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This study attempted to find novel age-related macular degeneration (AMD) related genes based on 36 known AMD genes. The
well-known shortest path algorithm,Dijkstra’s algorithm, was applied to find the shortest path connecting each pair of knownAMD
related genes in protein-protein interaction (PPI) network. The genes occurring in any shortest path were considered as candidate
AMD related genes. As a result, 125 novel AMD genes were predicted.The further analysis based on betweenness and permutation
test indicates that there are 10 genes involved in the formation or development of AMD and may be the actual AMD related genes
with high probability. We hope that this contribution would promote the study of age-related macular degeneration and discovery
of novel effective treatments.

1. Introduction

Macular degeneration generally refers to age-related macular
degeneration (AMD or ARMD). It is a major cause of
blindness and visual impairment in older individuals (>50
years) in Western countries [1, 2]. In China, the disease
incidence is 6.04%–11.19% among age 60–69 and rises with
the increase of aging population [3]. Its main symptom is
central visual damage. Known as one of the hardest eye
diseases to treat, the mechanism underlying AMD has not
been clear yet.

However,many risk factors have been identified related to
AMDoccurrence, such as old age, smoking [4], hypertension,
oxidative stress [5], and high-energy visible light [6, 7].
Family history and gene mutations are genetic elements for
AMD occurrence. The lifetime risk of developing late-stage

macular degeneration is 50% for people who have a relative
withmacular degeneration, versus 12% for people who do not
have relatives with macular degeneration [8, 9].

As a complex disease, identification of disease-related
genes is prerequisite and persistent.Through previous genetic
analysis and experimental validation, numerous genomic loci
and a large number of candidate genes have been shown
to involve in AMD [10, 11]. However, they just account
for part of the AMD pathogenesis. The majority of AMD
cases cannot be explained through these knownmechanisms.
Recently, through meta-analysis of genome-wide association
studies (GWAS) for advanced AMD, it was estimated that
currently identified loci account for approximately 55% of
the heritability of advanced AMD [12]. So, to identify novel
genes involved in the formation and development of AMD is
necessary and will improve our knowledge about additional
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pathways and pathological mechanisms of the disease, as well
as methods for more effective treatments.

Since the number of human genes is very huge, it is
impossible to screen them to discover novel AMD related
genes by experiment alone. Computational methods give an
alternative way to help scientists pick out genes that are AMD
related genes with higher probability than others. On the
other hand, computational methods have been successfully
used to tackling various problems in many biological areas,
such as protein attributions prediction [13–17], drug design
[18–22], and analysis of complicated biological network [23].
In this study, we proposed a novel computational method
to identify novel AMD related genes. Based on the current
known AMD related genes, retrieved from Retina Interna-
tional and some previous published documents, some novel
candidate AMD related genes were discovered by applying
Dijkstra’s algorithm [24] in the protein-protein interaction
network. Further GO and KEGG pathway analysis indicates
that some candidate genes are involved in the formation and
development of AMD. Thus, they may be the actual AMD
related geneswith high possibility, which should be paidmore
attention by scientists. It is hopeful that our contribution
would help to uncover the mechanism of this disease and
discover novel effective treatments.

2. Materials and Methods

2.1. Known AMD Related Genes. The AMD related genes
were collected from the following resources: (1) Sixteen
genes are found in Retina International at the website
http://www.retina-international.org/files/sci-news/remacdy
.htm (recent update from March 24, 2010), with “age-related
macular dystrophy” selected as key words. (2) The genes
for the complement system proteins factor H (CFH), factor
B (CFB), and factor 3 (C3) are strongly associated with
a person’s risk for developing AMD. HTRA1 (encoding a
secreted serine protease), which has implications for the
disease, was identified in 2006 [25, 26]. (3) Mutational
analysis of ABCR in juvenile macular degeneration (STGD)
families revealed a total of 19 different mutations including
homozygous mutations in two families with consanguineous
parentage. These data indicate that ABCR is the causal
gene of STGD [27]. (4) Deletion of the complement factor
H-related genes CFHR3 and CFHR1 protects against AMD
[28, 29]. (5) The AMD gene consortium identified 19 loci
with associations reaching 𝑃 < 5 × 10−8, including seven
new loci after genome-wide association studies (GWAS)
and meta-analysis. The 23 nearby genes were selected [30].
Finally, we obtained 36 known AMD related genes after
integration of all resources, which are listed in Table 1.

