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Abstract
Alzheimer disease (AD) is the most common form of dementia among the elderly and is
characterized by progressive loss of memory and cognition. These clinical features are due in part
to the increase of reactive oxygen and nitrogen species that mediate neurotoxic effects. The up-
regulation of the heme oxygenase-1/biliverdin reductase-A (HO-1/BVR-A) system is one of the
earlier events in the adaptive response to stress. HO-1/BVR-A reduces the intracellular levels of
pro-oxidant heme and generates equimolar amounts of the free radical scavengers biliverdin-IX
alpha (BV)/bilirubin-IX alpha (BR) as well as the pleiotropic gaseous neuromodulator carbon
monoxide (CO) and ferrous iron. Two main and opposite hypotheses for a role of the HO-1/BVR-
A system in AD propose that this system mediates neurotoxic and neuroprotective effects,
respectively. This apparent controversy was mainly due to the fact that for over about 20 years
HO-1 was the only player on which all the analyses were focused, excluding the other important
and essential component of the entire system, BVR. Following studies from the Butterfield
laboratory that reported alterations in BVR activity along with decreased phosphorylation and
increased oxidative/nitrosative post-translational modifications in the brain of subjects with AD
and amnestic mild cognitive impairment (MCI) subjects, a debate was opened on the real
pathophysiological and clinical significance of BVR-A. In this paper we provide a review of the
main discoveries about the HO/BVR system in AD and MCI, and propose a mechanism that
reconciles these two hypotheses noted above of neurotoxic and the neuroprotective aspects of this
important stress responsive system.
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The aim of this review is to provide a comprehensive analysis about recent results involving
the heme oxygenase/bileverdin reductase system with respect to Alzheimer disease (AD)
and its arguably earliest form, amnestic mild cognitive impairment (MCI). In particular, a
novel point of view regarding the existing paradigm about the HO/BVR-A system is
proposed.

The heme oxygenase/biliverdin reductase system: an overview
Under physiological conditions, cell homeostasis is finely regulated by a balance between
pro-oxidant and anti-oxidant stimuli; however, certain environmental factors, stressors, or
diseases may affect this equilibrium and increase the production of reactive oxygen species
(ROS) and reactive nitrogen species (RNS). Both ROS and RNS may react with
biomolecules including proteins, lipids, carbohydrates, DNA and RNA (Halliwell, 2006)
leading to their oxidative damage resulting in cellular dysfunction (Butterfield et al., 2001)
(Lovell et al., 2001; Mark et al., 1997; Markesbery, 1997; Smith et al., 1994b).

The heme oxygenase/biliverdin reductase (HO/BVR) system is one of the main and
evolutionarily conserved cellular cytoprotectants, whose up-regulation represents an early
event in the adaptive response to stress (Poon et al., 2004). Despite that the initial attention
by the scientific community was focused primarily on the ability of this system to degrade
heme to be the main, if not the only, function, quite recently numerous different functions
have been elucidated.

HO regulation and distribution
Humans and rodents have two HO isozymes, namely HO-1 (about 32 kDa, enzyme) and
HO-2 (36 kDa) encoded by the HMOX1 and HMOX2 genes, respectively (Gozzelino et al.,
2010). The third member of the family (HMOX3) has also been described, but it is generally
believed that HO-3 is only represented by a pseudogene, with no coding function (Hayashi
et al., 2004) (McCoubrey et al., 1997). Nevertheless, in light of the recent discoveries of the
possible regulatory functions of pseudogenes (Pink et al., 2011), it is possible that HO-3
might also have biological effects by contributing to gene regulation (Vitek, 2012). Heme
oxygenase-1, also known as heat shock protein (Hsp)-32, is induced by various stimuli,
including oxidative and nitrosative stress, ischemia, heat shock, bacterial lipopolysaccharide
(LPS), hemin, the neuroprotective agent leteprinim potassium (Neotrofin) (Maines, 1997;
Maines, 2000) and several drugs currently used in the clinic, such as statins, non-steroidal
antinflammatory drugs, antagonists to the adrenergic β receptor, cyclosporine A etc.
(Butterfield et al., 2012a; Mancuso and Barone, 2009). Heme oxygenase-2, the constitutive
isoform, is responsive to developmental factors, adrenal glucocorticoids and nitric oxide
(NO) (Maines, 1997). Very interestingly, our group found that despite its constitutive nature,
HO-2 protein levels can be up-regulated by atorvastatin in the cerebellum of aged beagles
opening new frontiers in the comprehension of its features (Butterfield et al., 2012a).
Similarly, HO-2 over-expression was detected as a consequence of the administration of
drugs acting on the nervous system, such as morphine and glucocorticoids (Mancuso and
Barone, 2009).

Under basal conditions, the expression of HO-1 is finely regulated at the HMOX1 gene level
through the transcriptional repressor Bach-1, (Figure 1). Under pro-oxidant conditions,
HO-1 undergoes up-regulation at both gene and protein levels. HMOX1 possesses two
upstream enhancer regions, E1 and E2 (Sun et al., 2002), which contain multiple stress-
responsive elements (SREs), also known as antioxidant-responsive elements (AREs), thus
supporting the evidence of an oxidative-inducible nature of this protein (Figure 1). AREs
share a consensus sequence (GCnnnGTA) with the Maf recognition element (MARE)
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(Stewart et al., 2003). The interactions between MAREs and heterodimers formed by a Maf
protein (MafK, MafF, or MafG) and an NF-E2-related factor 2 (Nrf2), or activator protein 1
(AP-1) play a direct role in HO-1 induction (Maines, 2005a; Sun et al., 2002) (Figure 1). In
contrast, HO-1 expression can be repressed by hypoxia, β- carotene, cigarette smoke,
interferon-γ or desferrioxamine (Palozza et al., 2006; Shibahara et al., 2003). The inhibition
is mediated by Bach1, which binds to AREs in the HMOX1 promoter, thus inhibiting the
transcription by Nrf-2 or AP-1 (Kitamuro et al., 2003; Sun et al., 2004; Sun et al., 2002)
(Figure 1).

Oxidative stress promotes HO-1 up-regulation through a double mechanism: (i) by inducing
conformational modification of Bach1 structure, which leads to its translocation from the
nucleus to the cytoplasm where Bach1 is ubiquitinated and degraded thereby, releasing
transcriptional repression; and (ii) by promoting the ubiquitination and consequent
degradation of Keap1, which under normal conditions sequesters Nrf-2 into the cytoplasm,
avoiding its transcriptional activity (He et al., 2007; Zenke-Kawasaki et al., 2007) (Figure
1). Substances and drugs that differently affect HO-1 expression and activity have been
extensively reviewed (Mancuso and Barone, 2009). As regard to HO-2 gene regulation, only
limited evidence is available to implicate the glucocorticoid responsive elements (GRE) in
the gene encoding for HO-2 as the main site involved in the modulation of HO-2 protein
levels (see above) (Liu et al., 2000).

In the central nervous system (CNS), HO-2 is expressed in neuronal populations in almost
all brain areas (Maines, 1997), whereas HO-1 is present at low levels in sparse groups of
neurons, including the ventromedial and paraventricular nuclei of the hypothalamus
(Maines, 1997). Heme oxygenase-1 is also found in cells of glial lineage, where its
expression can be induced by oxidative stress (Dwyer et al., 1995).

HO-1 and HO-2 catalyze the same reaction, namely the transformation of iron-
protoporphyrin-IX-alpha (heme) into equimolar amount of ferrous iron [Fe(II)], carbon
monoxide (CO), and biliverdin-IX-alpha (BV-alpha) (Maines, 1997; Maines, 2000) (Figure
1). The activity of both enzymes can be regulated by post-translational modifications such as
phosphorylation of specific serine or tyrosine residues (Figure 2). In particular, HO-1
activity might be regulated through Akt-mediated phosphorylation of Ser188 (Salinas et al.,
2004). This kind of phosphorylation may change the strength of binding/interaction between
HO-1 and BVR. However, considering the large number of residues involved in the
interaction, a large change in binding affinity is not expected for a single phosphorylation
event (Salinas et al., 2004); this explains why, after the phosphorylation of Ser188, a 1.6-
fold increase in HO activity was measured in HEK293T cells with respect to controls
(Salinas et al., 2004). HO-2 is activated during neuronal and odorant stimulation by
phosphorylation of serine 79 by casein kinase 2 (CK-2) via participation of protein kinase C
(PKC) and calmodulin (Boehning et al., 2003; Boehning et al., 2004; Dore et al., 1999)
(Figure 2). In cerebral endothelial cells, stimulation of HO-2 activity by glutamate, via
ionotropic glutamate receptors, involves tyrosine kinase-mediated but no protein kinase C-
or CK-2-mediated phosphorylation (Leffler et al., 2003a; Leffler et al., 2003b).

Although HO-1 and HO-2 share the same activity, they play different roles in protecting
tissues against injuries (Maines, 2005a; Maines and Panahian, 2001). The most convincing
hypothesis suggests that controlled HO-1 induction plays a pivotal role in the earliest stages
of cellular responses to tissue damage, whereas HO-2 is constitutively expressed and is
primarily involved in maintaining cell heme homeostasis and in sensing the intracellular
levels of gaseous compounds including oxygen, nitric oxide (NO), and CO (Maines, 2005a).
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HO by-products
The members of the HO family are pleiotropic enzymes playing an important role in the
regulation of cell proliferation, differentiation, oxidative status and apoptosis, thereby
influencing immune response, inflammatory reaction or angiogenesis. Thus, their
significance is much wider than only heme elimination (Gozzelino et al., 2010; Maines,
2000; Mancuso and Barone, 2009). Indeed, the above-cited effects are mainly due to the
products of HO activity.

