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Abstract
Humans are extremely good at detecting anomalies in sensory input. For example, while listening
to a piece of Western-style music, an anomalous key change or an out-of-key pitch is readily
apparent, even to the non-musician. In this paper we investigate differences between musical
experts and non-experts during musical anomaly detection. Specifically, we analyzed the
electroencephalograms (EEG) of five expert cello players and five non-musicians while they
listened to excerpts of J.S. Bach’s Prelude from Cello Suite No.1. All subjects were familiar with
the piece, though experts also had extensive experience playing the piece. Subjects were told that
anomalous musical events (AMEs) could occur at random within the excerpts of the piece and
were told to report the number of AMEs after each excerpt. Furthermore, subjects were instructed
to remain still while listening to the excerpts and their lack of movement was verified via visual
and EEG monitoring. Experts had significantly better behavioral performance (i.e. correctly
reporting AME counts) than non-experts, though both groups had mean accuracies greater than
80%. These group differences were also reflected in the EEG correlates of key-change detection
post-stimulus, with experts showing more significant, greater magnitude, longer periods of and
earlier peaks in condition-discriminating EEG activity than novices. Using the timing of the
maximum discriminating neural correlates, we performed source reconstruction and compared
significant differences between cellists and non-musicians. We found significant differences that
included a slightly right lateralized motor and frontal source distribution. The right lateralized
motor activation is consistent with the cortical representation of the left hand – i.e. the hand a
cellist would use, while playing, to generate the anomalous key-changes. In general, these results
suggest that sensory anomalies detected by experts may in fact be partially a result of an embodied
cognition, with a model of the action for generating the anomaly playing a role in its detection.
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1. Introduction
The study of the neural processes underlying musical expertise has been an active area of
research in cognitive neuroscience. Non-invasive neuroimaging has played an important role
in identifying the elements of cognition supporting such expertise. However, the precise
roles and relationships of action and perceptual systems remain unclear. In this study, we
specifically focus on the perceptual acuity of expert musicians, exploring what role, if any,
is played by the interaction of perception and action systems in these subjects. Specifically,
we focus on a type of musical expertise that requires a trained mastery of a specific temporal
sequence of events, either in the instrumental production of music or in the auditory
prediction of a melody, harmony, rhythm and/or timbre. While this may seem a narrow
criterion for expertise, we need only to consider the breadth of activities that fall into this
classification along with music. For instance, dancing and language comprehension, among
many others, share common features with music and have been found to manifest
themselves in neural data: pre-motor cortex shows activation via functional magnetic
resonance imaging (fMRI) for skilled dancers watching videos of other dancers (Calvo-
Merino, Glaser, Grezes, Passingham, & Haggard, 2005; Sevdalis & Keller, 2011); fMRI and
electroencephalography (EEG) has shown networks of activation in response to semantic
content (Cummings et al., 2006; Gonsalves & Paller, 2000; Hasson, Nusbaum, & Small,
2007; Koelsch et al., 2004; Schmithorst, Holland, & Plante, 2006; Virtue, Haberman,
Clancy, Parrish, & Jung Beeman, 2006).

The study of musical expertise has been a highly researched topic. Koelsch, Tervaniemi and
others have examined musical experts’ pitch and melody processing, showing clear event-
related potential (ERP) markers for expertise (Koelsch, Schmidt, & Kansok, 2002; Koelsch,
Schroger, & Tervaniemi, 1999). Pfordresher and others have examined the action-related
processes of music production using behavioral measures (P. Pfordresher, 2006; P.
Pfordresher, Kulpa, JD, 2011). In fact, music perception experiments primarily focus on
pitch, along with melody and harmony discrimination, looking at the neural markers
(usually ERPs) for deviant tones, notes or chords and the abilities of subjects to recognize
syntactically inaccurate musical sequences (Bidelman, Krishnan, & Gandour, 2011;
Koelsch, 2009; Koelsch et al., 2004; Koelsch & Siebel, 2005; Loui, Grent-'t-Jong, Torpey,
& Woldorff, 2005; Maidhof, Vavatzanidis, Prinz, Rieger, & Koelsch, 2010).

It is clear from this previous work that the perception of pitch, melody, harmony and rhythm
manifest in measurable neural markers, though the focus has been on markers defined by
averaging many EEG trials (e.g., as indexed by the early right-anterior negativity, ERAN) or
by analyzing the sluggish blood oxygenation level dependent (BOLD) activity or even by
comparing structural connectivity via diffusion tensor imaging (DTI). Here, we aim to
investigate the EEG markers for expertise from a different analytic framework, namely
through a single-trial analysis of the EEG. Based in statistical pattern recognition and
machine learning (L. C. Parra, Spence, Gerson, & Sajda, 2005), this approach is less
concerned with the cataloging of particular ERP components (e.g., P300, MMN, ERAN,
etc.) and more concerned with – in fact driven by – the distributed EEG activity that
discriminates one experimental condition from another. Specifically, we consider the entire
electrode space to construct multivariate classifiers and utilize rigorous statistical hypothesis
testing in conjunction with signal detection theory (SDT) to determine which electrodes and
time points are most discriminating between our chosen experimental conditions. This
method contrasts with those of the earlier cited ERP studies, in which electrode regions of
interest (ROIs) and post-stimulus time windows are chosen a priori for doing statistical
testing (usually with ANOVA). Without such a priori constraints, the results from these
methods would suffer from statistical irrelevance due to multiple comparisons correction.
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With this methodological basis, we then determine the differences in discriminating neural
activity of a group of musical experts and a corresponding population of novices (i.e., non-
musicians). Building from earlier work on auditory-motor interaction in music perception
(Zatorre, Chen, & Penhune, 2007), we chose to specifically test the role of action-related
processes, especially in experts. We chose an expert subject population with a high degree
of proficiency in a particular instrument (cello) and employed a musical stimulus with which
they were highly familiar, both in terms of listening to and playing the piece: J.S. Bach’s
Prelude from the Cello Suite No. 1. As a control population, we chose a population with no
formal music training, nor any experience having played the cello.

