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Bone tissue engineering using stem cells with osteogenic potential is a promising avenue of research for bone defect 
reconstruction. Organic, inorganic, and composite scaffolds have all been engineered to provide biomimetic micro-
environments for stem cells. These scaffolds are designed to promote stem cell osteogenesis. Here, we review current 
technologies for developing biomimetic, osteoinductive scaffolds for stem cell applications. We summarize the reported 
in vitro and in vivo osteogenic effects of these scaffolds on stem cells.
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Introduction 

　Regeneration of bone defects caused by an acquired in-
jury or inherent genetic disorder is a challenge in the 
clinic. However, bone tissue engineering provides promis-
ing solutions for reconstructing bone tissue, some of which 
could replace conventional bone cement and metal im-
plant treatments that lack osteogenic activity (1). Primary 
osteogenic cells (e.g., osteoblasts) are major cell sources for 
bone tissue engineering; however, stem cells have been 
shown to readily undergo osteogenic differentiation due to 
their high proliferative and differentiation potential (2-5). 
Multipotent mesenchymal stem cells (MSCs) isolated from 
autologous sources such as the bone marrow and adipose 
tissue are the most commonly used stem cells for bone tis-
sue engineering (4-6). Pluripotent stem cells, including 
embryonic stem cells (ESCs) (7) and induced pluripotent 
stem cells (8), can also produce mesenchymal lineage cells 
capable of further differentiation into osteogenic cells. 

Thus, they can also contribute to bone formation in the 
bone defects.
　Despite the potential of stem cells to undergo osteo-
genesis, bone formation by stem cell transplantation can 
be further improved with functional biomaterial scaffolds. 
Highly osteoinductive biomaterial scaffolds can promote 
osteogenesis of transplanted stem cells by stimulating os-
teogenic signaling pathways that enhance osteogenic dif-
ferentiation (9, 10). Osteoinductive scaffolds should be 
fabricated to mimic native bone tissue morphology, struc-
ture, and biochemical properties (11). Fabrication meth-
ods such as electrospinning and patterning have been used 
to prepare functional scaffolds capable of providing bio-
physical cues for improving cellular alignment and pro-
viding mechanical signals to promote bone formation 
(12-14). Biomimetic functional scaffolds can be developed 
by modifying scaffolds with osteoinductive, bioactive mol-
ecules including inorganic particulates and osteogenic 
growth factors/peptides and by incorporating these mole-
cules into the scaffolds (10, 13, 15). This type of direct 
and indirect scaffold modification provides biochemical 
cues for promoting stem cell osteogenic commitment.
　In this article, we review various strategies for creating 
biomimetic functional scaffolds that emulate the bio-
chemical and biophysical signals as well as the mechanical 
properties of native bone tissue. Studies that describe 
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highly osteoinductive scaffolds for enhanced stem cell- 
mediated osteogenesis in vitro and in vivo are also discu-
ssed.

