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A stem cell interacts with the neighboring cells in its environment. To maintain a living organism’s metabolism, either 
cell-cell or cell-environment interactions may be significant. Usually, these cells communicate with each other through 
biological signaling by interactive behaviors of primary proteins or complementary chemicals. The signaling inter-
mediates offer the stem cell’s functionality on its metabolism. With the rapid advent of omics technologies, various 
specific markers by which stem cells cooperate with their surroundings have been discovered and established. In this 
article, we review several stem cell markers used to communicate with either cancer or immune cells in the human 
body. 
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Stem Cells and Their Adjacent Environments 

　A stem cell is generally defined as a biological cell that 
can divide and differentiate into diverse cell types (1). In 
particular, stem cells possess two distinctive features: po-
tency and self-renewal. In mammals, adults produce some 
stem cells to repair injured parts of the body, while devel-
oping embryos make stem cells for specialized cell differ-
entiation and also to maintain regenerative organs. They 
are highly potent for any type of tissue regeneration. 
　There are two species of stem cells: embryonic and adult 
stem cells. To date, adult cells, such as epithelial cells, are 
interestingly reprogrammed into stem cells with pluri-
potent capabilities. They are simply manufactured via an 

inclusion of some transcription codes (e.g., Oct3/4, Sox2, 
c-Myc, Klf4, Nanog, or Lin28) to adult cells (2). Table 1 
depicts the process that some adult cells undertake to be-
come induced stem cells. 
　Owing to the unique characteristics that may be repre-
sented by cell potency and renewal, stem cells have been 
topics of great interest in therapeutic and regenerative 
medicine fields. They may become a main component for 
next-generation therapies where the injured or diseased 
organs of patients are replaced by new alternatives grown 
via stem cell methods. To understand the working mecha-
nism of therapeutic stem cells, it might be helpful to de-
termine the surface markers at the interfaces between 
stem cells and their neighbors (Fig. 1). 
　With the advent of genomics and proteomics, a variety 
of stem cell markers have been identified. Table 1 shows 
a list of genes and protein products used to identify vari-
ous stem cells. 
　In this review, we focused more on the stem cell mark-
ers at the interface between a stem cell and its environ-
ment, especially in the following two cases: the interaction 
between stem cells and immune cells in the surroundings 
of cancerous tumors, and the interaction between stem 



76  International Journal of Stem Cells 2013;6:75-86

Table 1. A list of protein markers on some types of stem cells (Reproduced from R&D systemⓇ)

Name Species Specification Reference

Oct-3/4

SSEMAs (Stage Specific 
Embryonic Antigens)

CD34

CD133

ABCG2

Sca-1

STRO-1

Nestin

PSA-NCAM (polysialic 
acid-neural cell 
adhesion molecule)

p75 Neurotrophin 
R (NTR)

Embryonic stem cell

Embryonic stem cell

Hematopoietic stem cell

Hematopoietic stem cell

Hematopoietic stem cell

Hematopoietic stem cell

Mesenchymal/Stromal 
stem cell

Neural stem cell

Neural stem cell

Neural stem cell

- POU transcription factor
- It sustains stem cells’self-renewal and pluripotency
- Carbohydrate-associated
- It controls cell surface interaction during development
- The most critical marker
- It exclude more primitive stem cells
- An alternative to CD34 for HSC selection and ex vivo 

expansion
- ATP-binding cassette superfamily G member
- First identified in a breast cancer cell line
- It implicate a functional role in developmental stem cell 

biology
- 18 kDa phosphatidylinositol-anchored protein
- It is used to enrich progenitor cell populations and also 

regulate both B and T cell on activation
- It is a valuable Ab for the identification, isolation and 

functional characterization of human bone marrow stromal 
cell precusors

- A class VI intermediate filament protein
- Its function is undefined
- Critical for many neural developmental processes and highly 

polysialylated
- It is related to synaptic rearrangement and plasticity
- A type I transmembrane protein that belongs to the tumor 

necrosis factor receptor superfamily
- It enhances responses to neurotrophin

61∼65

66∼73

74∼88

89∼93

35, 94∼99

100∼111

112∼116

117∼130

131∼139

140∼147

Fig. 1. Schematic representation of stem cell cross-talk with neigh-
boring cells in the environment.

cells and cancers. 