In music, an audience can often identify when an expected sequence of events does not
occur, i.e., when a ‘mistake’ occurs. This is the role that a forced key modulation serves as
the chosen AME. In this regard, it can bear a strong resemblance to an oddball-like
paradigm and in such studies the pool of available subjects with the required level of
expertise to perform the task is quite high. For example, the ability to perceive the difference
between tones of vastly different frequency relies only on normal hearing amid directed
attention (Wronka, Kaiser, & Coenen, 2012) (Chennu & Bekinschtein, 2012). But native
speakers of a tonal language (experts) can excel at the task in comparison to non-speakers
(novices) when the tones are closer in frequency (Giuliano, 2011; P. Pfordresher, Brown S,
2009). Similarly in music, there is a class of subjects (musical experts) for whom oddball-
like stimuli embedded within a particular musical stimulus will evoke a different, and
perhaps stronger, neural response than it will in another class of subjects (musical novices).
Earlier studies cited above have begun to elucidate this using ERP analysis, but questions
still remain regarding the specific roles of action-related processes in such expertise. Even
though fMRI highlights the involvement of action-related cortices in experts’ perception of
music, questions remain as to what role these processes play in anomaly detection
(Baumann et al., 2007; Haslinger et al., 2004).

In summary, we designed an oddball-like experiment where both experts and novices
(cellists and non-musicians) were instructed to count AMEs, key changes by a semitone
(either up or down), that occurred at random in an excerpt. Using this paradigm and our
approach for single-trial analysis of EEG, our specific hypotheses were,

1. Experts have greater behavioral accuracy than novices

2. Experts have a more pronounced and rapid neural response to AMEs relative to
novices

3. Experts utilize neural machinery for detecting AMEs that is reflective of their
extensive instrumental and musical training.

2. Materials and Methods
2.1 Subjects

Ten subjects participated in the study, five were classified as experts (3 females, 2 males)
and five were novices (2 females, 3 males). The size of our expert population was limited by
the number of concert-level cellists we were able to recruit for the study. Despite this limited
number of subjects, we found statistically significant results to test our aforementioned
hypotheses relative to group effects.

The ages and years of formal music and cello experience are given in Table 1. Experts had
32.6±10.0 years of cello performance training and had a mean age of 41.2±10.6 years. All
experts were professionals, played the cello with their right-hand and had played the J.S.
Bach piece extensively as part of training and performing. The novices had a mean age of
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30.8±5.8 years. Though novices were vaguely familiar with the piece used in the study, they
had neither extensive knowledge of the piece, J.S. Bach’s music nor the specific recording.
They also had no prior experience playing the cello nor any formal musical training (beyond
taking a music class in high-school). Furthermore, the novices were not significantly
different in age (p>0.05, independent groups t-test) or gender from the experts. All subjects
reported normal hearing and no history of neurological problems. Informed consent was
obtained from all participants in accordance with the guidelines and approval of the
Columbia University Institutional Review Board.

2.2 Stimuli and Behavioral Paradigm
We used the first 65 seconds of Yo Yo Ma’s recording of the Prelude of J.S. Bach’s Cello
Suite No. 1 as our stimulus. Subjects listened to this complete musical section, or excerpt, 40
times, with 32 of these excerpts altered to contain 3 to 6 anomalous key-change events.
There were 140 total key-change events in the experiment.

Anomalous key-shifts were added to the original 44.1kHz .mp3 file using Apple Inc.’s
Logic Express 9.0 (Cupertino, CA). These key-changes were inserted at random times with
Pitch-Shifter, a built-in plug-in to Logic Express, and each trial was then saved as a
44.1kHz .wav file. Although the pitch of the .wav file is raised or lowered with this
algorithm, the effect is a complete change of musical key on the sound file.

Neither the frequency, timing, nor direction, of key-changes could be predicted from one
another. The rule for the key-changes was that the net key-change should be no more than a
half step from the original key of the recording. In the case of the Bach prelude (originally in
G), the recorded key was altered no higher than G-sharp (G#) and no lower than G-flat (Gb).
This was done to avoid overt distortion of the original recording, thereby making a key-
change obvious from non-harmonic considerations (e.g., timbre). A schematic representation
of a key-change trial beginning and ending in the original recording key is shown in Figure
1. In the figure, a blue step-function above the musical notation provides a schematic of the
key for those not fluent in musical notation.

We balanced the direction of key-changes using a total of 69 key-changes up and 71 key-
changes down. Considering each key-change as a stimulus, the inter-stimulus-interval (ISI)
was at least 6 seconds. To remove the potential for bias, especially among our experts, some
trials began one semitone down or up from the original key to ensure that the task was
specific to relative key-change, rather than deviation from absolute key.

The 8 control and 32 key-changed excerpts were presented to the subjects in a
pseudorandom order across eight blocks, each containing five excerpts. Each block
contained either none or at most two control excerpts in which no key-changes occurred. An
example presentation order is shown in the Appendix.

A Dell Precision 530 Workstation was used to present the audio stimuli with E-Prime 2.0
(Sharpsburg, PA) and a stereo audio card. The subjects sat in an RF-shielded room between
two Harmon & Kardon computer speakers (HK695-01, Northridge, CA) connected to the
Dell. Each subject was allowed to adjust the volume so that they could comfortably perform
the task (playback volume did not exceed 80dB).

Subjects performed a simple detection task in which they were asked to respond covertly by
counting the number of AMEs they heard. Counting was used rather than an overt
behavioral response, such as a button-press, to minimize motor confounds in the EEG.
Counts provided an estimate of task performance, thereby ensuring that subjects attended to
the task. Subjects were not explicitly instructed to detect a key-change, but simply to pay
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attention for anything out of the ordinary—i.e. an anomaly. They were instructed not to
move during the task and they were monitored for any movement both visually and via
analysis of motor-related artifacts in the EEG. Stimulus events were passed to the EEG
recording through a TTL pulse in the event channel. In post-hoc analysis, stimulus events
were added to the EEG of control tracks at the times when they had occurred in the key-
change tracks.

2.3 Data Acquisition
EEG data was acquired in an electrostatically shielded room (ETS-Lindgren, Glendale
Heights, IL, USA) using a BioSemi Active Two AD Box ADC-12 (BioSemi, The
Netherlands) amplifier from 64 active scalp electrodes. Data were sampled at 2048 Hz. A
software-based 0.5 Hz high pass filter was used to remove DC drifts and 60 and 120 Hz
(harmonic) notch filters were applied to minimize line noise artifacts. These filters were
designed to be linear-phase to minimize distortions. Stimulus events – specifically, key-
changes – were recorded on separate channels.

Throughout the experiment, subjects listened to the music excerpts with eyes closed. This
minimized blinks and eye-movement artifacts. This technique has been used in other music
perception studies (Maidhof et al., 2010), as well as auditory oddball studies (Goldman et
al., 2009). Consequently, no eye calibration experiments were needed before implementing
the filtering described above.