Biomimetic Hydrogels

　Hydrogels have shown great potential as scaffolds for 
bone tissue engineering (16-20). They are typically in-
jectable and can form three-dimensional (3D) extracellular 
matrix (ECM) structures in situ within irregular bone de-
fects (21). A range of molecules with osteogenic activity 
(e.g., growth factors, peptides, and chemicals) can be easi-
ly incorporated into or conjugated to the hydrogel for en-
hanced osteoinductivity (21). Internal structures and me-
chanical properties of hydrogels are easily modulated by 
selecting a polymer with appropriate properties and mo-
lecular weight and by altering the concentration the poly-
mer solution (21). Therefore, hydrogel constructs can be 
tailored to enhance stem cell osteogenesis by optimizing 
the biochemical and biophysical environment to create an 
in vivo-like microenvironment that closely resembles the 
osteogenic stem cell niche.
　One recently developed approach for preparing bio-
mimetic bone tissue engineering hydrogels is through 
chemical covalent modification of the hydrogel construct 
to enhance the osteogenic potential of stem cells. Techni-
ques for covalent modification include attachment of vari-
ous ECM peptides, proteins, and chemical functional 
groups to the hydrogel backbone (22-25). Benoit et al. re-
ported that charged phosphate groups responsible for min-
eralization and sequestering of osteopontin bound to poly 
(ethylene glycol) (PEG) hydrogels effectively enhance 
MSC osteogenesis (23). This same research group recently 
reported that phosphate-functionalization of PEG hydro-
gels promotes serum ECM protein adsorption, and there-
by, contributes to enhanced osteogenic differentiation of 
human MSCs (hMSCs) (26). Another study performed by 
Kisiel et al. demonstrated that covalent grafting of an in-
tegrin-specific fibronectin fragment to hyaluronic acid 
(HA) remarkably improved MSC attachment and spread-
ing on the HA hydrogel (27). They show that the modified 
hydrogel enhanced the osteogenic potential of bone mor-
phogenetic protein-2 (BMP-2) compared to non-function-
alized HA hydrogels (27). Chemical grafting of BMP-2 
mimetic peptides to poly(acrylamide-co-acrylic acid) hy-
drogels, of varying stiffness, was also shown to modulate 
the fate of MSCs (28). BMP-2 peptides on stiff hydrogel 
matrices were most effective at enhancing osteogenic dif-
ferentiation of MSCs (28).
　Physical entrapment of ECM components in biomimetic 

hydrogels can also promote stem cell osteogenesis. To cre-
ate these hydrogels, ECM proteins are simply entrapped 
with stem cells in the hydrogel constructs during cell en-
capsulation to provide a biomimetic microenvironment for 
stem cell differentiation. Hwang et al. encapsulated MSCs 
into PEG-based hydrogels supplemented with ECM pro-
teins collagen type I, collagen type II, or HA; they re-
ported that PEG hydrogels containing HA efficiently in-
duced osteogenic differentiation of MSCs (29). Yang et al. 
described a combinatorial 3D ECM approach for creating 
type I collagen hydrogels supplemented with additional 
ECM components (fibronectin and/or laminin) at differ-
ent concentrations for human ESC (hESC) differentiation 
(30). The approach was used to identify optimal ECM hy-
drogel compositions for promoting osteogenic differentia-
tion of hESCs (30).
　Incorporation of osteoinductive factors BMP and ce-
ramics can also produce highly osteogenic hydrogel scaf-
folds that enhance stem cell-mediated bone formation 
(31-34). Thermo-reversible hydrogels containing hydrox-
yapatite and BMP-2 were found to increase MSC alkaline 
phosphatase activity, osteogenic marker gene expression, 
mineralization, and ectopic bone formation in the sub-
cutaneous space of mice (32). Phadke et al. reported a 
mineralized hydrogel containing both organic and in-
organic components that supported efficient hMSC adhe-
sion, spreading, and proliferation (35). This PEG-based 
hydrogel significantly promoted hMSC osteogenic differ-
entiation because of chemical topological cues originating 
from calcium phosphate bound to the hydrogel construct 
(35).