Carbon monoxide—Carbon monoxide regulates long-term hippocampal potentiation,
neuropeptide release, non-adrenergic non-cholinergic gastrointestinal relaxation, vessel tone,
renal function (Kaide et al., 2001; Kooli et al., 2008; Piantadosi, 2008; Rodriguez et al.,
2003; Wu and Wang, 2005; Zhang et al., 2001; Zhang et al., 2004), and inflammation
processes (Piantadosi, 2008; Wu and Wang, 2005). Furthermore, low concentration of CO
exposure by itself is antiapoptotic and cytoprotective against oxidative stress (Fujita et al.,
2001; Liu et al., 2003; Song et al., 2003). Although CO has been shown to be cytoprotective
in some experimental models, it also produces noxious effects in certain organs, such as the
brain (Mancuso and Barone, 2009). The dual nature of CO’s effects depend on several
factors, including cell type, the amount of CO formed or delivered to cell, and the tissue-
specific signaling transduction pathway(s) involved in its biological activity. Carbon
monoxide produced in rat hypothalamus by HO activity has displayed anti-inflammatory
activity consisting in the attenuation of KCl-induced interleukin-1β release from
interleukinergic neurons (Mancuso et al., 1998). However, hypothalamic CO also reduces
stimulated increases in the in vitro and in vivo release of corticotropin releasing hormone
(CRH) and arginine vasopressin (AVP) (Mancuso et al., 1997; Mancuso et al., 2010;
Mancuso et al., 1999; Pozzoli et al., 1994), effects that are clearly pro-inflammatory. Indeed,
their end result is decreased pituitary release of adrenocorticotropin hormone (ACTH),
which, in turn, stimulates glucocorticoid production and release by the adrenal cortex.
Additional evidence of CO’s dual role in the CNS has been provided by Luiz Branco’s
group. In their studies on CO’s involvement in the pyrogenic response to stress,
intracerebroventricular administration of HO inhibitors decreased LPS-induced fever in rats,
while heme overload caused a rise in body temperature (Steiner and Branco, 2000; Steiner
and Branco, 2001; Steiner et al., 1999; Steiner et al., 2003). In contrast, if the increased CO
formation was confined to the locus coeruleus, the febrile response to LPS decreased
(Ravanelli et al., 2007). Although it is only indirectly related to inflammation, CO’s effect
on the release of gonadotropin-releasing-hormone (GnRH) is worth mentioning. Carbon
monoxide was shown to up-regulate GnRH release in the hypothalamic GT1–7 cell line, and
this effect seems to be dependent on the CO-mediated production of prostaglandin E2
(Errico et al., 2010).

Iron—Iron is a cofactor for several enzymes and is able to modulate specific brain functions
by increasing the release and turnover of dopamine and other neurotransmitters (Chiueh,
2001). On the other hand, Fe(II) produced by HO can catalyze the production of free
radicals through the Fenton chemistry and thus act as a cytotoxic pro-oxidant (Braughler et
al., 1986; Bucher et al., 1983; Minotti and Aust, 1989). At the same time, Fe(II) released
from heme is able to induce different metabolic pathways including the up-regulation of Fe-
efflux pump and those of Ferritin-H with the final effect to neutralize the pro-oxidant
activity of free Fe(II) (Gozzelino et al., 2010).

Biliverdin—Biliverdin (BV) is probably the least studied product of HO activity, mainly
due to its high rate of catabolism once formed into the cell (Fakhrai and Maines, 1992). In
fact, through the activity of BVR, BV is immediately reduced to bilirubin; therefore, its
physiologic relevance remains to be established. That stated, several pathways involving BV
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were previously described. In particular, BV, by being a potent inhibitor of NF-kB (Gibbs
and Maines, 2007), would offer a means for limiting the activity of this nuclear factor.
Treatment with biliverdin enhances tolerance of cardiac allografts, and this tolerance is
mediated by inhibition of the transcription factors NFAT and NF-kB (Yamashita et al.,
2004). More recently it was reported that administration of BV markedly reduced mortality
in experimental pancreatitis (Nuhn et al., 2013) Furthermore, BV administration protected
against hemorrhagic shock and resuscitation induced lung injury through anti-inflammatory
and anti-oxidant mechanisms involving reduction of TNF-α, iNOS and oxidative stress
markers (Kosaka et al., 2013). Finally, BV exhibited a greater antioxidant activity than
alpha-tocopherol in preventing oxidative stress damage in rat brain microsomes (Mancuso et
al., 2012) (Figure 1).

BVR and bilirubin—Similar to HO, two isoforms of BVR were described and named
BVR-A and BVR-B (Kapitulnik and Maines, 2009; Maines, 2005b; Pereira et al., 2001).
Both these enzymes generate BR, but only BVR-A reduces BV-alpha into the powerful
antioxidant and antinitrosative molecule BR-IX-alpha (thereafter BR) (Barone et al., 2009;
Stocker, 2004), whereas BVR-B prefers the other BV isoforms, such as BV-β, BV-γ and
BV-δ (Kapitulnik and Maines, 2009; Maines, 2005b; Pereira et al., 2001). Both BVR-A and
BVR-B were identified in humans, with age-dependendent characteristic. Biliverdin
reductase-A is the main form detected in the adult (95–97% BR is found in the bile),
whereas BVR-B is predominant (~ 87%) in the fetus (Cunningham et al., 2000). A possible
explanation for this ontogenesis-linked difference is that BVR-B-produced bilirubin-IX-beta
does not undergo internal hydrogen bonding, unlike BR, and, therefore, has a much higher
solubility (Cunningham et al., 2000). Indeed, it has been shown that bilirubin-IX-beta can be
excreted directly into the bile without being conjugated with glucuronic acid (Cunningham
et al., 2000).

Biliverdin reductase-A, is the product of a single transcript (McCoubrey et al., 1995) that
encodes a soluble polypeptide that, in mammals, is in the range of about 300 amino acids.
The human enzyme consists of 296 residues, whereas the rat enzyme is made of 295 amino
acids (Fakhrai and Maines, 1992; Maines et al., 1996). Moreover, in the mammalian species,
BVR shows a high degree of conservation of gene structure, which consists of seven coding
exons and one noncoding exon at the 5′ end (McCoubrey et al., 1995). Because of extensive
posttranscriptional modification, the mature protein displays a substantially larger apparent
molecular weight than predicted, based on amino acid composition. The reported apparent
molecular weight of BVR-A, as estimated by its electrophoretic mobility in SDS gels,
ranges from 36 to 42 kDa. As described for the human and the rat, in the mature protein, the
first methionine and the second residue, an asparagine, in the human, are deleted (Kapitulnik
and Maines, 2009).

The promoter region of the human and rat genes contain consensus sequence elements
associated with regulation of transcriptional activity and embryonic gene expression
(McCoubrey et al., 1995). Furthermore, the gene encoding for BVR-A possesses a sequence
upstream from the transcription start point, which matches that of the heat shock element
(HSE) sequence, thus making BVR-A a heat shock-inducible protein similar to HO-1,
despite the latter being induced more rapidly than the former (Maines, 2005b; McCoubrey et
al., 1995). In addition, cytokines, LPS and atorvastatin induce BVR transcription (Barone et
al., 2012b; Maines et al., 2001). Human BVR expression is downregulated by the zinc-
finger hematopoietic transcription factor GATA1 and up-regulated by heme (Maines,
2005b).
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Biliverdin reductase is co-expressed with HO-1 and/or HO-2 in cells of the rat brain that
express these enzymes under normal conditions. BVR is also found in regions and cell types
that can express heat shock-inducible HO-1 (Ewing et al., 1993).

BVR activity demonstrates a unique dual pH/cofactor-dependence nature: NADH at a pH of
6.8, and NADPH at pH 8.7 (Kapitulnik and Maines, 2009; Maines and Trakshel, 1993).
Biliverdin reductase also requires free SH groups (Maines and Trakshel, 1993). BVR-A not
only transforms BV into BR (by reducing the former’s C10 [γ bridge]), but it is also a
serine/threonine/tyrosine kinase involved in various cellular functions (Kapitulnik and
Maines, 2009; Maines, 2005b). In both cases, BVR activation through the phosphorylation
of specific Ser/Thr/Tyr residues is required (Kapitulnik and Maines, 2009; Lerner-
Marmarosh et al., 2005) (Figure 2B). Interestingly, two different ways through which BVR-
A can be phosphorylated are known. Indeed, it was demonstrated that BVR-A is able to
autophosphorylate, and this step is essential for the activation of its reductase activity,
namely the ability to reduce BV to BR (Lerner-Marmarosh et al., 2005) (Figure 2A).
Similarly, the phosphorylation by other kinases, including the insulin receptor kinase,
activates BVR-A kinase activity (Kapitulnik and Maines, 2009; Lerner-Marmarosh et al.,
2008; Maines, 2007; Tudor et al., 2008) Figure 2B). Once activated, BVR-A can: (i)
catalyze the last step in the heme-degradation pathway by reducing the γ-meso (methylene)
bridge of BV to BR (Kapitulnik and Maines, 2009); (ii) modulate the activity of members of
conventional and atypical groups of PKC isozymes (PKC-βII and PKC-ζ, respectively)
(Kapitulnik and Maines, 2009; Lerner-Marmarosh et al., 2007; Maines et al., 2007) (Gibbs
et al., 2012b); (iii) function as a scaffold protein for the formation a ternary complex with
MEK1 and ERK1/2, placing ERK in a position that enables its activation by MEK
(Kapitulnik and Maines, 2009; Lerner-Marmarosh et al., 2008); and (iv) regulate the
expression of stress-responsive genes such as HO-1 (Tudor et al., 2008) and iNOS (Di
Domenico et al., 2013b; Gibbs et al., 2012a) (Figures 2A and 2B).