In epoching the data, the average baseline was removed from 1000ms pre-stimulus, i.e.,
1000ms before the AME or its corresponding control time in the epoch. After epoching into
stimulus and time-matched control events, an automatic artifact epoch rejection algorithm in
EEGLAB (Delorme & Makeig, 2004) was run to remove all epochs that exceeded a
probability threshold of 5 standard deviations from the average.

2.4 Data Analysis
2.4.1 Behavioral Accuracy from Post-Excerpt Reporting—We calculated
behavioral accuracy based on a post-excerpt reporting of how many AMEs the subjects
counted. Subjects reported this number after each of the 40 listening excerpts. We calculated
accuracy by noting the deviation from the actual number of key-changes in each excerpt. For
instance, if excerpt i contained ni key-changes and a subject reported ni−ki or ni+ki key-
changes then this constituted an error of ki. However, if the subject reported ni then this
constituted an error of zero, ki = 0. To summarize the performance of each subject, we
subtracted from 1.00 (perfect accuracy) the total number of errors, normalizing by the total
number of actual key-changes that occurred (Equation 1). Despite the possibility of accuracy
being less than zero, this case would only be in the event of extremely poor behavioral
performance and did not occur in our experiment.

Equation 1: Behavioral Accuracy Calculation

2.4.2 Single-trial Analysis of the EEG—We performed a single-trial analysis of the
filtered, epoched and artifact-removed EEG to discriminate between anomalous key-changes
in either direction, regardless of starting and ending key, and their corresponding control
epochs. With the lack of an overt response to the key-change, we necessarily included both
hits and misses in these epochs, thereby making the discrimination challenging if the subject

Sherwin and Sajda Page 5

Brain Cogn. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



does not demonstrate sufficient behavioral performance on the task. Logistic regression was
used to find an optimal projection in the EEG sensor space for discriminating between these
two conditions over each sub-window of the entire epoch (L. Parra et al., 2002; L. C. Parra
et al., 2005). Specifically, we defined a training window starting at either a pre-stimulus or
post-stimulus onset time τ, with a duration of δ, and used logistic regression to estimate a
spatial weighting vector wτ,δ which maximally discriminates between sensor array signals X
for each condition (e.g., key-changes versus controls). For our experiments, the duration of
the training window (δ) was 50ms and the window onset time (τ) was varied across time τ∈
[−200,950]ms in 25ms steps (50% overlap), thereby covering [−200,1000]ms. This training
window size and overlap has been successfully used in other implementations of this
technique (L. Parra et al., 2002; L. C. Parra et al., 2005), as it allows a suitable balance
between local and global temporal EEG dynamics. We used the re-weighted least squares
algorithm to learn the optimal discriminating spatial weighting vector wτ,δ (Jordan, 1994).

Equation 2: Projection Equation for Component

The result is a ‘discriminating component’ y that is specific to activity correlated with each
condition while minimizing activity correlated with both task conditions such as early audio
processing. The term ‘component’ is used instead of ‘source’ to make it clear that this is a
projection of all activity correlated with the underlying source. In Equation 2, X is an N x T
matrix (N sensors and T time samples).

Once solving for optimal discriminating spatial vectors in each window we can compute the
electrical coupling coefficients (Equation 3).

Equation 3: Sensor Projection Onto Discriminating Component

This equation describes the electrical coupling a of the discriminating component y that
explains most of the activity X. Since a is in the sensor space, we can use it to obtain a
topological map of which electrodes discriminate the most for each condition.

We calculated the ‘EEG image’ by applying wτ,δ to the EEG data of each window (X(τ′)), τ
′∈[−200,950]ms. Given a fixed value of τ, the result of this calculation provides a trial-by-
trial visual representation of the window during which the discriminating component is at its
highest value (see Results).

We quantified the performance of the linear discriminator by the area under the receiver
operator characteristic (ROC) curve, referred to as Az, with a leave-one-out approach (Duda,
2001). The ROC is a curve of false positive rate vs. true positive rate, therefore greater area
values under this curve indicate more accurate classification. We used the ROC Az metric to
characterize the discrimination performance between key-change and corresponding control
epochs while sliding our 50ms training window from start times of −200ms to 950ms post-
stimulus (i.e., varying τ). This epoch size provided substantial time both before and after the
stimulus to observe any possible neural correlate of an anticipation of the AME.

We quantified the statistical significance of Az in each window (τ) via a permutation-based
relabeling procedure. In particular, we randomized the truth labels between control and key-
change epochs and retrained the classifier. This was done 250 times for each subject in each
of the forty-seven 50ms windows, yielding 11500 permutations for each subject. On a group
level (10 subjects), this yields 115000 permutations. On a subject-level significance
analysis, we utilized the false discovery rate (Benjamini, 1995) at p = 0.05, unless otherwise
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specified. On a group-level significance analysis, we utilized the Bonferroni correction at p
= 0.05 (i.e., p = 0.05/47 = 0.001). For both levels, the number of permutations provided a
suitable distribution to gauge statistical significance, regardless of the number of multiple
comparisons in epoch-time.

2.4.3 Traditional ERP Analysis—We also performed a traditional evoked-response
potential (ERP) analysis of the filtered, epoched and artifact-removed EEG. We did not
consider a priori scalp regions of interest (ROIs), peaks and/or times as others have done
(e.g., (Koelsch et al., 2002; Koelsch et al., 1999; Loui et al., 2005; Maidhof et al., 2010)).
Rather, we utilized the statistical significance of our single-trial analysis after correcting for
multiple comparisons to determine which windows were most significant (i.e., max
significant Az). This approach is similar to following the peak activity of a component (e.g.,
P3, N2, etc.), but has the added benefit of not needing to specify ROIs a priori since the
peak discriminating activity is across the whole scalp. The ERPs from these subject-specific
times were then used to consider grand averages within and between subject groups, as well
as between different key-change events (up or down).

3. Results
3.1 Behavioral Performance Shows Experts Out-perform Novices

Without explicit instruction to detect key-changes all subjects, regardless of their expertise,
were able to perform the task with at least 80% accuracy, thereby demonstrating the saliency
of a forced key-change even to the novice listener. From the behavioral data summarized in
Figure 2 (right bars), we see, however, that novices have a significantly lower accuracy rate
than the experts (accuracy of 0.81±0.04 vs. 0.94±0.01, p<0.02, independent groups t-test).