2.2. Protein-Protein Interaction (PPI) Network. The PPI
network was constructed according to the information
retrieved from the well-known database STRING (Search
Tool for the Retrieval of Interacting Genes/Proteins,
http://string.embl.de/) (version 9.0) [31], a large database
containing direct (physical) and indirect (functional)
interactions. In the database, each interaction consists of

Table 1: AMD related genes.

Index Gene name Index Gene name
1 ABCR 2 ADAMTS9
3 APOE 4 ARMS2
5 B3GALTL 6 C2
7 C3 8 CETP
9 CFB 10 CFH
11 CFH1 12 CFHR1
13 CFHR3 14 CFI
15 COL10A1 16 COL8A1
17 DDR1 18 ERCC6
19 FBLN5 20 FBLN6
21 FILIP1L 22 HMCN1
23 HTRA1 24 IER3
25 LIPC 26 LOC387715
27 QRX 28 RAD51B
29 RAXL1 30 SLC16A8
31 TGFBR1 32 TIMP3
33 TLR3 34 TLR4
35 TNFRSF10A 36 VEGFA
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interaction may occur. For convenience, let 𝑄(𝑝

1

,𝑝
2

) denote
the score of the interaction between two proteins 𝑝

1

and 𝑝
2

.
The constructed network took proteins as its nodes, and the
edge between any two nodes existed if and only if the score
of the interaction between the corresponding proteins was
greater than zero. To reflect the difference of interactions,
each edge with endpoints V

1

and V
2

in the network was
labeled an edge weight defined as follows:

𝑤 (V
1

, V
2

) = 1000 − 𝑄 (𝑝
1

, 𝑝
2

) , (1)

where 𝑝
1

and 𝑝
2

were corresponding proteins of nodes V
1

and V
2

, respectively. Some previous studies have shown that
proteins with an edge connecting them in the network,
known as interactive proteins, are more likely to share
common features than those without edge connecting them
[14–16, 32]. Accordingly, it can be deduced from this fact that
proteins with small distance in the networkmay share similar
features.

2.3. Calculation of Betweenness Using Dijkstra’s Algorithm. As
described in Section 2.1, 36 genes were collected, which are
related toAMDandmust have some common features related
to AMD. According to Section 2.2, it can be deduced that the
proteins in the shortest path connecting any pair of actual
AMD related genes may all share some common features
related to AMD. To obtain the shortest path, the Dijkstra’s
algorithm, a well-known shortest path algorithm conceived
by Dijkstra in 1956, was employed [24].

For the given node in a network, its betweenness is a
value that is related to the number of the shortest paths
containing it as an inner node among all shortest paths
connecting all pair of nodes [33]. Since betweenness accounts
for direct and indirect influences of proteins at distant
network [34], it has been used for studying various natural
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and man-made networks [33, 35–38]. Here, we used the
concept of betweenness to identify novel AMD related genes
from known 36 genes. Compared to the original concept of
betweenness, we only considered the shortest paths, finding
by Dijkstra’s algorithm in PPI network, which connected two
known AMD related genes instead of all shortest paths. The
betweenness of a node V in this study is defined as the number
of shortest paths containing V as an inner node among these
shortest paths.

2.4. Identification of Related Genes Based on Betweenness and
Permutation Test. The betweenness of a node/gene in this
study means the number of shortest paths that connect all
pairs of known AMD related genes/nodes and contain the
node/gene as an inner node. Therefore, it is possible that
genes/nodes with high betweenness may share more features
related to AMD than those with low betweenness. As for
proteins with betweenness equal to 0, we considered the
likelihood that they are the novel AMD related genes to be
zero. Accordingly, we picked out proteins with betweenness
greater than 0 and they are termed as shortest path genes.