Once activated by the insulin receptor, BVR is able to modulate two of the most important
arms of the insulin signaling pathway: MAPK and phosphatidylinositol-3-kinase (PI3K)
(Kapitulnik and Maines, 2009). MAPK and PI3K pathways have essential roles in neuronal
activity and development: (i) the PI3K pathway is involved in the maintenance of synaptic
plasticity and memory consolidation (Horwood et al., 2006), Amyloid-β-peptide (Aβ)-
induced memory loss (Chiang et al., 2010), synthesis of nitric oxide (NO), which in turn
plays a role in learning and memory processes (Calabrese et al., 2007a); and (ii) the MAPK
cascade is responsible both for the induction of several genes required for neuronal and
synapse growth, maintenance and repair processes, as well as serving as a modulator of
hippocampal synaptic plasticity that underlies learning and memory (Akter et al., 2011).
Consequently, it is clear that the broad spectrum of pleiotropic actions mediated by BVR-A
makes this enzyme an important interventional target for the development of new
therapeutic strategies.

As with HO-1, also BVR at the beginning was considered relevant only for its ability to
produce BR. However, in light of this pleiotropic nature of BVR, the discrimination between
the effects directly mediated by BVR and those mediated by BR become essential in order to
better understand and clarify the broad spectrum of actions to which we refer when we
mention the HO/BVR system.

Bilirubin is a linear tetrapyrrole, characterized by high lipophylicity, and was extensively
studied for its antioxidant and antinitrosative properties (Barone et al., 2009; Dore et al.,
1999; Mancuso et al., 2003; Stocker et al., 1987a; Stocker et al., 1987b; Takahashi et al.,
2000). Despite this important antioxidant behavior, if produced in excess, as during
hemolytic anemia or sepsis, unconjugated BR becomes neurotoxic through multiple
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mechanisms involving the disruption of cell membrane structure, the reduction of
mitochondrial transmembrane potential and the activation of the apoptotic cascade (Brito et
al., 2004; Kapitulnik, 2004). Other than its antioxidant activity, BR increased neuronal NOS
expression and nitric oxide formation in both primary cultures of cerebellar granule neurons
and neurotrophin-sensitive PC12 cells (Mancuso et al., 2008), and it was shown that this
gaseous neurotransmitter plays a key role in the long-term potentiation and synaptic
plasticity (Calabrese et al., 2007a). In addition, in PC12 cells BR upregulated CREB
(Mancuso et al., 2008), which is considered an important transcription factor regulating both
short- and long- term memory (Suzuki et al., 2011).

Alzheimer disease pathology: the involvement of oxidative stress
AD is one of the most disabling neurodegenerative disorders that cause dementia and affect
middle- to old-aged individuals, with a prevalence that increases markedly after age 65. AD
is characterized pathologically by the presence of senile plaques (SPs), neurofibrillary
tangles (NFTs), decreased synaptic density and brain atrophy particularly in the
hippocampus, amygdala and frontal cortex, consistent with cognitive and memory deficits
observed. The main component of SPs is amyloid β-peptide (Aβ), comprising 40–42 amino
acids and generated by proteolytic cleavage of amyloid precursor protein (APP), a type I
transmembrane protein, by β-secretase and γ-secretase. Aβ exists in various soluble and
insoluble forms including aggregates, soluble monomers, oligomers, protofibrils, and fibrils
(Haass and Selkoe, 2007; Walsh et al., 2002). Recent studies have suggested that soluble
oligomers are the most toxic form of Aβ. NFT are formed by hyperphosphorylation of tau, a
microtubule-associated protein, causing it to aggregate to an insoluble form and lose the
affinity for microtubules (Querfurth and LaFerla, 2010). Aβ oligomeric and fibrillary forms
and hyperphosphotylated tau are normally degraded by the unfolded protein response,
however, when this system is dysfunctional, as in AD progression, contribution toward an
aberrant deposition of Aβ occurs.

Sporadic AD that accounts for approximately 95% of AD cases results from a complex array
of etiological factors in addition to age such as family history of dementia, head trauma,
gender, education level, vascular disease, general lifestyles and other environmental factors.
AD is often preceded by three stages of progression characterized by gradual increase of AD
hallmarks starting from preclinical AD (PCAD), to mild cognitive impairment (MCI) and
early AD (EAD) (Morris and Cummings, 2005; Price and Morris, 1999). Despite continued
efforts, the development of an effective treatment for AD remains elusive. Current
therapeutic strategies are limited to those that attenuate AD symptoms without modifying
the progress of the disease itself, and thus only postpone the inevitable deterioration of the
affected individual (Bonda et al., 2010).

The amended amyloid cascade hypothesis is one of the leading notions of underlying
mechanisms of AD, stating that Aβ oligomer formation and deposition are the cause of this
disorder. The importance of APP, and consequently Aβ, in AD pathogenesis has arisen from
genetic evidence of patients with familial AD (FAD) and Down syndrome (DS) (Butterfield
et al., 2013). Indeed, it has been reported that rare FAD forms are linked directly to highly
penetrant autosomal dominant genetic mutations in the APP and presenilin 1 and 2 (PS1,
PS2) genes. In addition, AD pathology is found prematurely in Down syndrome, given that
the APP can be found on chromosome 21 and that Down syndrome subjects have an extra
copy of chromosome 21 (Di Domenico et al., 2013a; Perluigi and Butterfield, 2012). Many
studies reported that Aβ toxicity leads to AD development through the alteration of several
neuronal mechanisms, which include formation of free radicals, oxidative stress,
mitochondrial dysfunction, inflammatory processes, and apoptosis. These factors may
interact and amplify each other in a vicious cycle of toxicity, leading to neuronal
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impairment, cell dysfunction, and finally cell death (Butterfield et al., 2001; Butterfield et
al., 2013).

Oxidative stress undoubtedly plays a critical role, as evidence for its molecular impact exists
very early in disease progression (Behl, 2012; Hensley et al., 1995; Markesbery, 1999;
Zafrilla et al., 2006). Due to its elevated levels of peroxidizable fatty acids, high requirement
for oxygen, relative paucity of antioxidant systems, and richness in iron content, the brain is
extremely sensitive to oxidative stress (Butterfield, 2006; Markesbery, 1997). Normal
metabolism generates oxygen free radicals and other reactive oxygen species (ROS) that are
part of several physiologic processes including signal transduction pathways (e.g., related to
some growth factors, cytokines and calcium signaling). When oxidative stress exceeds the
capacity to terminate ROS, then oxidative damage ensues (Butterfield and Stadtman, 1997).
ROS can damage cell or organelle membranes directly (e.g., through lipid peroxidation), and
can react with metals, nitrogen or carbon to form intermediates that react with proteins (e.g.,
through nitration, carbonylation and nitrosylation). ROS (including superoxide anion radical
(O2

•−), hydrogen peroxide (H2O2), hydroxyl radical (•OH), singlet oxygen (O2), alkoxyl
radicals (RO•), peroxyl radicals (ROO•) and peroxynitrite (ONOO−), contribute to
pathogenesis of numerous human neurodegenerative diseases. Specific antioxidants, both
endogenous and exogenous, such as glutathione, α-tocopherol (vitamin E), carotenoids, and
ascorbic acid, and antioxidant enzymes, such as catalase, peroxiredoxins, and glutathione
peroxidases, are able to detoxify H2O2 by converting it to O2 and H2O under physiological
conditions (Feng and Wang, 2012). The brain in AD appears to sustain more oxidative
damage than normal brain, exhibits an increased susceptibility to oxidative stress and has
relatively low levels of naturally occurring antioxidants such as α-tocopherol. Aβ peptides,
together with altered mitochondrial function, and the presence of trace metal ions such as
iron and copper, have been identified as potential sources of oxidative stress (Butterfield et
al., 2001; Cai et al., 2011; Clark et al., 2010). In accordance with the Aβ-induced oxidative
stress hypothesis, oxidative stress is the result of Aβ insertion as oligomers into the bilayer
causing ROS production and initiating lipid peroxidation and protein oxidation in AD
pathology (Axelsen et al., 2011; Butterfield et al., 2001; Butterfield and Lauderback, 2002;
Butterfield et al., 2007). Studies on AD transgenic animal models expressing Aβ peptide
confirmed the association between Aβ and oxidative stress suggesting the involvement of
methionine 35 of Aβ peptide in the mechanism of oxidative damage (Butterfield et al., 2010;
Butterfield et al., 2013; Sultana et al., 2012).