We also examined the dependence of accuracy on experiment time by considering the
Pearson correlation between errors and block number. Once applying a Bonferroni
correction for independent multiple subject comparisons, there were no subjects that showed
significant correlation between errors and block number (p>0.19), indicating that behavioral
performance did not change significantly as a function of experiment time. This result lends
further evidence to the saliency of the key-change event to both groups from the very
beginning of the experiment.

3.2 Single-trial Analysis Reveals Differences in Neural Activity Between Novices and
Experts

Using the sliding window logistic regression classifier (see Methods), we found only post-
stimulus windows of significant discrimination for each group of subjects. Figure 3 shows
each group’s mean discrimination vs. epoch time. On average the leave-one-out (LOO)
discrimination at each window is substantially greater for experts than it is for novices
(p<<0.01, paired t-test). From visual inspection we see that there are more discriminating
windows for experts, as well as higher peak discrimination.

To further quantify the differences between groups, we can examine subject-level LOO
results. Setting the false discovery rate (FDR) for each subject to p = 0.01, we find that
experts have more significant discriminating windows than do novices (p<0.02, independent
groups t-test). Table 2 shows the values and times of maximum discrimination (Az) for each
subject. All discrimination values and corresponding times in this table are FDR corrected at
a significance of p < 0.05. Experts (325±30ms) are faster to their maximum Az than novices
(550±75ms) (p<0.02, independent groups t-test). Experts also exhibit higher values of
maximum Az than do novices (p<0.01, independent groups t-test), the latter of which can be
seen in the behavioral accuracy differences in Figure 2.
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Finally, we utilized the discriminator’s output to examine the single-trial variability of each
subject to the key-change. We filtered each epoch’s sensor data (X) with the classifier ( wτ,δ)
that yielded the maximum value of discrimination (y) between key-changes and controls
(i.e., such that τ is of maximum Az). This allowed us to examine the strength of the
discriminating component, as well as its trial-to-trial variability. Generally, we found a
common window in key-change trials across which each subject showed high values of
discriminating activity compared both to neighboring windows and corresponding control
trials’ windows. We also found differences between experts and novices. For instance,
Figure 4 shows the discriminator outputs (mean of y in Equation 2 across the window) of an
age- and gender-matched novice and expert. From this figure, we see the demonstrated
timing difference of maximum Az between novices (Figure 4A) and experts (Figure 4B).

Furthermore, we see that the discriminating component for the expert during key-change
trials is generally greater than that of the novice at the window of maximum discrimination.
This observation also extends to the group level, where we find that the mean of the
window-meaned ymax Az during key-change trials is greater (p<0.05, independent groups t-
test) for experts (2.72±0.14µV) than it is for novices (2.22±0.23µV), indicating stronger
discriminating activity among the experts at peak neural response to the key-change.

3.3 Traditional ERP Analysis Shows Group Differences at Peak Discrimination
We utilized our discriminator (wτ,δ) to examine the grand average ERP of each group at
subject-specific times of peak discrimination. Since each time is actually the start time of a
50ms window, we averaged across time within this window of peak Az. We also considered
the differences, if any, between up and down key-changes for either group. After epoch
rejection, we found no significant differences between up (64±1) and down (65±1) trials for
any subject (p>0.10, paired t-test). With this balance in the two types of key-change events,
we calculated grand average ERPs for both experts and novices during up and down events.
Figure 5 shows no obvious difference, within group, between key-change types (up or
down) and we verified this with a two-sample Kolmogorov-Smirnov test in sensor space
(pexperts>0.90 and pnovices>0.90). Furthermore, the novices exhibit a posterior P300
(Bledowski, Prvulovic, Goebel, Zanella, & Linden, 2004; Bledowski, Prvulovic,
Hoechstetter, et al., 2004), whereas the experts’ activity is frontal. Importantly, in
comparison to previous work (e.g., (Koelsch, 2009; Koelsch et al., 2002; Koelsch et al.,
1999)), we do not find the ERAN to be the most discriminating ERP component for musical
experts, as their peak discrimination occurs at 325±30ms, which is after the traditional time
of the ERAN. In addition, the scalp distribution is substantially different from the classic
ERAN. Among experts, we do find a strong posterior negativity at peak discrimination, but
it is later than the traditional timing of the ERAN. From its later timing, it is likely that this
negative component is related to semantic processing and the N400 (Koelsch et al., 2004).

3.4 Forward Models of Discriminating Components Show Classic P300 Topologies in
Novices But Not Experts

To more closely examine the differences between experts and novices in terms of the spatial
distribution of their maximally discriminating components, we estimated the electrical
coupling, a, (i.e., the forward model) for each group. Figure 6 shows these forward models
for experts and novices computed using the components at each subject’s maximum AZ.
Specifically the forward model for each subject-class represents an average of the subject-
specific forward models estimated using the window of maximum AZ (i.e. the times in Table
2 represent the τ’s for estimating the components in Equation 2 and the resulting forward
models a using Equation 3).
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Clear from Figure 6 is a difference in the forward models of the discriminating components
for the expert and novice groups. This difference is consistent with the ERP results shown in
Figure 5A/B and Figure 5C/D. The novice group (Figure 6A) has a topology consistent with
the posterior P300 (Bledowski, Prvulovic, Goebel, et al., 2004; Bledowski, Prvulovic,
Hoechstetter, et al., 2004). As with the ERP results, this is consistent with what one might
expect for a target versus distractor task if we consider the key-changes as targets embedded
in a stream of distractors (the ongoing musical piece). The topology for the experts looks
quite different, with Figure 6B showing a strong activation of frontal sites and a
corresponding deactivation of occipital sites for the target condition. Such a topology is
more consistent with neural activity seen in trained instrumentalists following a performance
error with audio and motor feedback (Ruiz, Jabusch, & Altenmuller, 2009).

3.5 Source Modeling Indicates That Experts Recuit Motor Related Areas for Anomaly
Detection

We used source estimation to examine the cortical generators of the differences seen
between experts and novices at the scalp level. Low-resolution tomography (sLORETA) of
scalp potentials has been extensively employed to find possible cortical origins of such
activity (Pascual-Marqui, 2002; Pascual-Marqui, Esslen, Kochi, & Lehmann, 2002) and so
we computed the sLORETA estimates of the neuronal current source distributions.