The betweenness of some nodes/genes may be influenced
by the essential structure of the network. For example, the
cut-vertex of the network may always receive high between-
ness regardless of the distribution of known nodes/genes.
To avoid this situation, a permutation test was conducted
to further screen the shortest path genes. We randomly
selected the same number of nodes/genes as the actual
number of AMD related genes from PPI network 500 times
and recalculated the shortest paths between these randomly
selected genes. The permutation FDR of the shortest path
genes was defined as

FDR
𝑖

=

count (betweennessrandom > betweennessactual)
500

,

(2)

where betweennessactual was the number of shortest paths
among actual AMD related genes across shortest path gene
i, betweennessrandom was the number of shortest paths
among randomly selected genes across shortest path gene
i, and count (betweennessrandom > betweennessactual) was
the count of times when betweennessrandom was greater
than betweennessactual. According to Jiang et al.’s work [38],
smaller permutation FDR of one shortest path gene indicates
that it is the actual AMD related gene with high possibility.

2.5. KEGG and GO Enrichment Analysis. Functional annota-
tion tool of DAVID [39] was used for KEGGpathway andGO
enrichment analysis. The enrichment 𝑃 value was corrected
to control family-wide false discovery rate under certain
rate (e.g., ≤0.05) with Benjamin multiple testing correction
method [40]. All the genes in the human genome were
selected as backgroundduring the enrichment analysis.There
are 13 items in the output of DAVID; their meanings are listed
as below:

(1) category: DAVID category, that is, KEGG or GO;
(2) term: gene set name;

(3) count: the number of genes associated with this gene
set;

(4) percentage: calculated by “gene associated with this
gene set”/“total number of query genes;”

(5) 𝑃 value: modified Fisher exact 𝑃 value;
(6) genes: the list of genes from your query set that are

annotated to this gene set;
(7) list total: the number of genes in your query list

mapped to any gene set in this ontology;
(8) pop hits: the number of genes annotated to this gene

set on the background list;
(9) pop total: the number of genes on the background list

mapped to any gene set in this ontology;
(10) fold enrichment: the ratio of the proportions on query

genes and the background information which are
associated with the gene set;

(11) Bonferroni: Bonferroni adjusted 𝑃 value;
(12) Benjamini: Benjamini adjusted 𝑃 value;
(13) FDR: FDR adjusted 𝑃 value.

3. Results and Discussion

3.1. Candidate Genes Filtered by Betweenness and Permutation
Test. For the 36 known AMD related genes, we searched the
shortest path connecting any pair of them. After counting
the betweenness of inner nodes in these paths, we obtained
168 shortest path genes with betweenness greater than 0,
where 4 are known AMD related genes. These 168 genes
are available in Supplementary Material I available online at
http://dx.doi.org/10.1155/2013/523415. To further screen these
genes, the permutation test was conducted and permutation
FDRs (refer to (2)) of these genes were calculated, which are
also listed in SupplementaryMaterial I. It can be seen that 125
genes were with permutation FDRs less than 0.01, which are
considered to be greatly related to AMD.

3.2. Results of Functional Annotation Tool. Functional anno-
tation tool of DAVID was used to analyze the 125 genes
based on KEGG pathways andGO terms.TheGO andKEGG
analysis results can be found in Supplementary Materials II
and III, respectively. The following sections give the detailed
discussion based on these results.

3.3. GOEnrichmentAnalysis. It is observed fromSupplemen-
tary Material II that 865 GO terms were enriched by the 125
genes. The top 1% of GO terms (totally 9) sorted by “Count”
item (refer to Figure 1 for the “Count” itemof theseGO terms)
were investigated and discussed as below.

Among these 9 GO terms, three of them are cellular
component (CC) GO terms and six biological process (BP)
GO terms. The three CC terms included: GO:0005886:
plasma membrane (“count” = 60), GO:0044459: plasma
membrane part (“count” = 45), and GO:0005829: cytosol
(“count” = 40). Early AMD usually takes place accompanied
by accumulation of drusen, a kind of cellular debris, between
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Figure 1:The top 9 GO terms shared by 125 genes.The𝑋-axis lists GO’s ID and name, while the𝑌-axis represents the number of genes shared
the GO term among the 125 genes.

the retina and the choroid [41]. It was speculated that exo-
somes produced by cellular lysosome formed the drusen [42].
They carried many extra- or intracellular proteins, lipids,
and cellular components wrapped by or included plasma
membrane, and gathered other extracellular factors to deposit
as a accumulative core [43].These indicated the role of cytosol
parts and plasma membrane in the pathogenesis of AMD in
the early stage.