However, despite an extensive understanding of each of the phenomena occurring within the
cell during AD, an adequate explanation for AD development and progression is still
lacking. Aβ has been shown to induce oxidative stress in vitro and in AD model systems in
vivo, as evidenced by leading to protein oxidation, lipid oxidation, DNA oxidation, and
glycoxidation (Butterfield et al., 2001; Nunomura et al., 2012). Oxidative stress and its
effects have been found as early as MCI and EAD in the progression toward AD. Many
studies conducted in our and other laboratories have found that oxidative stress markers for
protein oxidation/nitration, such as protein carbonyls and 3-nitrotyrosine, are elevated in
brains from subjects with MCI and EAD (Butterfield et al., 2006; Keller et al., 2005; Reed et
al., 2009; Sultana and Butterfield, 2010). Regions of the brain rich in Aβ proteins have
increased levels of protein oxidation, while Aβ-poor cerebellum does not (Hensley et al.,
1995). In addition high levels of free and protein-bound HNE were found in AD brain
(Lovell et al., 2001; Lauderback et al., 2001) as well as protein carbonyls an protein nitration
in regions of the brain heavily associated with AD, including the hippocampus and parietal
cortex, while leaving the cerebellum relatively untouched (Castegna et al., 2002a; Castegna
et al., 2002b; Markesbery and Lovell, 1998; Perluigi et al., 2009; Sultana et al., 2006).
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The use of redox proteomics (Butterfield et al., 2012; Butterfield et al., 2013) to identify
oxidatively modified brain proteins in AD and MCI revealed a number of oxidatively
modified brain proteins that are associated with the mitochondrial functionality, energy
metabolism and antioxidant response suggesting that the alteration of these pathways by Aβ-
induced oxidative stress is involved in AD progression or pathogenesis (Butterfield, 2002;
Butterfield, 2006; Butterfield et al., 2012b; Butterfield and Stadman, 1997; Butterfield et al.,
2013). Significant DNA and RNA oxidation has been shown to exist in AD, as have been
found since the early stages of the disease. In AD brain, 8-hydroxy-2-deoxyguanosine
(8OHdG) and 8-hydroxyguanosine (8OHG) were found to be elevated in AD hippocampus,
frontal, and occipital neocortex, which correlated with the β-amyloid load (Mecocci et al.,
1994; Nunomura et al., 2012). Elevated levels of protein-bound HNE, protein carbonyls, 3-
NT, free HNE and MDA have been described not only in brain but also in cerebrospinal
fluid (CSF), blood, and urine of AD patients when compared with healthy controls (Dildar et
al., 2010; Irizarry et al., 2007; Pratico et al., 2000; Pratico et al., 1998).

On the other hand, increased oxidative stress has been proposed to contribute to Aβ
generation and the formation of NFT (Butterfield and Boyd-Kimball, 2004). Indeed several
reports stated that interaction between oxidative stress and neuroinflammation leads to Aβ
production (Akama et al., 1998; Cai et al., 2011). AD is associated with an increase in
blood–brain barrier (BBB) permeability due to disruption of tight junction. One of the
closest links pertain to the BBB, where oxidative stress decreases the expression and
oxidatively modifies low-density lipoprotein receptor-related protein 1 (LRP-1) (Owen et
al., 2010), up-regulates the receptor for advanced glycation end products (RAGE) and
increases BBB permeability, which could potentially lead to increased deposition of Aβ
within the AD parenchyma (Deane et al., 2004; Srikanth et al., 2011). Interestingly, a recent
study (Badia et al., 2013) suggested that persons at risk of AD suffer from reductive stress
(indicators of oxidative stress being lower in healthy individuals at risk than in those with
low risk of developing the disease) but during the persistent formation of radicals, the
capacity of the cells to react and the antioxidant response collapse. Overwhelming evidence
supports the notion that oxidative stress occurs in AD and its earlier forms, and oxidative
stress and compensatory mechanisms to oxidative stress may contribute to development of
AD pathological and clinical hallmarks.

The role of HO/BVR-A system in Alzheimer disease: a new perspective
The first evidence about the association between HO and AD hails from a paper by Smith
and colleagues who demonstrated that in AD brain pronounced HO-1 immunoreactivity is
seen localized with neurofibrillary tangles, senile plaque neurites, neuropil threads (i.e., the
neurofibrillary pathology), and granulovacuolar degeneration (Smith et al., 1994a). For
about twenty years since, during which the main emphases were focused on the role of
HO-1/HO-2 (Calabrese et al., 2006; Dore et al., 1999; Mueller et al., 2010; Poon et al.,
2004; Takahashi et al., 2000) or bilirubin (Dore et al., 1999; Kimpara et al., 2000), the story
on the involvement of the HO/BVR system in AD is still open, in particular because of the
novel findings of our group highlighting an oxidative/nitrosative-induced impairment of
both HO-1 and BVR-A in AD and MCI brain (Barone et al., 2011a; Barone et al., 2011b;
Barone et al., 2012a; Barone et al., 2012b; Butterfield et al., 2012a; Di Domenico et al.,
2012). These findings, discussed in detail below, led to our proposed new paradigm for the
HO/BVR system uniting the Janus nature of the literature with respect to this system in AD
(Barone et al., 2011a; Barone et al., 2011b; Barone et al., 2012a; Barone et al., 2012b;
Butterfield et al., 2012a; Di Domenico et al., 2012).
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In order to untangle the complex role of the HO/BVR system in AD and to provide readers
with a clear and easily understandable explanation about the numerous effects mediated by
the system, it is helpful to review the main achievements obtained over the years.

Due to the inducible nature of HO-1 (HO-2 is constitutive), and due to its ability to be up-
regulated following stress stimuli as outlined above, most of the prior observations about
AD regard the role of HO-1. Binding of APP inhibits both HO-1 and HO-2 activity, and
APP with mutations linked to the familial Alzheimer’s disease (FAD) provided substantially
greater inhibition of HO activity than wild-type APP. These findings indicated that
augmented neurotoxicity caused by APP–HO interactions may contribute to neuronal cell
death in AD (Takahashi et al., 2000).

Given that up-regulation of HO-1 is widely accepted as a sensitive and fairly ubiquitous
marker of oxidative stress, two main schools of thought exist with regard to the role of
HO-1/BVR-A system in AD. One of these posits a detrimental activity of HO-1 suggesting
that iron deposition and attendant neuronal dysfunction in AD may represent downstream
effects of sustained HO-1 over-activity within the astrocyte compartment (Hascalovici et al.,
2009; Schipper, 2011; Smith et al., 1997; Takeda et al., 2004); whereas the other, coming
from our group, proposed the up-regulation of HO-1/BVR-A system as a neuroprotective
mechanism aimed to counteract the rise of oxidative stress observed during the onset and the
progression of AD (Butterfield et al., 2001; Butterfield and Lauderback, 2002; Di Domenico
et al., 2010; Markesbery, 1997; Poon et al., 2004).

However, despite while at first glance it may appear that these two hypotheses appear
completely different since they propose two opposite effects, an in-depth analysis based on
our novel findings (Barone et al., 2011a; Barone et al., 2011b; Barone et al., 2012a; Di
Domenico et al., 2012) suggest that they complement each other based on the
pathophysiological conditions relevant to AD.

The role of HO-1 in AD and MCI: a brief history in time
A brief excursus on the progress obtained in the study of the HO/BVR-A system in AD will
help to clarify the common points of these two different views noted above. In the first part
of this section the main discoveries by others will be outlined. Then, we will discuss our
novel findings, with an aim to reconcile the two main hypotheses.

After the discovery in 1994 of the co-localization of HO-1 and the pathological hallmarks of
AD (Smith et al., 1994a), in 1995 the increased expression of HO-1 but not HO-2 mRNA
transcripts in cerebral cortex and cerebral vessels from subjects with AD compared with
age-matched non-AD controls was demonstrated (Table 1). These lines of evidence
suggested the specific induction of HO-1 mRNA and protein in the cerebral cortex and
cerebral vessels in association with pathological lesions of AD (Premkumar et al., 1995).
Later, in 1997, Smith et al. proposed that redox-active iron is associated with the senile
plaques and neurofibrillary tangles, indicating that iron accumulation could be an important
contributor toward the oxidative damage of Alzheimer disease (Smith et al., 1997), thus
providing a basis for the future involvement of HO-1 as one of the main source of iron
deposition and accumulation.

In 2000, Schipper et al. found decreased plasma and CSF HO-1 protein and lymphocyte
HO-1 mRNA levels in subjects with sporadic AD proposing for the first time, the
quantitative assay for lymphocyte HO-1 mRNA expression as a useful biologic marker in
early sporadic AD (Schipper et al., 2000) (Table 1). Similarly in 2002, Ishizuka et al.
showed plasma HO-1 protein and mononuclear cell HO-1 mRNA levels significantly
suppressed in AD subjects compared to controls (Ishizuka et al., 2002) (Table 1). However,
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the reports of HO-1 plasma levels in AD subjects are controversial as highlighted below in
this review (Tables 1 and 2).

The year 2000 was a rich one for of findings related to HO-1. First, the ability of APP to
bind HO-1 and HO-2 and inhibit their activity was demonstrated (Takahashi et al., 2000).
An increase of BR levels was demonstrated in the CSF of AD subjects. These findings
imply that BR synthesis might be activated in the AD brain. Therefore, it is plausible that
BR is locally produced in lesions of the AD brain to work as an efficient scavenger of ROS.
(Kimpara et al., 2000). In the same 2000 year, up-regulation of HO-1 was demonstrated to
be necessary and sufficient for subsequent induction of the MnSOD gene, consistent with the
notion of a compensatory upregulation of MnSOD to protect against oxidative damage
accruing from heme-derived free iron and CO liberated by the activity of HO-1 (Frankel et
al., 2000).