To compare experts and novices, we grouped up and down key-change trials, given our
earlier results showed that there were no significant differences between those anomaly
types. With this increased statistical power we used statistical non-parametric mapping
(SnPM) for comparing experts and novices in the sLORETA voxel space. We calculated
sLORETA fits for each subject’s grand average ERP at the subject specific maximum Az for
up and down epochs, respectively. As for the ERP calculations, these are averaged across
time in the 50ms window of peak discrimination between key-changes and controls. We
then compared the ten novice sLORETA fits with the ten corresponding expert fits. The
sLORETA parameters used in the independent groups t-test can be found in the Appendix.
We established significance using 1024 permutations and the SnPM procedure for voxel-
space comparisons (Holmes, Blair, Watson, & Ford, 1996; Nichols & Holmes, 2002;
Pascual-Marqui, 2002; Pascual-Marqui et al., 1999). Figure 7 shows the t-distribution values
of the log of the ratio of averages (similar to a one-way ANOVA, F(1,19)) for experts >
novices (purple/blue) and novices > experts (orange/yellow) mapped to a six-view
projection of the cortex. We find that experts have 15 voxels across BA 6 and BA 9 with
significantly greater activity than novices (p<0.01, independent groups t-test), peaking at
MNI (20, −10, 60). Interestingly, this voxel of peak activity has also been implicated in
music imagery tasks in pianists (Baumann et al., 2007), though in that work bilateral
activation was found in this part of the premotor dorsal cortex. For our results, not only is
peak activity for experts in right motor cortex, but we also find more right than left
lateralized activation when we consider SnPM-corrected voxels out to p<0.05 (31 left voxels
vs. 50 right voxels, 17 of which are in right frontal cortices). All 31 left voxels are in the
motor cortices, while right voxels are distributed between the right motor (33 voxels) and
frontal cortices (17 voxels). Table 3 gives MNI coordinates for a subset of these voxels with
their t-distribution values (thresholded by p<0.01). There are no voxels showing significance
for novice activity greater than experts (p=0.73).

We also tested the time-uniqueness of this response amongst experts by considering
windows of non-maximum Az. Such a test addresses possible concerns that the motor
response seen in the experts (cellists) is only from them listening to their instrument of
expertise being played (Zatorre et al., 2007), rather than being an additional neural correlate
of the key-change detection event. To this end, we randomly selected a pre-stimulus window
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(i.e., τ∈ [−1000,−50]ms) for each subject, rather than the window of maximum Az, and
performed the same sLORETA statistical analysis as before. We did the same calculation for
a randomly chosen post-stimulus (i.e., τ∈ [0,950]ms) FDR-corrected insignificant and FDR-
corrected significant window (non-maximum Az), respectively. For these three randomly
selected window cases, we found no voxels having significantly greater activation for
experts or novices (p>0.05, independent groups t-test, all three cases).

We also tested the robustness of our result among experts by averaging in the voxel space,
rather than the sensor space, before statistical testing. Due to sLORETA’s guarantee of zero-
error in fitting the sensor distribution to the voxel space, and linearity of electromagnetic
sources, we expected to duplicate our earlier findings. We transformed each epoch’s time-
averaged window of subject-specific maximum Az into voxel space using sLORETA (ups
and downs separately). We then averaged within subject all epochs for key-changes up and
down, respectively. Performing the same SnPM and f-test, we found peak activity once
again at MNI (20, −10, 60) and the same 15 voxels showing greater activity among experts
than novices (p<0.01, independent groups t-test).

Finally, the slight right lateralization of the neuronal current response among experts and the
frontal source found from this analysis is consistent with both the ERP and forward model
results, Figure 5B/D and Figure 6B, respectively.

4. Discussion
In this paper, we have shown that both the timing and sources of discriminative neural
markers are different between our expert and novice subjects in an oddball-like musical
anomaly detection task. Without particular instruction to detect key-changes, all subjects
detected the AMEs, with group differences manifesting themselves in behavioral
performance, discriminating neural activity, traditional ERP analysis, scalp topology of
discriminating component forward models and the distribution of neuronal sources. We now
discuss these results in the context of relevant and related studies.

4.1 Studying Expertise in Musicality
Other studies have investigated the neural correlates of experts and novices with respect to
musical stimuli. For instance, expert pianists were shown to have less fMRI activation than
control subjects in pre-motor cortex during complex movement tasks at a piano keyboard,
indicating a learning effect (Meister et al., 2005); pianists have been shown to have higher
fMRI activation in motor areas when listening to musical stimuli than non-pianists
(Baumann et al., 2007); EEG has been used to show neural signatures that precede when a
trained pianist is about to hit an incorrect note (Ruiz et al., 2009). EEG also has been used to
examine the role of auditory feedback in trained vs. untrained pianists, where it was found
that an N210 ERP was seen for experienced vs. less-experienced pianists following an
alteration of the auditory feedback (Katahira, Abla, Masuda, & Okanoya, 2008). Many EEG
studies also have investigated augmented pitch processing capabilities of expert musicians
(Koelsch et al., 2002; Koelsch et al., 1999).

While these previous studies provide hints of neural markers of musical expertise, their
conclusions stem from the results of neural activity measured over periods of time that are
long when compared to the underlying neural dynamics. For instance, the temporal
resolution of fMRI is typically constrained by the repetition time TR and the sluggish BOLD
response. Traditional EEG studies on the other hand, while they reveal phenomena with high
temporal resolution, are mostly the result of averaging over many trials that unfold in time
across many minutes, ignoring the variability of the activity across trials.
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Nevertheless, we can directly compare our findings to the existing EEG literature on music
perception and expertise, at least where the experimental task is similar. Maidhof et al.
(Maidhof et al., 2010) employ a task, similar to ours, in an attempt to separate the action-and
perception-related processes in musical deviance, i.e., AME, detection. Since there is no
action required by our subjects, the closest analog to our experimental design is from the
‘perception condition’ of this paper. Maidhof et al. however define an AME differently than
we do in our experimental design. Specifically, in their paper, an AME is a single note that
is flattened by one semitone from its diatonic scalar context, whereas our study’s AME is a
semitone key-change that does not return to the previous musical context after the event.
Comparing our experts’ EEG activity with those of Maidhof et al., we find comparable
grand average ERPs in a priori ROIs (such as Fz, FCz and Cz) and scalp distributions in a
priori post-AME time windows (e.g., 180–220ms, 270–320ms and 370–430ms). These
figures can be found in Appendix for direct comparison to Figure 3 of Maidhof et al. The
primary differences between our ERPs and those of Maidhof et al. are that our N2 and P3
complexes are smaller in magnitude, though their timings are comparable. Our ERPs also
exhibit a later negativity, most notable in Fz and FCz. These differences are likely due to the
nature of the AME used in our experiment. In Maidhof et al., the AME lasts 104–217ms but
the harmonic context is quickly re-established. This is not the case in our experiment.
Rather, we change key by forced, instead of diatonic, modulation. Consequently, the long-
term harmonic expectations established from the larger musical context preceding the AME
are not fulfilled. These contextual or semantic-related responses have been seen in music in
the N400 and N500 (Koelsch, 2009; Koelsch et al., 2004; Loui et al., 2005) and in language
in the N600 and P820 (Cummings et al., 2006; Gonsalves & Paller, 2000).