The six BP terms were GO:0007166: cell surface receptor
linked signal transduction (“count” = 49), GO:0007242: intra-
cellular signaling cascade (“count” = 42), GO:0010604: posi-
tive regulation of macromolecule metabolic process (“count”
= 37), GO:0042981: regulation of apoptosis (“count” = 36),
GO:043067: regulation of programmed cell death (“count” =
36), and GO:0010941: regulation of cell death (“count” = 36).
The first two may represent all the processes of signal trans-
duction.Themacromoleculemetabolic process was relatively
critical in the development of AMD. As mentioned above,
metabolism of proteins and other biological macromolecules
cannot go without lysosomes. And if that does not work, the
exosomes carrying these undigested molecules would induce
the formation of drusen or further cause increased local
immune responses and promote the AMD. The next three
were all related with cell death. It was reported that necrosis
can be responsible for the cell loss in the retinal degeneration
[44]. Immune responses can protect cells from death and
kill them when they were impaired. Advanced AMD in mice
model involved death of photoreceptor cells [45].These genes
may not be the causative factors in AMD, but what they have

in common would give us a suggestion about how the AMD
happens or what problems may occur in the development.

3.4. KEGG Pathway Enrichment Analysis. It can be observed
from Supplementary Material III that there were 56 path-
ways which were significantly enriched in by the 125 genes
potentially being related with AMDpathogenesis.TheKEGG
pathways with “count” item at least 14 were investigated. We
found that 5 of them are related to AMD. Figure 2 shows
the “count” item of these pathways. In details, T-cell receptor
signaling pathway (hsa04660) and neurotrophin signaling
pathway (hsa04722) ranked in the top five, covered 22 genes
and 21 genes (refer to Figure 2), respectively. Seventeen genes
(“percentage” = 13.6%) enriched in the Chemokine signaling
pathway (hsa04062), 15 genes (“percentage” = 12%) in the
B cell receptor signaling pathway (hsa04662), and 14 genes
(“percentage” = 11.2%) in the Toll-like receptor signaling
pathway (hsa04620). Although the exactmechanism ofAMD
is unknown, decades of studies have highlighted the critical
role of immune processes in the development, progression,
and treatment of AMD [46]. Advanced AMD is of great
relevance for the retinal neovascularization and atrophic
lesions involving macrophages, lymphocytes, microglia, and
mast cells, as well as fibroblasts [47, 48].

Undeniably, all immune responses have dual, opposing
roles, normally preventing the host while promoting disease
under disorder conditions. The Chemokine signaling path-
way is initiated by cytokine-cytokine receptor interactions. It
was found that animal models with CC-chemokine ligand 2
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Figure 2: The 5 KEGG pathways shared by 125 genes. The 𝑋-axis lists pathway’s ID and name, while the 𝑌-axis represents the number of
genes shared the pathway among the 125 genes.

(CCL2), CC-chemokine receptor 2 (CCR2), and/or CX3C-
chemokine receptor 1 (CX3CR1) deficiency had AMD-like
features, including thickening Bruch membrane, deposition
of drusen, retinal pigmented epithelium (RPE) hypertrophy,
and retinal thinning [49, 50]. T cell receptor signaling
pathway and Toll-like receptor signaling pathway are both
activated to release immunologic factors, such as IL-1𝛽, IL-
2, and IL-18. RPE cells can release IL-1𝛽 in responding to
kinds of chemokines which may be dangerous signals and
were abundant in AMD [51–53]. While IL- 1𝛽 and Toll-like
receptor 2 (TLR2) ligands can promote neovascularization,
activatingTLR3would decrease choroidal neovascularization
and promote RPE degeneration [54–56].

