conditions are indicated in the top right corner of each overlay. Figure numbers (i–iv) match those of the bar graphs. (b) Bar graphs summarise TUNEL results for mixed-
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least partly explain the conflicting conclusions of previous
studies.6,7 More significantly, however, our data suggested
that the PCD phenotype depends on the intra-erythrocytic
developmental stage. Early-stage parasites showed bio-
chemical markers of PCD that were reminiscent of an
apoptosis-like form of PCD. The phenotype observed in
late-stage parasites, which exhibited a different combination

of biochemical markers as well as cytoplasmic vacuolisation
and continued survival after heat stress despite no replica-
tion, appeared similar to autophagy-like cell death.

Give and take: the potential mutual benefits of fever in
malaria. Central to this study was the following question: who
benefits most from fever during malarial illness – parasite or

Figure 4 Heat stress induced mitochondrial depolarisation in early-stage parasites. Mitochondrial depolarisation was observed immediately following heat stress in early-
stage parasites exposed to 40 1C for 24 h (i), although it was not noted the following day (ii). Early-stage parasites exposed to 41 1C for 2 h exhibited slight mitochondrial
depolarisation immediately after heat stress (iii) that was significant the next day (iv). (a) Overlays of DiOC6(3) fluorescence histograms show representative merged data sets
of at least two replicates for each time point and condition as an individual peak. A decrease in the median fluorescence of a population is indicated by a shift to the left
(depolarisation). Fluorescence values were taken as the median fluorescence of individual populations. (b) Bar graphs indicate the arithmetic mean of replicates±S.E.M.
Comparisons between control and heat-stressed parasites showed P-values that are significant at o0.001 (***). Heat stress conditions are indicated on the right
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host? On the one hand, fever may provide the host with a
mechanism for parasite clearance.5 Complete clearance
would be most beneficial, but in this regard fever is
relatively inefficient, as newly invaded parasites derived
from the ruptured schizonts that caused the onset of fever
are generally spared, even after high fever peaks.23 It seems
likely that parasites that survived exposure to 40 1C in this
study were early-stage parasites. Our data showed that even
after exposure to a high peak temperature of 41 1C, a
significant number of ring-stage parasites and even some
late-stage parasites survive, although a measurable increase

in parasitaemia was only noted after several days of
continuous culture. On the other hand, fever may provide a
number of benefits to the parasite, including accelerated
parasite maturation, as well as increased cytoadherence and
reduced deformability of pRBC, thought to aid in the
sequestration of pRBC to microvasculature.9–12 With every
asexual parasite capable of producing as many as 32 new
merozoites at the end of a 48 h life cycle,24 uncontrolled
parasite replication would place the host at risk of death
before the slow-forming gametocytes could be transmitted.
A potential mutual benefit of exposure to increased
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temperatures therefore lies in the induction of PCD: by
providing the parasite with the means to self-limitation,
the burden of infection on the host is reduced, although
sufficient parasites are conserved for continued sublethal
infection.23,25 Our data suggest that intra-erythrocytic
P. falciparum is likely to undergo PCD in response to heat
stress.

PCD markers varied with life stages: different pieces,
same puzzle? P. falciparum early and late developmental
stages exhibited some intriguing differences in their
response to the same stress conditions. Although ring-stage
parasites exposed to 40 1C for 24 h exhibited the depolarisa-
tion that is expected to result from the permeabilisation of the
outer mitochondrial membrane during apoptosis,13 late-stage
parasites exposed to the same stress surprisingly exhibited
mitochondrial hyperpolarisation. Mitochondrial hyperpolari-
sation has been observed in protozoa other than
Plasmodium. In heat-stressed Leishmania, hyperpolarisation
formed an early part of an apoptosis-like cell death and was