In 2006, Calabrese et al. showed that HO-1 is overexpressed in the inferior parietal lobule of
AD subjects (Calabrese et al., 2006). In the same paper, a significant down-regulation of
HO-2 was found in this brain area, probably due to the massive neuronal death secondary to
the disease (Calabrese et al., 2006). In addition, a marked increase in HO-1 expression and
HO activity were found in the plasma and lymphocytes of these AD subjects (Calabrese et
al., 2006). In the same year, the neurotoxic role of HO-1 was highlighted by a study showing
that up-regulation of HO-1 engenders oxidative mitochondrial injury in cultured rat astroglia
(Song et al., 2006). Heme-derived ferrous iron and CO may mediate the oxidative
modification of mitochondrial lipids, proteins and nucleic acids in these cells. Glial HO-1
hyperactivity may contribute to cellular oxidative stress, pathological iron deposition, and
bioenergetic failure characteristic of degenerating and inflamed neural tissues as observed in
AD (Song et al., 2006). The same group demonstrated that immunoreactive HO-1 protein
was significantly increased in temporal lobe and hippocampal astrocytes in subjects with
MCI and AD (Table 1), and was associated with global measures of cognitive impairment
and specific memory deficits in these individuals. The authors suggested a mechanism
favoring early mobilization of free iron, mitochondrial insufficiency and corpora amylacea
formation in this neurodegenerative disorder (Schipper et al., 2006). Later in the same year,
decreased levels of antioxidants, including bilirubin, were found in the plasma of subjects
with AD, strengthening the idea that antioxidant dysregulation might be associated with
cognitive dysfunctions observed in AD (Kim et al., 2006).

In 2007, it was demonstrated that transient transfection of rat astroglia with human (h)ho-1
cDNA for 3 days significantly decreased intracellular cholesterol concentrations and
increased levels of four well-known neurotoxic oxysterol species (Vaya et al., 2007). This
study opened a new avenue with regard to the possible involvement of HO-1 in cholesterol
homeostasis and provided new basis to understand cholesterol homeostasis dysregulation
observed in AD (Dufouil et al., 2005; Hajjar et al., 2002; Jick et al., 2000; Rockwood et al.,
2002; Rodriguez et al., 2002; Wolozin et al., 2000; Wolozin et al., 2007; Zamrini et al.,
2004). An advance was made in 2009 when decreased cholesterol, increased oxysterol and
increased cholesterol precursor concentrations were found significantly correlated with
HO-1 levels in the cortex of MCI and AD subjects (Hascalovici et al., 2009).

The last discovery, which we want to mention in this brief discussion, was reported in 2009,
when Kanninen et al. indicated that significant reductions in spatial learning deficits of aged
APP/PS1 mice can be achieved by modulating levels of Nrf2 in the brain. This may
represent a potential therapeutic strategy to pursue in AD, particularly in view of the
multiple mechanisms by which Nrf2 can exert its protective effects including the increase of
HO-1 protein levels (Kanninen et al., 2009).
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In the same years, in parallel to these studies, our group started to look at HO-1 from another
point of view.

Indeed, it is conceivable that the dramatic increase in HO-1 in AD may be a direct response
to increased free heme associated with neurodegeneration and an attempt to convert highly
damaging heme into BV, and then BR by BVR, with the latter a cytoprotective molecule.
Heme oxygenase-1 is rapidly upregulated by oxidative and nitrosative stresses, as well as by
glutathione depletion. All these findings have introduced new perspectives in medicine and
pharmacology, as molecules activating this defense mechanism appear to be possible
candidates for novel cytoprotective strategies (Butterfield et al., 2002a; Butterfield et al.,
2002b; Butterfield and Lauderback, 2002; Calabrese et al., 2003). Furthermore, considerable
attention has been focused on identifying dietary and medicinal phytochemicals that can
inhibit, retard or reverse the multi-stage pathophysiological events underlying AD pathology
(Butterfield et al., 2002b; Butterfield et al., 2001).

In 2004, it was reported that treating neurons with ferulic acid ethyl-ester (FAEE) resulted in
an enhanced cellular resistance to glucose oxidase-mediated oxidative damage; this
cytoprotective effect was considerably attenuated by zinc protoporphyrin IX, an inhibitor of
HO activity. This study identified a novel modified natural compound that potentially could
be used for therapeutic purposes as a potent inducer of HO-1 for the protection of brain cells
against oxidative and neurodegenerative conditions (Scapagnini et al., 2004). One year later,
in 2005, we demonstrated that cortical neurons treated with FAEE showed a marked
increase of HO-1, which may strengthen the cellular defense mechanisms against Aβ-
induced neurotoxicity (Sultana et al., 2005). In 2006, we extended our knowledge about the
beneficial effects of FAEE by showing that FAEE can act as a potent antioxidant in vivo,
thus providing neuroprotection against Aβ-induced oxidative stress, and that these effects
can be mediated at least in part by the up-regulation of HO-1 (Perluigi et al., 2006).

Based on others and ours evidence, increased interest has been focused on identifying
dietary compounds that can inhibit, retard, or reverse the multistage pathophysiologic events
underlying AD pathology. Indeed, the stimulation of various repair pathways, such as HO-1,
by mild stress has significant effects on delaying the onset of various age-associated
alterations in cells, tissues, and organisms (Mancuso et al.,2012).

Due to the main role played by oxidative and nitrosative stress in the pathogenesis of AD,
and the importance of heat shock proteins, including HO-1, as molecular chaperones
involved in the protection of cells from various forms of stress, we then proposed for the
first time the existence of a link between nitrosative stress and HO-1 in brain and plasma of
AD subjects (Table 2). Indeed, (i) elevation of HO-1 protein levels in the inferior parietal
lobule, and (ii) elevation of HO-1 protein levels and activity in plasma and lymphocytes
from AD subjects (Calabrese et al., 2006) (Table 2), suggested that HO-1 is redox regulated,
similar to other antioxidant enzymes (Alam and Cook, 2003; Balogun et al., 2003). This
suggestion has merit because the HO-1 gene contains an ARE motif in its promoter region.

In 2008, the first evidence of a dietary antioxidant treatment-mediated beneficial effects on
cognition and oxidative stress levels was provided in a well-characterized pre-clinical model
of AD, the aged beagle (Cotman and Head, 2008; Johnstone et al., 1991; Opii et al., 2008;
Torp, 2000a; Torp, 2000b; Torp et al., 2003). These effects were mediated at least in part
through the up-regulation of the HO-1 protein (Opii et al., 2008). Very interestingly, the
higher HO-1 protein levels after antioxidant treatment were associated with lower error
scores on individual cognitive tasks. As a result HO-1 was one of the best predictors of error
scores on black/white reversal learning, i.e., higher HO-1 protein levels were associated with
improved cognitive function (Opii et al., 2008).
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Oxidative/nitrosative stress-induced modifications of the HO-1/BVR-A system in AD and
MCI

At this point it was quite clear that there was something missing in the comprehension of the
role of the HO-1/BVR-A system in AD. Is HO-1 up-regulation neuroprotective or
neurotoxic? Indeed, by looking at the previous studies, the neurotoxic effects were ascribed
in part to its by-products, i.e., iron and CO, whereas the neuroprotective effects were
explained by noting that the up-regulation of HO-1, together with increased HO activity,
was associated with elevated levels of BR, which in turn, due to its antioxidant power,
mediates beneficial effects. However, while iron and CO were generated directly by HO
activity, BR was not, and as explained above, the enzyme responsible for the production of
BR is BVR (Figure 1).

Thus, what about BVR? As noted above despite many studies over about 20 years to clarify
the role of HO-1in AD, few addressed the role of BVR in AD.

In 2011, we were the first to report alterations in BVR activity along with decreased
phosphorylation and increased oxidative/nitrosative post-translational modifications in the
brain of subjects with AD and amnestic MCI subjects (Barone et al., 2011a; Barone et al.,
2011b) (Table 2). The first novel finding provided by these studies was the relationship
between BVR-A protein levels and activity. Total BVR-A protein levels were increased in
the hippocampi of both AD and MCI subjects, but its activity was reduced. No changes were
observed in cerebellum (Barone et al., 2011a; Barone et al., 2011b) (Table 2). Hippocampus
is broadly recognized as a main target of neurodegenerative damage during AD progression,
presenting increased levels of oxidative stress, neuronal loss and marked atrophy in respect
to whole brain (Aksenov et al., 1995; Keller et al., 2005; Markesbery, 2009). Conversely,
cerebellum is largely devoid of pathology and oxidative stress (Hensley et al., 1995),
consistent with the hypothesis of lack of AD pathology due to BVR-A levels, activity and
phosphorylation state observed in this brain area (Barone et al., 2011a; Barone et al., 2011b).
As mentioned above, BVR-A must be phosphorylated on specific Ser/Thr/Tyr residues in
order to be activated. The significant reductions of both pSer/Thr-BVR-A and pTyr-BVR-A
and BVR activity we discovered in AD brain (Table 2) agree with this paradigm.
Interestingly, other than the reductase activity (the ability to produce BR) also its kinase
activity was reduced as demonstrated by the decreased associations with ERK-2 in
hippocampus (Barone et al., 2011a). This result lends support to the hypothesis that BVR
could contribute to the ERK1/2 dysregulation detected in this brain area in AD subjects
(Hyman et al., 1994), and confirmed the importance of BVR kinase activity even in the
modulation of cell stress response (Barone et al., 2011a; Barone et al., 2011b).