Other studies have specifically examined particular ERP components, such as the ERAN or
MMN. Koelsch has looked at these components extensively in musical expertise (Koelsch,
2009; Koelsch et al., 2002). Although not a particular aim of our study, we can consider our
results in the context of Koelsch’s studies of the ERAN and MMN. We particularly focus on
the ERAN because it is more dependent on music-syntactic regularities extant in long-term
memory than the MMN, which depends on online establishment of regularities in auditory
stimuli and is therefore not specific to music. We find concordant results with Koelsch
(Koelsch, 2009) and Loui et al. (Loui et al., 2005) in that the ERAN of the experts is larger
than the novices, especially in Fz and Cz (not shown).

Although we corroborate earlier results on musical expertise, we see some differences that
are likely due to the differences in task. The most obvious difference between groups is in
the P3 amplitude, which is much larger for experts than novices in both electrode ROIs.
Furthermore, the latency of the experts’ P3 is smaller than that of the novices at Cz and is
likely due to their higher sensitivity to the AME. We additionally find, through single-trial
analysis, that cellists peak in neural discrimination earlier than do the novices. Whereas
previous ERP studies rely on electrode ROIs and time windows, we determine which time
windows and electrodes are maximally discriminative between key-change and control
events. Finally, we found a larger late negativity (~600–700ms) in the cellists than non-
cellists (not shown). This late negativity is not seen in Koelsch (Koelsch, 2009), presumably
because such late negativities are also associated with semantic content developed over
longer periods of time (Cummings et al., 2006; Gonsalves & Paller, 2000; Koelsch, 2009;
Koelsch et al., 2004; Loui et al., 2005) than the stimuli they used. Compared to only 2.5s of
preceding musical context in Koelsch, we utilized at least 6s of pre- and post-AME musical
context. Therefore, it is possible that we see a late negativity in both groups (accentuated in
cellists) because of the semantic content conveyed by the harmonic context.

Our work differs from previous work using ERP analysis because we were not constrained
by electrode ROIs nor pre-determined windows of EEG activity that we can see are heavily
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dependent on the stimuli and tasks (e.g., compare Maidhof’s results (Maidhof et al., 2010) to
ours in the Appendix). Our experimental design focused on creating a stimulus salient to
both groups. We found that the expertise of the professional cellists allowed them to more
accurately and more quickly identify the anomalous events in a sequential stream of musical
stimuli. Therefore, a primary contribution of our paradigm and ensuing analysis is that it has
focused on the neural markers of AME detection that varied trial-to-trial (see Figure 4). We
utilize this variability to identify discriminating EEG components and the times of the
maximum discriminating components (Figure 3 and Table 2), which ultimately inform our
ERP (Figure 5), forward model (Figure 6) and source localization (Figure 7) analyses.
Consequently, while our results have been demonstrated in the context of musicality, they
can theoretically be extended to other domains of human interaction with the external
environment that depend on a tight coupling of sensorimotor interaction to cognition (e.g.,
language comprehension and production).

4.2 Auditory-Motor Coupling in Experts
Our source localization results reveal strong activity amongst experts in right lateralized
frontal and bilateral motor, supplementary motor and movement-related cortices (Figure 7),
though the activity is more right than left lateralized. Significant values from the comparison
statistic (p<0.01) are found at locations implicated in movement(s) and timing experiments
involving the dorsal pre-motor cortex (dPMC) and supplementary motor area (SMA).

In literature specific to music, there is a strong connection emerging between audio and
motor processing. Zatorre et al. (Zatorre, 2007; Zatorre et al., 2007) present a literature
survey in which the case is made for such a connection. They specifically focus on dorsal
PMC (dPMC) as the location of mirror (or echo) neurons that link auditory and motor
systems. Our source localization is consistent with this argument as we have also found an
audio-motor connection in the dPMC. They also claim that dPMC is involved in the higher-
order feature extraction of an auditory stimulus to implement temporally organized actions.
In our experiment, the higher-order feature would be the key of the recording, so there
appears to be even more concord with this proposed role of the dPMC.

Our study showed a strong activation in motor areas for the expert cellists, though it is
possible that this difference is due to over-familiarity with the piece. Leaver et al. (Leaver,
Van Lare, Zielinski, Halpern, & Rauschecker, 2009) found that non-musically-trained
subjects showed stronger activations in fMRI of pre-SMA and ventral PMC when listening
to highly familiar vs. unfamiliar melodies. In our findings, the basis of the stimulus set was
chosen in particular for its familiarity both to novices and experts. Its familiarity to novices
was based more on a subjective notion of the prelude’s permeation in popular culture, rather
than a quantitative measure of exposure. The experts on the other hand are highly familiar
with this piece, not only from hearing it, but also from playing it many times since the early
days of their training. Thus the connection we found to SMA is not surprising in the context
of experts’ familiarity to the piece being a prerequisite. Furthermore, the greater right-
lateralized response in experts centered on motor cortices associated with movement of the
left hand, wrist and arm provide a strong case for the familiarity extending into the motor
domain.

The use of anomaly detection, as opposed to listening straight through, sheds light on how a
deviation from the expected sequence manifests itself in an expert performer’s brain.
Haslinger et al. (Haslinger et al., 2004) compared pianists and non-pianists using fMRI in a
bimanual finger tapping task and found greater activation in pre-SMA and rostral dPMC for
non-pianists during task execution. The authors conclude from this study that expert pianists
required fewer neural resources to execute the task due to their years of training. In the case
of our target detection paradigm though, we are introducing an error into the musical
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sequence. If echo neurons were responsible for the auditory-motor interaction described by
Zatorre and others, then our findings of neuronal source activity in SMA would mean that
experts respond to the key-change as an unexpected (i.e., untrained) motor movement. The
lack of such a response when we choose pre-stimulus or otherwise non-maximally
discriminating windows post-stimulus reinforces this role for SMA in key-change detection.
The greater right lateralization of the activity in cellists further strengthens this claim, since
the pitch of bowed notes is changed most with the left hand for any right-handed cellist.
Still, the bilateral activity we find in dPMC and SMA resonates with the fact that playing a
cello is bimanual, even if one hand (left) is more responsible for pitch change than the other
(right).