correlated with increased mitochondrial respiration, which
drove superoxide radical production, in turn causing oxidative
damage that mediated cell death.26 However, during
apoptosis-like cell death in Trypansoma, mitochondrial
hyperpolarisation was associated with decreased mitochon-
drial respiration.27 Both mitochondrial depolarisation and
hyperpolarisation may be apoptosis responses in trypanoso-
matids.28 In metazoans, a transient increase in the DCm is
thought to serve as a key checkpoint in determining cell
fate,27 and is correlated with increased production and
accumulation of reactive oxygen species (ROS) by the
mitochondria during apoptosis.17,18 However, mitochondrial
hyperpolarisation and increased ROS generation have
also been implicated in the priming and occurrence of
necrosis.15,29,30 In P. falciparum, we observed continued
mitochondrial hyperpolarisation of late-stage parasites after
24 h exposure to 40 1C and it is not entirely clear whether this
marker is indicative of PCD or perhaps a necrosis-like form of
cell death. Furthermore, the overall role of the mitochondrion
in PCD in asexual P. falciparum may be questioned. Asexual
stages of P. falciparum contain only a single, minimally active
mitochondrion that functions primarily in de novo pyrimidine
synthesis.31

We also observed differences between the PS externalisa-
tion of early- and late-stage pRBC exposed to 41 1C.
In accordance with a previous study,10 late-stage pRBC
showed increased PS externalisation after exposure to heat
stress. However, no change was observed in early-stage
pRBC. During apoptosis, loss of plasma membrane asym-
metry results in PS externalisation, which is often used as a
marker of apoptosis and is thought to serve as a signal in
mammalian cells for phagocytes to engulf and digest cellular
remnants.32 Would PS externalisation by pRBC be an
advantage or disadvantage to the parasite residing within?
Increased PS externalisation, observed both during parasite
maturation10,33,34 and after stress by febrile temperatures,10

has been suggested to aid in the cytoadherence and
sequestration of pRBC in microvasculature, thereby protecting
parasites from splenic trapping and destruction.34,35 In this
study, PS externalisation was only observed in late-stage pRBC
exposed to 41 1C a day after stress was withdrawn. PS
externalisation also occurs during erythrocyte apoptosis,36,37

and oxidative stress from P. falciparum infection has been
shown to induce host cell apoptosis38 and has been proposed
to be the cause of PS externalisation in pRBC.10 In this light,
it is possible that increased PS externalisation by late-stage
pRBC may simply be a by-product of oxidative stress from
parasites.

Although biochemical markers of PCD are preferred over
morphological criteria,15 the assessment of autophagy is
largely based on morphology.39 Therefore, in light of the
dissimilar responses of early- and late-stage parasites
exposed to 41 1C, particularly the relative lack of biochemical
markers of PCD exhibited by late-stage parasites despite a
significant effect on parasite growth, morphological studies of
both Giemsa-stained fixed slides and unstained, wet-mounted
samples were also considered for parasites exposed to 41 1C.

Cytoplasmic vacuolisation was observed 1 day after heat
stress for several subsequent days in late-stage parasites
exposed to 41 1C for 2 h. Real-time microscopy showed that a

(ii)

(iii) (iv) (iv)

(ii)

(iii)

Late stages
41°C 2 hours

Early stages
41°C 2 hours

Late stages
37°C

Early stages
37°C

(i) (i)

Figure 7 Heat stress induced abnormal morphology in P. falciparum. Control P.
falciparum morphology showed trophozoites (a) that were large, full, well-rounded
with clear and concentrated haemazoin and relatively even staining; and ring-stage
parasites (b) that showed lightly-stained, delicate and rounded rings with single
chromatin dots. In contrast, 24 h after exposure to 41 1C for 2 h, trophozoites (c)
appeared unevenly stained with jagged borders and cytoplasmic vacuoles (ci–iii),
or were condensed and very darkly stained (civ). Ring-stage parasites that were
exposed to the same stress (d) showed variable morphology at 24 h. Some rings
appeared slightly vacuolised (di) and remained as ring-stage parasites 24 h after
exposure instead of progressing to trophozoites. Some morphologically normal
trophozoites were also observed (dii). Many ring-stage parasites were abnormally
large with a central vacuole (diii). Chromatin-like dots without any ring structure
were also observed in many cells (div)
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significant number of late-stage parasites exposed to 41 1C
showed rapid movement within the food vacuole for several
days after exposure to heat stress. Such movement is
characteristic of healthy parasites21 and has been shown to
be decreased by the antimalarial drug artesunate, which also
caused the appearance of ‘pyknotic’ parasites.21,40 It has
been suggested that loss of movement in the food vacuole is a
very early indicator of an adverse parasite response to
external stimuli that precedes other morphological changes.40