In a following study, we demonstrated that BVR-A undergoes nitrosative stress-induced
modifications. We showed increased 3-NT levels on BVR-A in the hippocampus of subjects
with AD and MCI (Barone et al., 2011a; Barone et al., 2011b) (Table 2). Since it is well
known that the formation of oxidative/nitrosative post-translational modifications alters
protein structure (Subramaniam et al., 1997) and most often results in a marked decrease of
their function (Butterfield and Lauderback, 2002; Lauderback et al., 2001; Owen et al.,
2010), it is plausible to argue that the rise of 3-NT levels on BVR-A could be responsible at
least in part for the observed reduced activity (Barone et al., 2011a; Barone et al., 2011b).
Indeed, nitration and phosphorylation processes occur on the same residues, i.e., Tyr
residues (Butterfield and Stadman, 1997). Currently it is not known if exactly the same Tyr
residues are the substrate of these kinds of modifications, but it is conceivable that, due to
the decreased Tyr phosphorylation and the increased Tyr nitration, a competition between
nitration and phosphorylation processes occurs. Certainly, from a chemical point of view,
steric hindrance of the NO2 group on the 3-position of Tyr could significantly modulate
activity of Tyr kinases for the 4-OH group. This notion strengthens the hypothesis that
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nitrosative stress prevents/inhibits Tyr phosphorylation on BVR-A (Barone et al., 2011a;
Barone et al., 2011b). The evidence that BVR-A nitration occurred also in the hippocampus
of MCI subjects (Table 2), suggests that any modification in terms of cell stress response is
an early event in the pathogenesis and progression of AD (Barone et al., 2011b).

These findings raised the question about the effective neuroprotective role of the HO-1/
BVR-A system in AD. Why, despite the up-regulation of both HO-1 and BVR-A protein
levels, are the oxidative stress markers levels in the hippocampus still higher and the
pathological features of AD still present? Based on our results, the answer is quite simple: it
is no longer correct to measure only total protein levels as an index to evaluate the
involvement of these enzymes in cell stress response since post-translational modifications
appear to play a main role in the regulation of the neuroprotective and/or metabolic activities
of these proteins. In fact, the observed impairment of BVR-A activity blunts the effects that
could be mediated by the up-regulation of this enzyme (Barone et al., 2011a; Barone et al.,
2011b).

These observations were logically followed by the analysis of the post-translational
modifications of HO-1. The question to be addressed at this stage was to know if only BVR-
A was impaired or also HO-1.

We then extended the investigation on the neurobiological features of both HO-1 and HO-2
in the brain of AD and MCI subjects to include: (i) increase of HO-1 protein levels in
another well-known brain area involved in AD pathology such as hippocampus; (ii) decrease
of HO-2 protein levels in the same brain area; and (iii) the observation that no changes for
HO-2 protein levels in cerebellum of MCI subjects were observed (Barone et al., 2012a)
(Table 2). Furthermore, we showed a significant increase of Ser-residue phosphorylation
along with oxidative post-translational (PC- and HNE-adducts) modifications in the
hippocampus of only AD subjects (Barone et al., 2012a) (Table 2). In hippocampus of MCI
subjects only a significant increase of HNE-adducts on HO-1 was observed without changes
in phosphorylation (Barone et al., 2012a) (Table 2).

Since HO-1 is a stress-inducible protein, the increase of oxidative stress levels in the
hippocampus of AD subjects could lead to an increase in HO-1 protein levels and
phosphorylation in order to promote its activity and its interaction with BVR (Salinas et al.,
2004). At the same time, the increased oxidative stress could be responsible for the observed
rise of PC and HNE-adducts, already demonstrated for other proteins in AD (Sultana et al.,
2009), including BVR-A (Barone et al., 2011a; Barone et al., 2011b), leading to altered
protein structure and function impairment (Butterfield and Lauderback, 2002; Lauderback et
al., 2001; Owen et al., 2010; Subramaniam et al., 1997). Based on our experimental model,
it is difficult to state which post translational modification precedes the other between
phosphorylation and oxidative modification and at least two interpretations could be
conceivable: 1) oxidative stress promotes the increase of oxidative damage to HO-1 (e.g.,
increased PC and HNE-adducts on its structure). Consequently, the cell tries to restore the
functionality of the protein by increasing Ser residue phosphorylation; 2) Oxidative stress
promotes the increase of Ser-residue phosphorylation in order to activate protein functions,
but HO-1 quickly becomes a target for oxidative post-translational modifications, that in
turn could impair its function (Barone et al., 2012a) (Figure 3).

With regard to MCI, the results from hippocampus add new elements to the comprehension
of the contribution of the HO-1/BVR-A system to AD pathogenesis. Unlike BVR-A, whose
expression levels were found significantly increased even in the hippocampus of subjects
with MCI (Barone et al., 2011a), HO-1 protein levels do not present any differences (Di
Domenico et al., 2010) (Table 2). This result could mean that the induction of each member
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of the HO-1/BVR-A system is not correlated and probably the threshold levels of oxidative/
nitrosative stress needed to induce HO-1 and BVR-A are different. Due to the pleiotropic
functions of BVR-A in the maintenance of cellular homeostasis (Kapitulnik and Maines,
2009), we speculate that the induction of BVR-A precedes those of HO-1. On the contrary,
the formation of HNE-adducts on HO-1(Barone et al., 2012a), along with BVR-A nitration
(Barone et al., 2011b), are already evident in the hippocampus of subjects with MCI. In this
light, despite the progressive increase of HO-1/BVR-A protein levels observed from MCI to
AD (Barone et al., 2012a), the impairment of the system appears to be an early event in the
pathogenesis and progression of the disease.

Furthermore, the increased Ser-residue phosphorylation along with increased protein levels
conceivably could act as a compensatory mechanism to overcome the inactivation of HO-1
by oxidative damage (Barone et al., 2012a) (Figure 3). However, whether or not HO-1
functionality is in part restored after Ser-residue phosphorylation remains an unsolved
question. In order to complete this intricate puzzle, the measure of HO-1 activity should be
considered. However, in our experimental model it is not possible to single out the
differential contribution of HO-1 and HO-2 to the generation of their products (i.e., CO,
ferrous iron and biliverdin) due to lack of reliable selective inhibitors of the two isoforms
(Mancuso and Barone, 2009).

Reconciliation of the two hypotheses
Based on the scenario described above, it is possible to reconcile the apparent contradictory
roles of the HO-1/BVR-A system in AD brain [neuroprotective or neurotoxic] as follows: i)
The failure to protect neurons against the deleterious effects of oxidative/nitrosative stress
could be due to an impairment of HO-1, together with BVR-A, as suggested by our group
(Barone et al., 2011a; Barone et al., 2011b); ii) Phosphorylation might be able to restore
HO-1 functionality, and as a consequence the sustained activation of HO-1 could be
responsible, at least in part, for the observed increased oxidative stress, as well as tau
phosphorylation, in the hippocampus of AD subjects, as suggested by other groups (Hui et
al., 2011; Schipper et al., 2009); iii) the reduced activation of BVR-A implies either a
reduced production of the powerful antioxidant/antinitrosative molecule BR (Barone et al.,
2009; Stocker, 2004) and/or a dysfunction of all the cellular pathways regulated by BVR-A
that are essential for cellular homeostasis (Kapitulnik and Maines, 2009) (Figure 3).

Our studies demonstrated that HO-1/BVR are not very protective in AD/MCI brain due to
the post-translational modifications which decrease both the reductase and kinase activities.
This view in the end results in the same place as that proposed by the neurotoxic hypothesis
associated with the HO/BVR system: damage to AD and MCI brain, including oxidative
damage. Hence, it is time to come together and see that both notions lead to the same
conclusion: oxidative damage in AD and MCI brain, produced in part either as a result of the
products of HO-1 (ferrous iron for example) or as a result of a dysfunctional HO/BVR
system as a consequence of oxidative and/or nitrosative modification.

The challenge in AD and MCI will be to find an effective pharmacological treatment that
might conceivably be capable of overcoming or at least reducing these obstacles related to
the neurotoxic effects.

With the aim to realize this ambitious goal, we evaluated the effect of atorvastatin treatment
(80 mg/day for 14.5 months) on oxidative stress levels and the HO/BVR-A system in the
parietal cortex, cerebellum and liver of a well characterized pre-clinical model of AD, the
aged beagles (Cotman and Head, 2008; Johnstone et al., 1991). We found that atorvastatin,
which only to a minute extent can cross the BBB, in brain significantly: (i) decreased HNE,
PC and 3-NT total levels; (ii) increased GSH levels; (iii) increased HO-1 protein levels; (iv)

Barone et al. Page 15

Neurobiol Dis. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



increased BVR-A protein levels, phosphorylation and activity (Barone et al., 2012b;
Butterfield et al., 2012a) (Table 3, Figure 4). Additionally, significant correlations were
found among: (i) decreased levels of oxidative/nitrosative stress markers and decreased
discriminate learning error score (DLES), reflecting improved cognition; (ii) HO-1 and
BVR-A and decreased oxidative/nitrosative stress indices, as well as DLES (Barone et al.,
2012b; Butterfield et al., 2012a). Furthermore, BVR-A up-regulation and post-translational
modifications significantly correlated with β-secretase protein levels in the brain, suggesting
a possible role for BVR-A in Aβ formation (Barone et al., 2012b) (Table 3, Figure 4).