Specific Markers for Stem Cell Cross-Talk at the 
Moment when the Stem Cells Come in Contact 
with Cancer

　All cells interact with their surrounding microenviron-
ment, including cancer cells (3). Therefore, detecting the 
interaction of cancer cells with their surroundings has be-
come a powerful theragnostic method. Many studies have 
been conducted that have focused on the nature of tumori-
genesis, which generally falls into more than one of the 
following mechanisms: self-sufficient proliferation, in-
sensitivity toward growth suppressors, invasion and meta-
stasis, angiogenesis, resistance to apoptosis, and immortal-
ity via limitless replication (4). All these mechanisms are 
closely related with cell-microenvironment interactions 
where there have been miscommunications initiated by ge-
nomic errors.
　For example, certain types of cancer cells generate their 
own growth signals, such as transforming growth factor al-
pha (TGF-α). Therefore, these cancer cells upregulate the 
TGF-α gene. Another transforming growth factor, TGF-β, 
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is secreted by metastatic melanoma. TGF-β allows cancer 
cells to hide from a person’s innate immune system by 
hindering the activities of natural killer cells and T 
lymphocytes. As a result, the tumor is not recognized as 
non-self by the immune system, which makes it difficult 
to use conventional immunotherapy to treat this type of 
cancer. Changes that occur in the extracellular matrix also 
may lead to neoplasia (5, 6).
　Angiogenesis is one of many distinct characteristics of 
cancer cells during tumor formation. At the initial state 
of tumorigenesis, hypoxia occurs within the cells. Cancer 
cells extend their vasculature into their surroundings to 
provide the oxygen-rich nutrients necessary for pro-
liferation and growth. Some studies have claimed that hy-
poxia leads to transcription of hypoxia-inducible factor-1 
(HIF-1), which in turn promotes the expression of angio-
genic factors (7, 8). The typical examples of those angio-
genic factors include vascular endothelial growth factors 
(VEGF), fibroblast growth factors (FGF) and placenta-like 
growth factors (PLGF). A myriad of other factors contrib-
ute to vascular formation, even those that are not specific 
for the vascular endothelium (9).
　As described above, no matter how and where the tu-
morigenesis has been initiated, genomic instability drives 
the corresponding characteristic gene expression, which 
can be understood as a way for cells to communicate with 
their surroundings. Therefore, examining these communi-
cation signals makes it possible to observe any differ-
entiation of cancer cells from normal cells and even to 
evaluate the cancer status; numerous scientists have inves-
tigated whether the progression of preneoplasia to cancer 
can be detected using these signals, which include anti-
bodies, peptides and other chemicals (10). However, these 
signals are not unique chemicals that only cancer cells ex-
hibit; normal cells, too, release them into their surroun-
dings. The distinctive feature of cancer cells is that they 
overexpress certain genes compared to the normal cells. 
This overexpressing characteristic becomes a lighthouse 
for targeting ligands of drug carriers, which became the 
core principle in active targeting drug delivery to cancer 
cells. For example, the luteinizing hormone-releasing hor-
mone (LHRH) receptor is one target that could be bound 
by LHRH peptide, one of the targeting peptides (11). 
LHRH receptors are overexpressed by several types of can-
cer cells, including those of breast, ovarian and prostate 
cancer (12-14). Therefore, such cancer cells can be se-
lectively bound by LHRH peptide, increasing the specific 
binding ability of drug carriers that use the LHRH pep-
tide as a targeting ligand. In a similar fashion, SP94, one 
of the targeting peptides that specifically binds to un-