Despite showing a significant number of parasites that were
apparently still alive, parasites did not form new ring-stage
parasites as would be expected of healthy parasites (Figure 2)
and the appearance of new ring-stage parasites and increas-
ing parasitaemia was delayed by several days
(Supplementary Figure 1). The eventual recovery of para-
sitaemia and the formation of new ring-stage parasites
indicate that at least a few synchronised late-stage parasites
survived exposure to 41 1C. The appearance of cytoplasmic
vacuolisation, along with the lack of growth exhibited by
apparently living parasites, is suggestive of an autophagy-like
form of PCD. Similar to Totino et al.,41 who observed
autophagy-like cell death in drug-treated P. falciparum, we
also observed very little DNA fragmentation by the TUNEL
assay, which was deemed not to be significant. ‘Crisis form’
morphology was also reported by Oakley et al.7 under heat
stress conditions similar to those employed by the present
study.

Autophagy is a process of sequestration and subsequent
degradation of cytoplasmic components that is regulated
primarily by the sequential action of several autophagy-
related (Atg) proteins. Plasmodium genomes encode a
number of putative Atg orthologues,42 although the most
well-studied of these, the ubiquitin-like Atg8, has been shown
to localise to the apicoplast, rather than the cytoplasm,
in P. falciparum.43 Therefore, it is unclear whether the
P. falciparum proteome encompasses the tools required
to undergo autophagy-like cell death, with very few observations
of the phenomenon reported. However, it has been suggested
that the sequestration of micronemes and rhoptries in double-
membrane structures during the differentiation of sporozoites
to trophozoites in hepatocytes may represent a type of
functional autophagy in malaria parasites.42 It is also not clear
whether autophagy ‘in dying cells is the cause of death or
actually an attempt to prevent it’,39 particularly as autophagy
often inhibits the induction of apoptosis or protects cells from
exposure to apoptotic stimuli.44 Our own observations reflect
this conflicting nature: the slow decrease of living parasites
observed by real-time microscopy suggests that parasites are
undergoing cell death; however, the eventual recovery of
parasitaemia suggests that at least some parasites survive
this process. It has been suggested that apoptosis and
autophagy-like cell death are forms of PCD that may share
some common regulatory proteins and the two may be
induced simultaneously.44 We observed that the same
stimulus that induced an apoptosis-like form of PCD in ring-
stage parasites also induced autophagy-like cell death in late-
stage parasites.

Apples and pears: the problem of identifying metazoan
PCD phenotypes in P. falciparum. Despite mounting

evidence suggesting that P. falciparum undergoes PCD in
response to heat stress, the exact phenotype of cell
death remains undetermined. Apoptosis and autophagy are
recognised phenotypes of PCD, whereas necrosis is
considered a non-PCD phenotype of cell death,15 although
some active form of necrosis might also be possible.45

However, overlap between phenotypes may occur and many
markers, including DNA fragmentation and mitochondrial
depolarisation, may also occur during necrosis.14 Our data
provided evidence suggesting that the asexual blood stages
of P. falciparum may be capable of undergoing both
apoptosis-like and autophagy-like forms of PCD. However,
P. falciparum may exhibit a unique PCD phenotype that
could include such phenomena as both mitochondrial
hyperpolarisation and depolarisation—observations that
were attributed to apoptosis in other protozoans.29

The origin of PCD may precede that of multicellularity46

and thus with an organism as phylogenetically ancient and
evolutionary distant from other taxa as P. falciparum,47

attempting to impose metazoan PCD phenotypes may be
misleading.