B cells do not show a direct role inmediating angiogenesis
or tissue damage in AMD pathogenesis, but it cannot be
excluded in which there is some relationship between B cell
immune and AMD. For example, the Ccl2−/− Cx3cr1−/−
mouse model was found having retina-specific autoantibod-
ies [49, 50]. The neurotrophin signaling pathway involves
many nerve growth factors (NGFs) and neurotrophins (NT3,
NT4).Microenvironment balance of the eye would guarantee
the health of eye organisms. It was successful to relieve
patients with AMD with NGF eye drop, which suggested the
lack of NGF may be a cause of the AMD symptoms and may
involve in the disease progress [57]. All the above indicated
the relationship of pathways with AMD and may expand the
avenues to explore newmechanisms in AMDoccurrence and
development.

3.5. Analysis of 10 Significant AMDRelated Genes. Therewere
12 genes (listed inTable 2)whose betweennesswas larger than

Table 2: Shortest path genes with betweenness greater than 100.

Ensemble ID of genes Gene name Betweenness
ENSP00000245907a C3 336
ENSP00000313419 CD19 319
ENSP00000356024 CR2 319
ENSP00000264033 CBL 295
ENSP00000275493 EGFR 195
ENSP00000344456 CTNNB1 172
ENSP00000344818 UBC 158
ENSP00000269305 TP53 114
ENSP00000415941 C4B 111
ENSP00000284981 APP 104
ENSP00000326366 PSEN1 104
ENSP00000356016 CR1 101
aIt is the known AMD related gene.

100 among the 125 shortest path genes, where 1 gene is the
knownAMD related gene. Among the rest 11 genes, we found
that 10 of them are related to the formation or development
of AMD.

Genetic studies had implicated immune responses espe-
cially the complement system in AMD pathogenesis and
development [43, 58, 59]. The genes for the complement
system proteins factor H (CFH), factor B (CFB), and factor
3 (C3) are strongly associated with AMD susceptibility. For
instance, the Y402H variant in CFH gene is significantly
associated with AMD in Asian populations [60]. C3 can
protect the aging retina by complement system [61]. There
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were two complement component receptors (CR1 and CR2)
genes in our result. As c3b/c4b or c3d receptors, the signaling
was definitely disturbed if they were dysfunctional. CD19 was
a B-lymphocyte antigen. It was reported that the RPE can
inhibit the B-cell activation [62], maybe through the B-cell
surface antigens, such as cd19.

PSEN1, also known as PS1, was an Alzheimer’s disease
(AD) gene. The transgenic mice with this gene can express
AMD features under some conditions [63], which suggested
some internal relationship between the gene and AMD. APP
was also an AD gene and would be involved in AMD too.
TheUBC (ubiquitinC) belonged to the ubiquitin-proteasome
system; one terminal hydrolase of which was closely related
with photoreceptor cell apoptosis [64]. CBL (also named
E3 ubiquitin protein ligase), EGFR, and P53 were both
tumor related genes, so their ordinary condition was all
necessary for cells growth or organ development, especially
the photoreceptor cells’ development [65–67]. The Wnt/𝛽-
Catenin Signaling had been involved in retina development
in many studies, and its activities can protect photoreceptors
from damage and take part in the retina cell regeneration [68,
69]. Although these genes did not show directly relationship
with AMD, their roles indicated some connection with the
disease and that would be a cue for further researches to find
out more AMD related factors.

4. Conclusion

Identification of disease genes is one of the most important
and challenging problems in biomedicine and genomics.
Since AMD has a high risk factor which results in a loss
of vision for elder adults, it is eager to find novel AMD
related genes, thereby understanding its mechanism well
and discovering effective treatments. This study proposed
a computation method to identify AMD related genes by
applying the shortest path algorithm in the PPI network.
Through the GO and KEGG pathway analysis of the genes
identified by our method, they are significantly enriched
for GO terms and KEGG pathways related to AMD, which
implies they have direct or indirect relationship with the
formation or development of AMD. It is hopeful that this
contribution would promote the study of this disease.
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