known receptors present on the surface of human hep-
atocellular carcinoma, has been applied as a ligand in sev-
eral drug delivery cases (15, 16). The receptor that the 
SP94 peptide targets is not yet specified-it has only been 
identified by performing a filamentous phage display, 
which is a powerful tool for selecting a specific peptide 
that has a high affinity towards certain cancer cells from 
a pool of random peptides.
　It should be noted that certain types of cancer cells ex-
hibit multiple characteristic signals, and these signals may 
overlap with those from different cancer cell types. Even 
cancers from the same origin may exhibit different gene 
overexpression trends. For example, prostate cancers over-
express LHRH receptors and also androgen receptors (AR) 
at the same time (17). However, while LNCaP, one of the 
human prostate adenocarcinomas, is androgen-sensitive, 
PC3, which is another type of the same cancer, does not 
show such sensitivity (18). Certain breast cancer cells ex-
hibit an HER2 sensitive phenotype, while others do not.
　Consequently, it is necessary to take into account the 
type of cancer, the degree to which the characteristic over-
expression is exhibited and in what combination would 
multiple overexpressions be expressed to maximize the tu-
mor target specificity when selecting a targeting material. 
Table 2 displays a list of targeting materials and their tar-
geted tumors.
　In 2002, Sooryanarayana Varambally et al. reported that 
a polycomb group protein enhancer of zeste homolog 2 
(EZH2) was overexpressed in hormone-refractory meta-
static prostate cancer (19). In addition to simply examin-
ing EZH2 overexpression, they also observed increments 
in the degree of overexpression as the cancer progressed 
from benign, prostatic atrophy, prostatic intraepithelial 
neoplasia, clinically localized prostate cancer, and finally 
metastatic prostate cancer. Therefore, this finding suggests 
the possibility of predicting the cancer’s progression by 
examining the correlation between the amounts of EZH2 
protein and the aggressiveness of the type of prostate 
cancer.
　The conventional way of delivering drugs to cancer cells 
has mainly been via a passive targeting method rather 
than through active targeting drug delivery via the charac-
teristic biochemical signals released by cancer cells. This 
passive targeting also bases its principle on microenviron-
ment features exhibited by cancer cells. As a tumor grows, 
angiogenesis progresses and leads to consequent abnor-
malities in the vasculature. One of the important features 
of this abnormality is fenestrated vasculature (20). Through 
the gaps that form from the loosened capillary vessels, 
small molecules, such as drugs, with sizes of less than a 
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Table 2. A list of targeting materials and the targeted tumor

Target tumor Targeting material Target receptor Reference

Human colon (HCT116)
B16 Melanoma
Ovarian, breast, prostate carcinomas
Various cancer types
B16F10
Prostate carcinoma
Hepatocellular carcinoma
Hepatocellular carcinoma
Lung (H640, A549 and H226)
Breast cancer
Metastatic melanoma

IFLLWQR (IF7) (peptide)
YIGSR (peptide)
LHRH peptide
VNTANST (peptide)
RGDGW (peptide)
F77 (mAb)
SP94 (peptide)
FQHPSFI (HCBP1) (peptide)
CSNIDARAC (peptide)
CTCE-9908
SB505124

Annexin 1 (anxa1)
Laminin receptor
LHRH receptor
Vimentin
α5β1 integrin
Prostate specific glycolipid (PCLA)
Unknown
Unknown
EGF receptor (under research)
CXCR4
TGF-β

148
149
11

150,151
152
153
16
154
155
156
5

few nanometers may penetrate and accumulate at the tu-
mor sites, which is called an enhanced permeability and 
retention (EPR) of the tumor. Regardless of how great this 
EPR effect from leaky vasculature near the cancer is, a 
majority of the drugs (＞95%) still flows to and accumu-
lates in other parts of the body, such as the liver, spleen 
and lungs (21). Therefore, active targeting needs to be in-
vestigated, and adequate selection for a targeting ligand 
will also be critical.