Conclusion

Intra-erythrocytic P. falciparum exhibited markers of an
apoptosis-like PCD phenotype in ring-stage parasites and
an autophagy-like cell death phenotype in late-stage parasites
in response to heat stress. However, whether these are truly
different phenotypes or simply different facets of a PCD
phenotype unique to P. falciparum and distinct from metazoan
apoptosis remains unclear. Elucidation of the underlying
protein machinery responsible for the execution of PCD in
P. falciparum will provide insight into the working of active cell
death and the complex interactions between parasite and
host.

Materials and Methods
Reagents. The APO-DIRECT TUNEL kit and FITC Annexin V Apoptosis
Detection Kit II were obtained from Becton Dickinson (BD Pharmingen, San Diego,
CA, USA). Thiazole orange (TO), HE, 3,30-dihexyloxacarbocyanine iodide
(DiOC6(3)), carbonyl cyanide m-chlorophenylhydrazone (CCCP) were obtained
from Sigma-Aldrich (St. Louis, MO, USA). Albumax II was obtained from Gibco
(Gran Island, NY, USA).

P. falciparum culture. The 3D7 strain of P. falciparum was maintained
according to established methods,48 with some modifications.49 Briefly, parasites
were maintained in malaria culture medium (MCM: RPMI 1640, 0.5% Albumax II
and 0.21% sodium bicarbonate, supplemented with 50 mg/l gentamycin and
50 mg/l hypoxanthine) at 5% haematocrit in donor erythrocytes. MCM was
changed daily. Optimal culture pH was maintained by daily gassing with a gas
mixture of 2% O2, 5% CO2 and 93% N2. Giemsa-stained smears were made daily
to monitor parasite morphology. For studies involving synchronised cultures,
parasite cultures were pelleted by centrifugation for 5 min at 1000� g and 25 1C
and the cell pellet incubated in 10 vol of 5% D-sorbitol for 5–10 min at 37 1C.
Centrifugation was repeated and the cell pellet was resuspended to 5%
haematocrit with MCM and returned to culture. This method resulted in
synchronisation of parasites at the ring stage, similar to previously described.50

Heat treatment. Parasitised erythrocytes were seeded as 5 ml cultures at
1–5% parasitaemia in 25 cm3 flasks. Control parasite cultures were maintained at
37 1C. Mixed-stage cultures were exposed to 40 1C for either 6 or 24 h and then
maintained at 37 1C. Synchronised cultures were exposed to 41 1C for 2 h, and
then maintained at 37 1C. Unless stated otherwise, samples for assays were
collected immediately after heat stress as well as the following day.
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Flow cytometry. Flow cytometric analyses were performed on a Beckman
Coulter Gallios flow cytometer (Beckman Coulter Inc., Miami, FL, USA). Excitation
for all assays was by 488 nm blue laser. Emission was detected with the use of
545/40BP (525±20 nm, FL1) and, where indicated, 575/30BP (575±15 nm, FL2)
filters. Optical alignment was monitored daily with Beckman Coulter Flow Check
Pro fluorospheres (Beckman Coulter Inc., Brea, CA, USA). Post-acquisition
analyses were performed with Beckman Coulter Kaluza (v1.1) software.

TO flow cytometry for parasitaemia. Parasitaemia was measured daily
by flow cytometry with the DNA-binding dye TO, similar to a previous method.51

Whole-culture samples (10ml) were diluted 100-fold to 1 ml in Sorenson’s
phosphate buffer (47 mM Na2HPO4, 20 mM KH2PO4, pH 7.2) with 1mM TO final
concentration (diluted from a 10 mM stock in methanol) and incubated at room
temperature in the dark for 20 min. Stained cells were analysed by flow cytometry
within 1 h. Erythrocytes were gated on a forward- versus side-scatter dot plot
and analysed on a FL1 integral (log) histogram, with regions for uninfected,
ring-infected and trophozoite- or schizont-infected erythrocytes delineated.
Approximately 50 000 events in the erythrocyte gate were counted. Regions
had previously been confirmed by microscopy of Giemsa-stained smears of
synchronised cultures.