Biomimetic Nanofibrous Scaffolds

　Fibrous polymer scaffolds that mimic the alignment of 
natural ECM proteins can be fabricated by electrospinning. 
Electrospun nanofibrous scaffolds are effective for tissue 
engineering of various types of tissues (36-38), including 
bone (39, 40). This method is a simple, efficient way to 
create 3D scaffolds with micro- or nanoscale fibrous struc-
tures using various types of synthetic or natural polymers 
(41, 42). With this method, fiber diameter and alignment 
is easily controlled by modulating polymer type and 
concentration. Promotion of cell alignment and orienta-
tion by electrospun nanofibrous structures induces favor-
able cell-cell and cell-matrix interactions for cell differ-
entiation and tissue morphogenesis (43, 44).
　Electrospun nanofibrous polymer scaffolds have been 
successfully used to enhance stem cell-mediated osteo-
genesis by providing ECM-like topography for stem cells. 
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In fact, one such scaffold, a highly porous, electrospun 
nanofibrous scaffold made of biodegradable poly (ε-capro-
lactone) seeded with rat MSCs was maintained in a rotat-
ing bioreactor for 4 weeks (45). This scaffold facilitated 
stem cell osteogenesis after implantation into rat omen-
tum for an additional 4 weeks (45). At the end of the 4 
weeks, the tissue constructs with bone-like appearance 
were retrieved. Mineralization and bone-specific matrix 
deposition were detected in the polymer constructs (45). 
Xin et al. also demonstrated the usefulness of electrospun 
poly(lactide-co-glycolide) nanofibers for stem cell-medi-
ated osteogenesis by showing that these scaffolds sup-
ported growth and osteogenic differentiation of hMSCs 
(46). Electrospun nanofibrous scaffolds made of type I col-
lagen also exhibited fiber diameter-dependent control over 
adhesion, growth, and osteogenic differentiation of hMSCs 
(47).
　As previously mentioned, the nanofiber structure itself 
can induce osteogenic differentiation of stem cells, but bi-
omimetic modification of nanofiber scaffolds is expected 
to further enhance stem cell osteogenic potential. In fact, 
Ko et al. showed that a combination of inorganic compo-
nents and a polymer nanofiber construct could enhance 
osteogenic differentiation of hMSCs (48). Additionally, 
nanofibrous poly(L-lactic acid) (PLLA) composite scaf-
folds containing demineralized bone powder induced 
greater bone regeneration in critical-sized calvarial bone 
defects than PLLA scaffolds without demineralized bone 
powder (48). Schofer et al. also reported that BMP-2-in-
coporated PLLA nanofiber scaffolds could improve in vitro 
osteogenic differentiation of MSCs (49). Electrospun silk 
fibroin nanofiber scaffolds containing BMP-2 and in-
organic hydroxyapatite particulates induced higher cal-
cium deposition and increased transcript levels of bone- 
specific markers in hMSCs compared to control scaffolds 
in vitro (50).

Micro/Nanopatterned Matrices

　Topographical features of tissue engineered substrates 
and scaffolds have recently been highlighted for their roles 
in controlling stem cell proliferation and differentiation. 
Micro- and nanoscale topographical cues modulate focal 
adhesion of stem cells, and accordingly, affect integrin 
clustering and cytoskeleton reorganization, which may re-
sult in alterations to cytoskeletal tension and mechano-
sensitive signaling pathways (51). These cues may alter 
transcription of genes responsible for proliferation and 
lineage specification of stem cells, leading to altered phe-
notype, morphology, and function (51-53). Functional sub-

strates and scaffolds for stem cell-based bone tissue en-
gineering should be designed to mimic the ECM’s topo-
graphical cues to allow for enhanced osteogenic differen-
tiation.
　Micro- and nanoscale patterned surfaces with specific 
shapes and dimensions promote osteogenic differentiation 
of stem cells. Dalby et al. demonstrated that nanopatterned 
polymer surfaces, especially those patterned in a random 
manner, stimulated hMSCs to express bone-specific genes 
and produce bone mineral, even in the absence of osteo-
genesis-inducing factors (54). Watari et al. also reported 
modulation of hMSC osteogenic differentiation by sub-
micron scale patterned grooves and ridges (55). Culturing 
of hMSCs on patterned substrates was found to upregulate 
the expression of osteogenic markers and downstream reg-
ulators of BMP pathway in hMSCs, irrespective of osteo-
genic factor addition (55). One recent study demonstrated 
a synergistic effect of nanoscale titanium surface geometry 
and immobilized BMP-2 on stem cell osteogenic differ-
entiation (56). Therefore, a combination of biomimetic 
surface topography and biochemical cues could be consid-
ered for development of highly osteoinductive scaffolds to 
improve stem cell osteogenesis.

Conclusions

　In this review, we discuss various biomimetic polymer 
scaffolds developed to improve the efficacy of stem 
cell-mediated bone tissue engineering. These scaffolds 
show enhanced osteoinductive potential and are effective 
and functional in both in vitro and in vivo experiments on 
osteogenic differentiation and bone regeneration with 
stem cells. A mechanistic study of the beneficial effects 
of these scaffolds on stem cell-mediated osteogenesis 
would provide valuable information to aid in design of the 
next generation of highly osteoinductive scaffolds capable 
of maximizing stem cell-mediated bone formation.
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