We believe that an increase of a drug-related induction of BVR-A protein levels together
with its improved functioning could trigger a cell stress response and thus improve cognitive
behavior by the following mechanisms: (i) Interaction with members of the MAPK family,
such as ERK1/2-Mek-Elk1, through which BVR-A regulates important metabolic pathway
as well as the expression of oxidative-stress-responsive genes such as HO-1 or inducible
nitric oxide synthase (iNOS) (Di Domenico et al., 2013b; Kapitulnik and Maines, 2009;
Lerner-Marmarosh et al., 2008; Maines, 2007; Tudor et al., 2008); (ii) Production of the
powerful antioxidant BR as result of BVR-A’s reductase activity; (iii) and speculatively,
activation of both conventional and atypical protein kinase C isoforms (Kapitulnik and
Maines, 2009), whose involvement in memory function is now well established (Sacktor,
2011) [but see Gibbs et al. (2012), who show that PKC activation does not always lead to
protection]. In these scenarios, since the phosphorylation of BVR-A on Tyr residues is
required to interact with ERK-Mek-Elk1 (Lerner-Marmarosh et al., 2008), the increase of
pTyr-BVR-A in the parietal cortex following atorvastatin treatment, coupled with the
negative correlation between pTyr-BVR-A and size discrimination error scores, could
suggest an activation of the MAPK-related signal transduction pathways that in turn
promote a robust cell stress response (Kapitulnik and Maines, 2009) (Figure 4). At the same
time, the significant correlations found between BVR activity and decreased total PC and 3-
NT levels suggest a main antioxidant role for BR, consistent with prior studies (Barone et
al., 2009; Dore et al., 1999; Stocker et al., 1987a; Stocker et al., 1987b) (Figure 4).

Based on these observations, we propose a novel mechanism of action for atorvastatin
which, through the activation of HO/BVR-A system, may contribute to the neuroprotective
effects thus suggesting a potential therapeutic role in AD and potentially accounting for the
observation of decreased AD incidence with persons on statin (Figure 4).

HO-1/BVR-A system as an AD diagnostic tool
A definitive diagnosis of AD requires post-mortem neuropathological examination for the
presence of two hallmarks of AD brain lesions: extracellular amyloid plaques and
intraneuronal neurofibrillary tangles (Fagan and Perrin, 2012). Clinical diagnosis of AD
during the patient’s life is based on both novel techniques of brain imaging (e.g. positron-
emission tomography, PET) (Chen and Zhong, 2013) and a battery of probabilistic
neuropsychological, cognitive and functional tests that however, have low accuracy when
applied at very early stages or used to observe the effects of disease-modifying drugs
(Gustaw-Rothenberg et al., 2010). In this frame, particularly interesting is the study by
Shokouhi et al. (Shokouhi et al., 2013), who demonstrated a longitudinal progression
between the cognitive decline of MCI subjects and the brain pattern of 18F-
fluordeoxyglucose detected by PET. A novel drug, florbetapir, was recently studied as an
Aβ-tracer and a potential role for this agent as a tool to monitor Aβ formation/disappearance
by PET has been proposed. (Saint-Aubert et al., 2013). Treatments approved for AD, often
initiated only at the time dementia is recognized, are considered to have marginal efficacy if
administered at late stages of the disease when irreversible brain damage has already
occurred (Di Domenico et al., 2011). In this view, the diagnosis of AD at earlier stages
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represent a key step for the administration of preventive and disease-modifying therapies
that conceivably could protect brain from neurodegeneration.

Therefore, there is an urgent need for objective diagnostic tests of AD onset and
progression. AD biomarkers based on imaging and body fluid analytes have been proposed
and the combined detection of three well recognized CSF biomarkers: Aβ1–42, total tau and
phosphorylated tau (p-tau) reach high sensitivity and specificity for AD prediction
(Grossman et al., 2005; Jack et al., 2010; Mulder et al., 2010; Petersen et al., 2010).
However, a significant limitation to these methods is represented by their costs, availability
and invasiveness that impedes their routine use especially for the diagnosis of asymptomatic
early stages of AD. Current studies on biochemical, easy detectable, markers of AD and
MCI in blood are based on the analyses of inflammatory proteins, markers of cholesterol
homeostasis, oxidative stress, or related to characteristic pathological alterations in AD (Di
Domenico et al., 2011; Galasko and Montine, 2010; Padurariu et al., 2010; Song et al.,
2009). In this context, the analysis in peripheral fluids (serum/plasma) of the HO-1/BVR-A
system, as outlined before, is closely related to oxidative status, one of the main features of
AD, and might represent a promising strategy to predict AD onset, staging and progression.

As noted above, HO-1 has been the object of several studies on biomarker discovery
regarding AD and other degenerative pathologies (Schipper, 2007). In 2000 Schipper and
colleagues (Schipper et al., 2000) and in 2002 Ishizuka and colleagues (Ishizuka et al., 2002)
showed that plasma HO-1 protein and mononuclear cell HO-1 mRNA levels were
significantly suppressed in subjects with probable early sporadic AD compared to normal
elderly controls and individuals with various neurological and medical disorders (Table 1).
MCI subjects reportedly had HO-1 mRNA and protein levels that were intermediate
between controls and AD values indicating a correlation between disease progression and
peripheral decrease in HO-1. In addition to plasma levels, CSF HO-1 levels also were found
suppressed in AD patients supporting their previous finding (Table 1). In 2006 Maes et al.
(Maes et al., 2006) explained such HO-1 plasma and CSF reduction by the presence of a
circulating suppressor of HO-1 expression, identified as alpha-1 anti-chymotrypsin (AAT) in
patients with sporadic AD. The same inhibition does not occur in CNS of AD patients due to
the high AAT exposure to disease- related protein oxidation and nitration. In contrast to the
above-referenced studies, a recent research by Mateo et al. (Mateo et al., 2010) described
unaltered HO-1 serum levels between control and AD subjects, and a study (Calabrese et al.,
2006) demonstrated increased levels of HO-1 in AD lymphocytes compared with control
(Table 2). Extending AD studies from brain to plasma, the Butterfield laboratory
investigated the status of the peripheral HO-1/BVR system with the idea that it might reflect
brain pathology. We showed, recently, that plasma levels of HO-1 are increased in AD and
MCI subjects following disease severity. Our data on plasma HO-1 levels correlate with
brain data previously discussed; however, none of the HO-1 aberrant modifications (protein
bound-HNE or phosphorylation) seen in brain were found in plasma from AD subjects
suggesting that HO-1 analysis may lack AD specificity as a disease biomarker (Di
Domenico et al., 2012) (Barone et al., 2012a) (Table 2). The analysis of the literature shows
the presence of a number of investigations that propose HO-1 altered expression levels as a
biomarker of several different diseases, such as lung function decline in silicosis patients,
secondary hemophagocytic syndrome (HPS) or adult-onset Still’s disease, type-2 diabetes
mellitus and coronary atherosclerosis (Brydun et al., 2007; Miyazaki et al., 2010) (Calabrese
et al., 2007b). Thus, altered HO-1 expression in a such number of heterogenic diseases
suggests that HO-1 alteration may be specific of an event common to all of these diseases,
such as oxidative stress or antioxidant response, but not exclusive of one particular disease.

In 2010 Mueller et al. (Mueller et al., 2010) identified the association of BVR-A and -B
altered expression in AD and MCI pathology in plasma samples suggesting that the heme
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degradation pathway, with the focus on BVR, may represent a new avenue for biomarker
search (Table 1). Subsequent studies from our laboratory showed that, in AD, data from
BVR-A plasma are closely related to BVR-A results in hippocampus with regard to
increased protein quantity, increased protein nitration, decreased tyrosine phosphorylation,
and decreased protein reductase activity (Di Domenico et al., 2012) (Table 2). Interestingly,
we showed that in plasma from probable AD patients (pAD), in which the pro-oxidant
conditions are steadily higher than control, BVR-A protein levels and activity follow their
relationship seen in hippocampus. Conversely, in MCI, the lack of significant increase of
BVR-A levels is coupled with unchanged reductase activity levels (Di Domenico et al.,
2012) (Table 2). The differences between pAD and MCI plasma data might be related to the
severity of the disease that results in different degrees of protein induction, oxidative
modification, phosphorylation, and finally protein activity. Correlation data among nitration,
pTyr alterations, and BVR-A levels in pAD strengthen our findings. Moreover, correlations
of HO-1 and BVR-A quantity and BVR-A post-translational modifications, with cognitive
performance parameters such as Mini Mental State Examination (MMSE) and instrumental
activities of daily living (IADL) in control, AD, and MCI confirm that the alteration of the
HO-1/BVR-A system in plasma is dependent on disease stage, increasing with the severity
or rate of progression of AD pathology (Di Domenico et al., 2012). Currently, the source of
plasma BVR-A is not known.

The results noted above suggest that plasma BVR-A status, more than HO-1, might
represent a reliable monitor of hippocampal BVR-A status and brain damage in pAD.
Indeed, BVR-A post-translational modifications and protein activity add a further degree of
complexity and consistency to a potential diagnostic test and provides deeper and more
detailed information about BVR-A status during AD pathology (Figure 5).

In conclusion, the data reported above suggest that even if the blood proteome profile is
relatively different from the brain protein profile, the HO-1/BVR-A system status in plasma
could mimic the ongoing situation in the brain. Therefore, the analysis of HO- 1/BVR-A
system in blood-related biofluids might represent a reasonable way to gain information on
increased oxidative and nitrosative stress ongoing in the brain. In light of such
considerations, the HO-1/BVR-A system could conceivably predict AD onset and
advancement, expanding its significance as a potential AD biomarker, from the early stages
of the disease, in combination with other AD diagnostic tools.