Specific Markers for Stem Cell Cross-Talk at the 
Moment When the Stem Cells Come in Contact 
With Immune Cells

　Several diseases arise from the destruction or dysfunc-
tion of specific cells. Many attempts have been made to 
overcome these diseases. For instance, Parkinson’s disease 
(22, 23), Huntington’s disease (24), amyotrophic lateral 
sclerosis (25-28), Alzheimer’s disease (29), spinal cord in-
jury (30), brain tumor (31), lysosomal storage diseases 
(32), liver (33) and heart failure (34), Duchenne’s muscu-
lar dystrophy (35), and osteogenesis imperfecta (36) are all 
target diseases of stem cell therapy. In these cases, treat-
ment with stem cells that can differentiate into the dam-
aged cell types can be effective.
　Stem cell therapy mainly uses mesenchymal stem cells 
(MSC), neural stem cells (NSC) and embryonic stem cells 
(ESC) (37). When stem cells are delivered to the injury 
site or the targeted site for substituting functional cells, 
it is essential that they encounter the immune system of 
the host, including both the innate and adaptive immune 
system (38). 
　When the immune system comes in contact with for-
ward-facing stem cells, some immune cells prepare for 
defense. Accordingly, T cells, B cells, dendritic cells, and 
NK cells create adaptive immunity against foreign 

materials. These immune cells play a part as well in stem 
cell treatments (38). Stem cells in the treatment area are 
recognized by activated immune cells as foreign and then 
become their targets. One of the most important variables 
is suppressing any immune rejection of stem cells (39) to 
maintain sufficient stem cell viability in the host system 
until the therapeutic effects are achieved. 
　Interestingly, some kinds of stem cells can overcome se-
vere environmental conditions by suppressing the host im-
mune system (39-41). By reducing host immune rejection, 
stem cells can have enough time to replicate themselves 
and differentiate into functional target cells. This immune 
suppression characteristic of stem cells has enormous po-
tential to overcome the aforementioned serious diseases. 
Therefore, it is important to understand the interactions 
between the immune system and stem cells.
　These interactions can be categorized by two different 
cell-to-cell communication methods. The first interaction 
category is based on cytokines. Most immune cells secrete 
their own cytokines when they run into foreign antigens 
or suspicious materials. The secreted cytokines warn the 
environmental cells, which recruit other immune cells. 
There are many types of cytokines, and their functions are 
deserving of further study (42). These cytokines affect 
both immune systems and treated stem cells. In injury sit-
uations or graft surgeries, accumulated or treated stem 
cells are exposed by cytokines of the host’s immune 
system. By sensing these cytokines, stem cells regulate an 
immunological rejection (43-47). Cytokines secreted by T 
cells or other immune cells would be recognized by MSC, 
NSC and ESC. In the case of human MSC (hMSC), 
co-cultured B cells are arrested in the G0/G1 phase. B cell 
arrest is caused by soluble factors produced by the hMSC. 
In addition, receptors expressed by B cell, CXCR4, 
CXCR5, and CXCR7 are down-regulated (48). The NSC 
may be affected by cytokines, such as TNF-α or IL-6 (46, 



Kyung Soo Park, et al: Specific Protein Markers for Stem Cell Cross-Talk with Neighboring Cells in the Environment  79

Ta
bl

e 
3.

 T
he

 i
nt

er
ac

tio
ns

 b
et

w
ee

n 
im

m
un

e 
ce

lls
 a

nd
 s

te
m

 c
el

ls
. 

