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Abstract
Loss of function mutations and deletions encompassing the PHF6 gene are present in about 20%
of T-cell acute lymphoblastic leukemias. Here we report the identification of recurrent mutations
in PHF6 in 10/353 adult acute myeloid leukemias (AML). Genetic lesions in PHF6 found in AML
are frameshift and nonsense mutations distributed through the gene or point mutations involving
the second PHD-like domain of the protein. As in the case of T-ALL, where PHF6 alterations are
found almost exclusively in males, mutations in PHF6 were 7 times more prevalent in males than
in females with AML. Overall these results identify PHF6 as a tumor suppressor mutated in AML
and extend the role of this X-linked tumor suppressor gene in the pathogenesis of hematologic
tumors.
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Introduction
Acute myeloid leukemia (AML) consists of a heterogeneous group of aggressive neoplasms
that is characterized by clinical and genetic heterogeneity and shows an increasing incidence
with age(1). Insights in the molecular genetic basis of AML initially came from the
characterization of recurrent chromosomal rearrangements, including t(8;21), t(15;17),
inv(16), and different 11q23 translocations (2). Such clonal chromosome aberrations are
detectable in the leukemic blasts of approximately 55% of adults with AML and have been
recognized as important prognostic factors. Moreover, the characterization of genes located
in the breakpoints of these rearrangements identified critical fusion oncogenes involved in
the pathogenesis of AML including RUNX1-MTG8/AML1-ETO, PML-RARA, CBFB/
SMMHC and MLL-AF9. Subsequently, intense sequencing efforts of specific candidate
genes, including NPM1, FLT3, CEBPA, MLL, NRAS, WT1, RUNX1, NF1 and TET2, further
broadened the spectrum of genetic lesions towards a wide variety of somatic mutations
implicated in AML pathogenesis (2–5). Finally, sequencing of complete AML genomes (6,
7) revealed the presence of new somatically acquired mutations and led to the identification
of recurrent mutations in the IDH1 and IDH2 genes (8, 9).

Recently, we identified the plant homeodomain finger 6 (PHF6) gene as a new tumor
suppressor in T-cell acute lymphoblastic leukemia (T-ALL)(10). PHF6 deletions and
inactivating mutations are found in about 20% of T-ALL samples and are present almost
exclusively in male leukemia cases(10). Notably, PHF6 mutations were not identified in
precursor B-lineage ALL samples suggesting that loss of PHF6 might be restricted to
lymphoid tumors of the T-cell lineage(10). In the past, detailed molecular characterization of
T-ALL and AML revealed a number of common genetic lesions shared by these
hematological tumors including the CALM-AF10(11, 12) and SET-NUP214(13, 14) gene
fusions, MLL translocations(15) and somatically acquired mutations in RAS(16, 17),
WT1(18, 19), FLT3(20–22) and NF1(23). Given these similarities, we hypothesized that
mutational loss of PHF6 might also be implicated in the pathogenesis of specific subtypes of
AML. To address this question, we sequenced all coding exons of PHF6 in a cohort of 353
AML patients. In addition, we used real-time quantitative DNA PCR to assess the presence
of genomic PHF6 deletions in 41 cases. The results of this analysis show the presence of
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recurrent loss of function mutations in PHF6 in AML and characterize the spectrum of
associated genetic alterations cooperating with PHF6 loss in myeloid malignancies.

Methods
Patient samples

Leukemic DNA and cryopreserved lymphoblast samples were provided by collaborating
institutions in the US [Eastern Cooperative Oncology Group (ECOG) and Memorial Sloan-
Kettering Cancer Center (MSKCC)], Spain [Hospital Central de Asturias, Oviedo] and
Belgium [Department of Pediatric Hemato-Oncology, Leuven University Hospital, Leuven].
All samples were collected with informed consent and under the supervision of local IRB.

Sequence analysis
PHF6 mutations were analyzed by PCR amplification of PHF6 exons 2–10 followed by
direct bidirectional DNA sequencing as previously described(10). Sequence analysis of
IDH1, IDH2, TET2, ASXL1, FLT3, NPM1, CEBPA, WT1, KRAS and NRAS was performed
as previously described(25).

Sorting of hematopoietic stem cell (HSC), myeloid progenitor and lymphoid populations
Murine bone marrow, thymus and spleen cells were sorted using a Dako Cytomation Mo-
Flo Fluorescence Activated Cell Sorter. Antibody staining was performed as previously
described(26). The antibodies used for sorting included c-kit (2B8), Sca-1 (D7), Mac-1
(M1/70), Gr-1 (RB6-8C5), NK1.1 (PK136), TER-119, CD3 (145-2C11), CD4 (L3T4),
CD8α (53-6.7), CD19 (1D3), IgM (II/41), IL7Rα (A7R34), CD25 (PC61), TCRβ
(H57-597), CD34 (RAM34), FcgammaRII/III (2.4G2), CD150 (9D1) and were purchased
from BD-Pharmingen or e-Bioscience. The bone marrow lineage cocktail included
antibodies against Mac-1, Gr-1, NK1.1, TER-119, CD3 and CD19. Sorted hematopoietic
stem cell populations included total LSK (lin−/sca-1+/c-kit+), CD150− LSK and CD150+