Future perspective
The role of the HO/BVR axis in the pathogenesis and therapy of AD and MCI is still a
developing research area. From a pathogenetic viewpoint, our data confirm a limited
neuroprotective role for the HO-1/BVR system in normal brain in terms of enhancement of
the cell stress response. However, loss of activity of HO-1/BVR-A leads to loss of
neuroprotective BR and the pleiotropic neuroprotective activities of BVR. This loss of
function in both enzymes is due to the post-translational modifications on both, under pro-
oxidant conditions. On the other hand, it is necessary to point out that the brain has many
others enzymes that can be protective under conditions of oxidative/nitrosative stress, such
as Hsp70, thioredoxin reductase, catalase, superoxide dismutase and Nrf-2-dependent phase
II enzymes, etc. (Calabrese et al., 2008; Calabrese et al., 2007a; Di Domenico et al., 2010;
Joshi et al., 2007; Mancuso et al., 2008). Therapeutic manipulation of the HO/BVR system
is so far in the pre-clinical stage. Particularly interesting is the neuroprotective role of
statins.

In conclusion, several efforts are still necessary for the full comprehension of the importance
of both HO-1 and BVR in the pathophysiology and therapy of neurodegenerative diseases,
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in particular AD, and this goal can be achieved only on the basis of a strong collaboration
between chemists, pharmacologists and clinicians. Such studies are in progress in the
Butterfield laboratory.
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BVR-A biliverdin reductase isoform A

HO-1/2 heme oxygenase isoform 1 or 2

HNE 4-hydroxy-2-nonenal

PC protein carbonyls
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Figure 1. The heme oxygenase/biliverdin reductase (HO/BVR) pathways
Hemoprotein-derived heme is rapidly transformed by the activity of membrane-bound HO
into equimolar amounts of carbon monoxide (CO), iron (II) (Fe2+) and biliverdin. Through
the activity of cytosolic biliverdin reductase (BVR), HO-derived biliverdin is immediately
reduced to bilirubin. Either heme and iron could be responsible for an increase of the
oxidative stress levels in the cells. Thus, by the degradation of heme and through the
antioxidant activity of both biliverdin and bilirubin, the HO/BVR system contributes to the
maintenance of low oxidative stress levels in the cell. Furthermore, both heme and increased
oxidative stress levels represent two main factors regulating HO-1 protein synthesis. Indeed,
the HMOX1 promoter contains an ARE sequence recognized by specific transcription
factors activated in response to oxidative stress. Under basal conditions, Bach1/small Maf
dimers bind constitutively to ARE and inhibit HMOX1 transcription. However, in response
to oxidative stress, heme binds Bach1, which is then exported from the nucleus,
ubiquitinated and degraded, releasing transcriptional repression. Oxidative stress also
induces Keap1 ubiquitination-degradation, allowing the transcription factor NF-E2-related
factor-2 (Nrf2) to translocate into the nucleus. Nrf2/small Maf protein heterodimers bind to
ARE and promote HMOX1 transcription. Most probably the Bach1/Nrf2 transcriptional
system interacts functionally with other transcription factors to regulate HMOX1
transcription. In addition, BVR can function as a shuttle to vehicle heme to the nucleus.
Transport of heme to the nucleus by BVR would enable its delivery to the transcriptional
repressor Bach1, which, on binding heme dissociates from the DNA and is replaced by the
Nrf2 transcription factor (Dhakshinamoorthy et al., 2005; Ogawa et al., 2001), thus allowing
HMOX1 transcription. Arrows, stimulation; dotted line, inhibition.
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Figure 2. Phosphorylation changes modulate HO and BVR activities
Panel A, HO-1 activity might be regulated through Akt-mediated phosphorylation of Ser188
(Salinas et al., 2004). This kind of phosphorylation may change the strength of binding/
interaction between HO-1 and BVR. However, considering the large number of residues
involved in the interaction, a large change in binding affinity is not expected for a single
phosphorylation event (Salinas et al., 2004). HO-2 is activated during neuronal and odorant
stimulation by phosphorylation of serine 79 by casein kinase 2 (CK-2) via participation of
protein kinase C (PKC) and calmodulin (Boehning et al., 2003; Boehning et al., 2004; Dore
et al., 1999). Similarly, BVR is able to phosphorylate itself on specific serine and threonine
residues, and this step is essential for the activation of its reductase activity, named the
ability to reduce BV to BR (Kapitulnik and Maines, 2009). Panel B, in order to function as
Ser/Thr/Tyr kinase, BVR must be phosphorylated on specific Tyr residues by other kinases
such as insulin receptor or other kinases induced under conditions of elevated oxidative
stress levels. Following activation, BVR (i) modulates the activity of members of
conventional and atypical groups of PKC isozymes (PKC-βII and PKC-ζ, respectively)
(Kapitulnik and Maines, 2009; Lerner-Marmarosh et al., 2007; Maines et al., 2007); (ii)
functions as a scaffold protein for the formation a ternary complex with MEK1 and ERK1/2,
placing ERK in a position that enables its activation by MEK (Kapitulnik and Maines, 2009;
Lerner-Marmarosh et al., 2008); and (iii) by forming a dimeric complex translocates into the
nucleus where BVR regulates the expression of stress-responsive genes such as HO-1
(Tudor et al., 2008). Arrows, stimulation.
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Figure 3. The neuroprotective vs neurotoxic hypothesis
The apparent discrepancy between the neuroprotective and neurotoxic hypothesis, with
regard to the role played by the HO/BVR system in the pathogenesis of AD, could be solved
by considering different phases in the progression of the pathology. Panel A,
neuroprotective. By considering oxidative stress as a central event in AD pathology, it is
conceivable that during an initial phase, which could be represented by an early stage even
preceding MCI, the elevation of oxidative stress levels promotes the increase of HO-1 and
BVR-A protein levels which could still work properly in order to counteract, the noxious
effects related to augmented oxidative and nitrosative stress levels through: (i) the
production of antioxidant and antinitrosative bilirubin; and (ii) the pleiotropic functions of
BVR regulating cell survival. With the progression of the pathology through the progression
from MCI and AD, characterized by a continuous increase of oxidative stress levels, the
neuroprotective activities mediated by the HO/BVR system would not be sufficiently
efficacious anymore. Panel B, neurotoxic. Taking into account the observed impairment of
BVR-A in both MCI and AD (Barone et al., 2011a; Barone et al., 2011b), the presence of
both oxidative post-translational modifications and Ser phosphorylation on HO-1 in AD
brain makes it difficult to state which post translational modification precedes the other and
at least two interpretations could be conceivable: (1) oxidative stress promotes the increase
of HO-1 oxidative damage (e.g., increased PC and HNE-adducts to key amino acids within
HO-1). Consequently, the cell tries to restore the functionality of the protein by increasing
Ser residue phosphorylation; (2) Oxidative stress promotes the increase of Ser-residue
phosphorylation in order to activate protein functions, but HO-1 quickly becomes a target
for oxidative post-translational modifications, that in turn could impair its function (Barone
et al., 2012a). Arrows, stimulation; dotted lines, inhibition.
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Figure 4. Schematic representation of atorvastatin-induced BVR-A neuroprotective effects in the
parietal cortex of aged beagles
Aged beagles are a good preclinical model of Alzheimer disease since they naturally
develops learning and memory impairments in association with the accumulation of human-
sequence Aβ and increased oxidative stress levels (Cotman and Head, 2008; Head et al.,
2008) (right side). Atorvastatin increases (i) HO-1 protein levels and (ii) both BVR-A
protein levels and phosphorylation on Tyr/Ser/Thr residues in parietal cortex of aged
beagles. As a consequence, an increase of its reductase activity (increased bilirubin (BR)
production) is observed. Either BVR-A and BR possesses antioxidant features responsible of
the reduction of oxidative stress in the parietal cortex, as demonstrated by the negative
correlations found between oxidative stress biomarkers levels and (i) BVR-A protein levels
or (ii) BVR activity in the same brain area (Barone et al., 2012b). Furthermore BVR-A is
associated with an improvement of cognitive functions (learning) following atorvastatin
treatment (Barone et al., 2012b). Finally, BVR-A protein levels and pTyr-BVR-A were
significantly associated with decreased BACE1 protein levels suggesting a role for BVR-A
in Aβ production (Barone et al., 2012b). All these effects contribute to the neuroprotective
role of BVR-A in the brain. Arrows, stimulation; dotted lines, inhibition.
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Figure 5. Schematic view of plasma HO-1/BVR-A system reflecting CNS pathology in AD
subjects
We reported in AD plasma that HO-1/BVR-A system status could represent a reliable tool to
monitor CNS ongoing AD pathology. Indeed, we found altered expression levels for both
the protein components of the system and aberrant BVR-A protein nitration and
phosphorylation that mimic the hippocampal situation during AD pathology. We speculate
that the increased OS levels at both CNS and blood levels might also account for BVR-A
aberrant expression, oxidation and phosphorylation during AD.
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Table 3

Main effects observed during previous studies by the Butterfield group about (i) oxidative stress levels and (ii)
HO-1/BVR-A system in the brain and liver of aged beagles following atorvastatin treatment. Each value is
expressed with respect to the control group (Barone et al., 2012b; Butterfield et al., 2012a).

Parietal Cortex Cerebellum Liver

PC total levels  11%, * ≠ ≠

HNE total levels  32%, * ≠ ≠

3-NT total levels  26%, * ≠ ≠

HO-1protein levels  75%, ** ≠ ≠

BVR-A protein levels  21%, * ≠  60%, **

pTyr-BVR-A  54%, * ≠ ≠

pSer/Thr-BVR-A  17% ≠ ≠

BVR activity  35%, * ≠ ≠

PC-BVR-A ≠ ≠  60%, ns

HNE-BVR-A ≠ ≠  60%, **

3-NT-BVR-A  18%, ns ≠ ≠

 Increase,  decrease, ≠ no changes,

*
p<0.05,

**
p<0.01,

ns non significant
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