H
er

e 
no

te
 t

ha
t 

SC
 d

es
ig

na
te

s 
st

em
 c

el
l 

an
d 

IM
 d

oe
s 

im
m

un
e 

ce
ll

St
em

 c
el

l 
Im

m
un

e 
ce

ll
SC

 m
ar

ke
r

IM
 m

ar
ke

r
C

yt
ok

in
e

SC
 s

ol
ub

le
 f

ac
to

r
In

te
ra

ct
io

n
Re

fe
re

nc
e

M
es

en
ch

ym
al

 
st

em
 c

el
l

N
eu

ra
l 

st
em

 c
el

l

Em
br

yo
ni

c 
st

em
 

ce
ll

T 
ce

ll

B 
ce

ll

D
en

dr
iti

c 
ce

ll

N
K 

ce
ll

N
K 

ce
ll

　 C
XC

R5
IC

A
M

-1
, 

V
C

A
M

-1

IC
A

M
-1

, 
V

C
A

M
-1

, 
LF

A
-3

C
C

R2

TN
FR

1

TN
FR

1

TN
FR

1,
 T

N
FR

2
C

N
TF

R,
 L

IF
R,

 g
p1

30

gp
13

0
IL

-1
β

R

H
LA

-1

H
LA

-1

H
LA

-1
　

　 C
XC

R4
, 

C
XC

R5
, 

C
C

R7
C

D
83

, 
C

D
80

, 
C

D
86

, 
H

LA
-D

R,
 C

D
1a

C
C

R7
, 

C
D

49
dβ

1

N
Kp

30
, 

N
Kp

44
, 

N
KG

2D

Ac
tiv

at
in

g 
N

K 
re

ce
pt

or

　 C
C

L2
, 

C
XC

L1
2

M
C

P-
1

TN
F-
α

TN
F-
α

TN
F-
α

IL
-6

IL
-1
β

IF
N

-γ
　

N
O

C
C

R5

ID
O

ID
O

, 
pr

os
ta

-
gl

an
di

n 
E2

ID
O

N
KG

2D

N
O

 s
ec

re
te

d 
fro

m
 l

is
en

se
d 

M
SC

, 
T 

ce
ll 

su
pp

re
ss

io
n 

(m
ou

se
)

M
SC

 s
ec

re
ts

 C
XC

R3
 a

nd
 C

C
R5

 l
ig

an
d

IC
A

M
-1

 a
nd

 V
C

A
M

-1
 e

xp
re

ss
io

n 
on

 M
SC

 s
ur

fa
ce

. 
T 

ce
ll 

ac
cu

m
ul

at
io

n.
na

ïv
e 

&
 m

em
or

y 
T 

ce
ll 

su
pr

es
si

on
IC

A
M

-1
, 

V
C

A
M

-1
, 

LF
A

-3
 e

xp
re

ss
io

n 
on

 M
SC

. 
In

te
ra

ci
on

 w
ith

 T
 c

el
l

M
SC

 s
ec

re
t 

ID
O

, 
T 

ce
ll 

su
pp

re
ss

io
n

B 
ce

ll 
C

XC
R4

, 
C

XC
R5

 a
nd

 C
C

R7
 d

ow
n-

re
gu

la
tio

n 
by

 s
ol

ub
le

 f
ac

to
rs

 f
ro

m
 h

M
SC

Su
pp

re
ss

io
n 

of
 C

D
83

, 
H

LA
-D

R,
 C

D
80

, 
C

D
86

 a
nd

 
C

D
1a

 o
f 

D
C

 b
y 

M
SC

M
SC

 s
up

re
ss

 C
C

R7
 a

nd
 C

D
49

dβ
1 

on
 D

C
. 

Su
pp

re
ss

 
D

C
 i

m
m

ig
ra

tio
n 

to
 l

ym
ph

 n
od

e.
N

K 
re

ce
pt

or
s,

 N
Kp

30
,N

Kp
44

 a
nd

 N
KG

2D
, 

su
pp

re
-

ss
ed

 b
y 

ID
O

 a
nd

 p
ro

st
ag

la
nd

in
 E

2 
se

cr
et

ed
 f

ro
m

 
M

SC
M

SC
 s

ec
re

t 
ID

O
. 

N
K 

ce
ll 

su
pp

re
ss

io
n

N
SC

s 
ca

n 
re

cr
ui

t 
to

 i
nj

ur
y 

sit
e 

by
 C

C
L2

 a
nd

 C
XC

L1
2

In
 s

ite
 o

f 
is

ch
em

ia
, 

C
C

R2
 r

ec
og

ni
ze

 M
C

P-
1 

an
d 

m
ig

ra
tio

n 
to

 i
sc

he
m

ia
TN

F-
a 

m
ak

e 
p3

8 
M

A
PK

 s
ig

na
lin

g 
pa

th
w

ay
 t

hr
ou

gh
 

TN
FR

1,
 c

au
se

 a
po

pt
is

is
TN

F-
a 

ac
tiv

at
e 

IK
K-
β
 b

y 
TN

FR
1,

 i
nc

re
as

e 
N

SC
 

pr
ol

ife
ra

tio
n

Su
pp

re
ss

 T
N

FR
1,

 a
ct

iv
at

e 
TN

FR
2.