TUNEL assay for DNA fragmentation. The TUNEL assay was
performed according to manufacturer’s recommendations, with modifications similar
to a previous study.7 Briefly, P. falciparum cultures were centrifuged and the cell
pellets fixed on ice for 60–90 min in 4% formaldehyde and phosphate-buffered saline
(PBS: 10 mM Na2HPO4, 1.5 mM KH2PO4, 137 mM NaCl, 2.7 mM KCl, pH 7.4),
followed by permeabilisation with 0.1% tri-sodium citrate (w/v) and 0.1% Triton
X-100 (v/v) in PBS for 3 min on ice. Labelling with DNA-staining solution (including
TdT enzyme and FITC-dUTP) was performed according to the manufacturer’s
recommendations for 60–90 min at 37 1C, followed by staining with propidium iodide
(PI) for 30 min at room temperature. Labelled cells were analysed by flow cytometry
within 3 h. PI-positive parasites were acquired on a FL2 time-of-flight (lin) versus FL2
integral (lin) dot plot, with gated parasites analysed on a FL1 integral (log) histogram
for DNA fragmentation, measured as FITC-dUTP fluorescence. At least 10 000 PI-
positive events were counted. DNase-treated, non-treated and unlabelled parasites
were used as positive, negative and staining controls.

DiOC6(3) flow cytometry for DWm. P. falciparum cultures were diluted
20-fold in PBS, stained with 10 nM DiOC6(3) (diluted from a 100 mM stock in
DMSO) and 50mM HE (diluted from a 10 mM stock in DMSO) and incubated at
37 1C for 45 min in the dark. Following incubation, cells were washed and
suspended in 1 ml PBS and analysed by flow cytometry immediately. Erythrocytes
were gated on a forward- versus side-scatter dot blot. HE-positive pRBC counted
on a FL2 integral (log) histogram were analysed for DiOC6(3) fluorescence on a
FL1 integral (log) histogram. At least 50 000 events in the erythrocyte gate were
counted. Positive controls were treated with 200 nM CCCP for 1 h before staining.
Unstained cells, cells stained with only HE or DiOC6(3) and non-parasitised
erythrocytes were used as staining controls. Mitochondrial depolarisation by the
uncoupling agent carbonyl cyanide m-chlorophenyl hydrazone (CCCP, data not
shown) confirmed the integrity of the assay.

Annexin V-FITC for PS externalisation. P. falciparum cultures were
diluted 50-fold in PBS and stained sequentially with a final concentration of 50 mM
HE (diluted from a 10 mM stock in DMSO) in PBS for 15 min at 37 1C in the dark
and annexin V-FITC in 1X annexin-binding buffer (provided with the kit), according
to the manufacturer’s recommendations with modifications similar to a previous
study,10 for 15 min at room temperature in the dark. Stained cells were diluted to
1 ml in 1X annexin-binding buffer and analysed by flow cytometry within 1 h.
Erythrocytes were gated on a forward- versus side-scatter dot blot and pRBC were
discriminated on a FL 2 integral (log) histogram for HE fluorescence. Gated pRBC
were analysed for annexin V-FITC fluorescence on a FL1 integral (log) histogram.
At least 50 000 events in the erythrocyte gate were counted. Parasitised cultures
treated with recombinant annexin V before staining were used as a negative
control and unstained parasite cultures and parasite cultures stained with only HE
or annexin V-FITC were used as staining controls.

Real-time microscopy. Samples of 41 1C heat-stressed and 37 1C control
parasitised cultures were wet-mounted by placing 5 ml sample on a glass slide and
covering the sample with a coverslip. Samples were observed with an Olympus

BX41 microscope under bright field and � 1000 magnification with an immersion
oil type objective lens, at room temperature, with a halogen light source. Real-time
microscopy was performed immediately after heat stress and for 5 subsequent
days. Live images were captured with an Olympus XC50 digital camera. Parasites
observed with rapid movement within the food vacuole were considered to be
alive.21

Statistical analysis. Bar graphs were compiled using GraphPad Prism 5,
with raw data values exported from analyses by Beckman Coulter Kaluza (v.1.1)
software. Student’s unpaired t-tests were performed with Microsoft Office Excel
2010 to test for significance between treated and control groups.
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