4.3 Evidence for Embodied Cognition
The differences between the discriminating neural activity of experts versus that of novices
raises the issue of whether the cellists’ discrimination is linked to an embodied cognition of
the audio stimulus. The primary thesis of embodied cognition is that all aspects of cognition
(such as thought, perception, reasoning, etc.) are based on the fact that the brain is situated
in a body that interacts with an external environment (Borghi & Cimatti, 2010; Clark, 1997;
Liberman & Mattingly, 1985) through sensorimotor systems. The opportunity of studying
expert cellists alongside relatively musically naïve novices allows us to provide evidence for
or against embodied cognition because of the experts’ acute sensorimotor-cognitive systems,
developed and maintained over years of both musical and instrumental training from an
early age. Furthermore, we can directly probe this acute sensorimotor-cognitive system
using an auditory stimulus (the J.S. Bach piece) that has served a developmental and
maintenance function over the years, since it has a perennial place in the repertoire of
cellists from beginner students to expert professionals, such as those used in our study.

There has been much work on embodied cognition in psychology. For instance, Olmstead et.
al (Olmstead, Viswanathan, Aicher, & Fowler, 2009) have shown differences in behavioral
response to sentence comprehension (specifically, plausible vs. implausible action-related
sentences). Although measured without electrophysiological data, sentence comprehension
paradigms provide a relevant analogy to our experiment using key-changes because an
anomalous event appears in a temporal sequence (e.g., a grammatical error or non-sequitur)
and must be recognized as such, given background knowledge of the stimuli’s evolution
(e.g., semantic sense) and any relevant preceding stimuli (e.g., the preceding words). As
discussed earlier, such a semantic-related task would likely invoke later components, such as
the N400 or N600, as we find in traditional ERP analysis (see Appendix).

In the case of our experiment, the background knowledge base is the primary difference
between our subject classes. The experts have years of formal auditory and motor training
from an early age to play the cello. This extensive training has likely led to a long-term
memory of the J.S. Bach piece on many levels of auditory and motor nuance that is called
upon when prodded with an auditory stimulus, such as a recording of the piece, unfolding a
sequence of expectations with each uptake of audio sampling in what they hear. We interfere
with this process each time the key is changed, thereby prodding this acute system even
further. The novices, on the other hand, simply do not have the training or continued audio-
motor maintenance regimen in place to comprehend the musical stimulus at a comparable
level of nuance. Having ruled out other possible sources of differentiation, this difference
likely contributes to the different class-wise neural and behavioral responses as the two
groups identify AMEs.

Claims of proof for embodied cognition have also been made in neuroscience, though not
yet with the same prevalence as in other disciplines. Recent work on mirror neuron systems
(Lotto, Hickok, & Holt, 2009) has opened the door to such analysis. Stemming from such
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work and overlapping in stimulus type with Olmstead, Tettamanti et al. (Tettamanti et al.,
2005) have shown fMRI evidence for fronto-parietal motor circuit activation in response to
reading action-related sentences. By showing a connection to motor circuitry from reading
action-related sentences, the authors claim a link to embodied cognition using differential
BOLD response. The parallels between our study in music cognition and this work by
Tettamanti are similar to what they were for the study of Olmstead et al. (Olmstead et al.,
2009), regarding the different knowledge bases of the two populations.

Our study supports the theory of embodied cognition by going beyond these earlier studies
and examining the rapid neural dynamics (all within 1s of the stimulus) that identify one
group as the expert class. Our technique of manipulating the cellists’ profound expertise via
the introduction of an anomalous musical event (i.e., a key-change) allows us to perturb and
then to observe an expert’s cognitive process in action. Rather than primarily basing our
conclusions only on post hoc behavioral metrics (as did Olmstead et al. (Olmstead et al.,
2009) and others), or utilizing the slow and TR-constrained BOLD response among subjects
with potentially broad ranges of expertise (as did Tettamanti et al. (Tettamanti et al., 2005)
and others), we have focused on the fleeting neural markers best measured with EEG (and
possibly MEG) that would likely precede any behavioral response. Furthermore, we have
done so in a population of expert subjects whose cognitive systems are highly specialized to
perform the chosen stimulus. Although earlier studies have looked at these markers in the
aggregate and/or over long periods of time in comparison to the underlying neural dynamics,
our approach employs signal detection theory applied to EEG to more precisely localize
these task-relevant dynamics both in time and in sensor/voxel space.

The discriminating neuronal sources of experts originating in bilateralized sensorimotor
systems – with particular strength in the right lateralized motor areas controlling left arm
and hand movement – provide evidence for a different cognitive process occurring in cellists
vs. that occurring in novices, one that is dependent on their experience playing the cello.
Furthermore, this activity in the experts’ brains happens at the post-stimulus window when
the key-change activity is maximally discriminating from corresponding control activity
(i.e., maximum Az) and at no other time pre- or post-stimulus time. While other studies have
found activation over different parts of the expert brain when listening to music (Koelsch,
2009; Koelsch & Siebel, 2005; Loui, Li, & Schlaug, 2011), the highly specialized motor and
somatosensory response in these experts listening to a piece they have played for many
years on an instrument they have likewise played for many years cannot be underestimated
as a piece of supporting evidence for embodied cognition. Furthermore, contemporaneous to
our study, other researchers have found evidence for embodied syntax processing using
transcranial magnetic stimulation (Candidi, Sacheli, Mega, & Aglioti, 2012) and traditional
ERP analysis (Sammler, Novembre, Koelsch, & Keller, 2013).

Of course, there are several important caveats to consider relative to evidence we have found
for embodied cognition. The first is the relatively small sample size for the two groups (5
experts vs. 5 novices), constrained by the number of professional concert cellists we were
able to recruit for our study. Second is that additional controls and AMEs could be used to
provide even stronger evidence for embodied cognition. For example, adding a control
condition that includes both pieces played on the experts’ native musical instrument and on
an alternative instrument. AMEs can also be varied to include those that can be produced via
the experts’ instrument or cannot (e.g. a buzz or hiss added to the piece at specific times).