 In
cr

ea
se

 n
eu

ro
ge

ne
sis

Re
ne

w
al

 o
f 

N
SC

 i
nc

re
as

e 
by

 C
N

TF
R/

LI
FR

/g
p1

30
- 

m
ed

ia
te

d 
si

gn
al

in
g

IL
-6

 t
re

at
ed

 N
SC

 m
or

e 
di

ffe
re

nt
ia

te
 i

nt
o 

as
tro

cy
te

IL
-1
β

, 
pr

od
uc

ed
 b

y 
st

re
ss

 o
r 

di
re

ct
ly

 t
re

at
ed

, 
m

ak
es

 
an

tin
eu

ro
ge

ne
tic

 e
ffe

ct
ES

C
 h

as
 l

ow
 l

ev
el

 o
f 

H
LA

-1
, 

sh
ow

s 
lo

w
er

 
Im

m
un

or
ej

ec
t

Im
m

un
or

ej
ec

t 
ge

tti
ng

 l
ar

ge
r 

al
on

g 
w

ith
 E

SC
 

di
ffe

re
nt

ia
tio

n.
In

 c
as

e 
of

 d
iff

er
en

tia
te

d 
ES

C
, 

IF
N

-γ
 i

nc
re

as
es

 M
H

C
 

ex
pr

es
si

on
 a

nd
 i

m
m

un
or

ej
ec

t
ES

C
 e

xp
re

ss
in

g 
N

KG
2D

, 
ac

tiv
at

e 
N

K 
ce

ll 
an

d 
m

ak
e 

st
ro

ng
 r

ej
ec

tio
n

60 54 55 15
7 56 57
 

15
8

15
9 48 40 16
0

16
1

15
9

16
2 

16
3 49 50 51 52
 

46
 

47
 

16
4 

16
5 

16
6 53 16
7



80  International Journal of Stem Cells 2013;6:75-86

49-51). With TNF-α, proliferation of NSC depends on 
the signal pathways. TNF-α signal via TNFR-1 induces 
apoptosis of NSC. TNFR-2, however, does not inhibit 
NSC proliferation (41). IL-6 affects NSC in two ways. 
First, IL-6 mediated via gp130 improves the self-renewal 
of NSC (52). Moreover, IL-6 treated NSC tends to differ-
entiate into astrocytes (46). ESC also affects cytokines. 
The MHC expression level of ESC differentiated by 19 
days is upregulated in the presence of IFN-γ. With un-
differentiated ESC, however, there was no upregulation of 
MHC expression. ESC can increase its immunogenic pro-
file via differentiation processes; therefore, less immune 
rejection occurs with the undifferentiated state of ESC 
(53).
　Another category of interaction is based on surface 
markers expressed on the surface of stem/immune cells 
(40, 48, 54-57). In an immune response, several inter-
actions are mediated by surface markers, such as T cell 
activation by dendritic cells (58) or infection recognition 
by cytotoxic T cells (59). Just like interactions between im-
mune cells, markers expressed on stem cells can reduce 
immune reactions. In the case of MSC, inflammatory cyto-
kines upregulate the expression of ICAM-1 and VCAM-1. 
These surface markers make MSC more adhesive to T 
cells. T cells accumulate around MSC, and the effect of 
NO produced by MSC (60) becomes more powerful. Thus, 
these two surface markers are used to suppress T cell acti-
vation and T cell apoptosis (54-57). These kinds of inter-
actions are organized and adjusted in Table 3.

Conclusion

　Currently, stem-cell medicine has the potential to pro-
vide effective treatments for a wide range of human 
diseases. This expectation has raised a new discipline, rep-
resentative of either therapeutic or regenerative medicine. 
To deliver on the promise of stem-cell therapy, there is 
a need to increase our rudimentary understanding of how 
stem cells interact with neighboring cells, including im-
mune cells or infected cells. 
　All of the approaches outlined in this article need to 
be pursued in parallel; it is likely that an interactive un-
derstanding of cells will provide the best result for all 
situations. There is much to be learned about the immune 
response to stem cells and cancer infection mechanisms 
in stem cell areas, and there will undoubtedly be many 
surprises as our understanding of this area increases.
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