Embodied cognition proponents point to embodiment as an advantage the neural system has
in understanding its world. If embodiment enhances perception, then we should see in our
experiment that professional cellists perform better than novices. We corroborate this
expectation on behavioral response and in the accompanying neural activity. Not only do we
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see high accuracy rates among experts but we also find they have a greater number of
discriminating points, earlier maximum discrimination, a higher maximum value of Az, and
a higher mean value of the discriminating component at maximum Az than corresponding
values in novices. Therefore, we believe not just from the sensorimotor specialization seen
in expert neuronal sources, but also from the behavioral and neural discriminating metrics
used, that the difference in embodied cognition ability between expert and novice subjects is
the driving factor behind their superior neural discrimination and behavioral performance.
Finally, the generality of our techniques need not only apply to musical expertise. Our
methods could be generalized to study other classes of expert subjects, and thus to
investigate whether this specialized cognitive embodiment exists in other areas of human
knowledge and expertise.

5. Conclusions
In summary, we have identified neural markers to differentiate experts from novices in a
musical context. These markers reflect a somatosensory and motor response in experts that
coincides with better behavioral performance than seen in novices. We have shown evidence
that this response is even specific to the type of stimulus (a key-change) used via a right
lateralized motor and frontal response. Furthermore, our experts’ behavioral and neural
responses support theories of embodied cognition, possibly implying that neural signatures
of expertise exist in other domains than music.
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Appendix

Figure A.1. Example of our randomized block design. Within each block, the ordering of
excerpt playback was pseudorandomized. Blocks contained anywhere from zero to two
control excerpts in which no key-changes occurred. The inset shows an example key-change
excerpt for which six key-changes occurred. Although the shown inset begins and ends in
the original recording key (G), this was not always the case, so as not to bias the detection
simply being in the non-original recording key.

Figure A.2. Grand average ERPs of experts for key-change and control conditions. At
selected electrodes (Fz, FCz, and Cz), we see an ERAN just after 200ms that is more
pronounced in Cz relative to the frontal electrodes. The dominating component for each
electrode is the P3, peaking around 400ms. Finally, the late negativity likely due to semantic
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content processing (e.g., N400, N600, etc.) is most pronounced in frontal sites. Inset shows
scalp ERPs at indicated time windows chosen a priori as in Maidhof et al. (Maidhof et al.,
2010).

Table A.1

Parameters used in the sLORETA statistical analysis. With 10 samples per subject group,
the maximum number of permutations for SnPM is 2^10,. This represents the number of
randomizations we used in our analysis. Our statistical analysis used the log of ratio of
averages and an independent groups t-test.

sLORETA Parameters
Name Value

No normalization TRUE

Independent groups, test A=B TRUE

No baseline TRUE

All tests for all Time-Frames/Frequencies TRUE

Log of ratio of averages (similar to log of f-ratio) TRUE

Number of randomizations 1024
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Highlights

• We identify neural markers for musical expertise using single-trial analysis of
the EEG

• We show that experts and novices have different spatio-temporal neural
signatures of anomaly detection)

• We find evidence for an auditory-motor coupling in musical musical experts
when detecting anomalies

• We provide evidence for the embodied cognition hypothesis
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Figure 1.
Musical notation and representative step-function of an alternation track showing the semi-
tone key-changes imposed on Bach’s Cello Suite No. 1, Prelude. Above each stave, a step-
function shows the key of the music with respect to the original key of G Major. The dotted-
line represents the original key of G. Ellipses between bars represent music that remained in
the preceding key. It is important to note from this figure that the key-changes were not
limited to occur between notes or between musical phrases. Rather, they could occur during
notes (e.g., the first and third) or between them, as well as between musical phrases.
Although this example begins and ends in the original key, this was not true for the
remaining alteration tracks. The total excerpt length is approximately 65 seconds.
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Figure 2.
Comparison of neural discrimination to behavior between subject classes. White bars
indicate novice subjects and grey bars indicate experts. Significant differences (p<0.02,
independent groups t-test) between subject classes is indicated with an asterisk (*). Note that
accuracy is shown as a probability, rather than a percentage.
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Figure 3.
Stimulus-locked leave-one out discrimination for experts and novices. Each Az curve shows
the mean and standard error bands computed using leave-one-out discrimination for key-
change vs. corresponding control events. The significance line (dotted) is corrected for
multiple comparisons (line at p=0.05 Bonferroni corrected for 47 time window
comparisons).
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Figure 4.
EEG Image of an age- and gender-matched novice (A) and an expert (B) showing the
relative timing of the maximum discriminating EEG components. For both plots, color scale
is in microVolts. The vertical dashed lines indicate the window of maximum discrimination
between key-changes and controls. This subject pairing demonstrates the earlier timing of
the maximum Az seen in experts relative to novices, as well as the higher values of the
discriminating component in experts that leads them to have a higher maximum Az relative
to novices.
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Figure 5.
Grand average ERPs, for key-changes up and down, shown for expert and novice groups.
There are no significant differences between key-changes up (A and B) and down (C and D)
within groups (pexperts>0.90 and pnovices>0.90, Kolmogorov-Smirnov two-sample test).
Novice’s ERPs are consistent with a P300, while experts’ are not.
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Figure 6.
Average forward models for key-changes vs. controls. Forward models are first constructed
for each subject using their specific temporal window of maximum Az. These subject
specific forward models are then averaged to produce the group results shown above. For
both plots, color scale is without units (see main text for discussion). The average expert
forward models (B) exhibit strong frontal and frontal activation, while showing strong
deactivation of occiptal and occipito-parietal sensor sites for the target condition.
Conversely, the average novice forward model (A) exhibits strong frontal deactivation,
while showing strong occipital activation for the target condition.
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Figure 7.
Six-views of neuronal current independent groups t-tests, with comparison between experts
and novices at peak single-trial EEG discrimination. The t-distribution values of the log of
the ratio of averages are shown for each voxel. One-tailed comparisons within each
population class show neuronal current sources particularly strong for experts in BA 6 and 9
at the window of maximum Az. For key-change conditions, experts exhibited greater right-
lateralized activation of neuronal current sources than novices (p<0.01, independent groups
t-test), especially in the right motor and frontal cortices. No common sources exist for
novices (p=0.73, independent groups t-test) at peak discrimination.
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