LSK. Myeloid progenitor populations included common myeloid progenitors (CMP, lin−/
sca-1−/c-kit+/CD34+/FcgammaRII/IIIlow), granulocyte-macrophage progenitors (GMP, lin−/
sca-1−/c-kit+/CD34+/FcgammaRII/IIIhigh) and megakaryocyte-erythroid progenitors (MEP,
lin−/sca-1−/c-kit+/CD34+/FcgammaRII/III−). Lymphocyte populations included bone
marrow pro B (IgM−/CD19+/cKit+/CD25−) and pre B cells (IgM−/CD19+/cKit−/CD25+),
mature splenic B cells (CD19+/IgM+), thymic double negative 1 T cells (DN1, CD4−/CD8−/
cKit+/CD25−), double negative 2 T cells (DN2, CD4−/CD8−/cKit+/CD25+), double negative
3 T cells (DN3, CD4−/CD8−/cKit−/CD25+), double negative 4 T cells (DN4, CD4−/CD8−/
cKit−/CD25low), intermediate single positive (ISP, CD4−/CD8+/TCRβ−) and double positive
T cells (DP, CD4+/CD8+) and finally splenic peripheral mature single positive CD4 T cells
(SP-CD4+, CD4+/CD8−) and single positive CD8 T cells (SP-CD8+, CD4−/CD8+).

Quantitative real time PCR
RNA preparation of sorted cell population was achieved using the RNeasy plus mini kit
(QIAGEN) according to manufacturer’s protocol. cDNA was generated with the
ThermoScript RT-PCR system (Invitrogen) and analyzed by quantitative real-time PCR
using the SYBR Green RT-PCR Core Reagents kit (Applied Biosystems) and the 7300 Real-
Time PCR System (Applied Biosystems). Phf6 expression levels were calculated using
Gapdh as reference. PCR primers sequences are available upon request.

Real-time quantification of DNA copy number
Real-time quantitative DNA PCR analysis was performed to screen AML cases for the
presence of genomic PHF6 deletions using the FastStart Universal SYBR Green Master Mix
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(Roche) and the 7300 Real-Time PCR System (Applied Biosystems) as previously
described(10) using TIE2 as control gene. Data were analyzed using the comparative ddCT
method (Applied Biosystems).

Statistical analysis
The Fisher’s exact test was used to compare the frequency of PHF6 mutations between male
and female AML patients.

Results
PHF6 mutations in adult AML

PHF6 was recently identified as a novel X-linked tumor suppressor gene recurrently
mutated and deleted in pediatric and adult T-ALL(10). To evaluate if PHF6 inactivation
might also contribute to the pathogenesis of AML, we sequenced all coding exons of PHF6
and used real-time quantitative DNA PCR to assess the presence of genomic PHF6 deletions
in AML samples. DNA sequencing analysis of PHF6 in AML revealed the presence of
PHF6 mutations in 10/353 (3%) AMLs analyzed. Most PHF6 mutations present in AML
were characteristically loss of function alleles with 3 nonsense and 4 frameshift truncating
mutations (Figure 1a,b). In addition, we identified 3 missense mutations located in the N-
terminal region (A40G) and the second PHD2 domain (H302Y and H329L) of PHF6 (Figure
1a,b). DNA copy number analysis of the PHF6 locus failed to detect any genomic PHF6
deletions in 41 AML (22 male and 19 female) cases analyzed.

Cooperative genetic lesions in PHF6 mutated adult AML
PHF6 mutated AML cases in this series, corresponded to FAB subtype’s M0, M1 and M2,
or presented as a secondary AML (Table 1). At the genetic level, AML is a heterogeneous
disease characterized by the accumulation of acquired somatic genetic lesions that cooperate
in the transformation of myeloid progenitor cells. In order to identify genetic defects that
might cooperate with PHF6 inactivation in the pathogenesis of AML, we sequenced IDH1,
IDH2, TET2, ASXL1, FLT3, NPM1, CEBPA, WT1, KRAS and NRAS, in PHF6 mutated
AML samples. This analysis revealed mutations affecting IDH2, ASXL1, FLT3, CEBPα and
NRAS as additional genetic events that may cooperate with PHF6 inactivation in the
pathogenesis of AML (Table 1).

Phf6 expression in murine HSC, myeloid progenitor and lymphoid populations
PHF6 is highly conserved among vertebrates(28) and shows ubiquitous expression in a wide
variety of human tissues(10, 28). The presence of recurrent mutations in PHF6 in AML
suggests a possible role of this tumor suppressor gene in the control of myeloid
development. In order to evaluate Phf6 expression in hematopoietic stem cells (HSCs) and
myeloid progenitors, we performed quantitative RT-PCR analysis of sorted mouse myeloid
progenitor and lymphoid cell populations. These analyses revealed ubiquitous but slightly
lower expression levels of Phf6 transcripts in HSC and myeloid cell progenitor populations
as compared to different subsets of lymphoid cells (Figure 2). Within the myeloid progenitor
populations, we noticed higher Phf6 levels in LSK progenitors compared to CMP and GMP
populations (Figure 2). The murine thymocyte populations at different stages of
development showed a similar pattern of variable Phf6 expression as previously identified in
human T-cell subsets(10). Finally, in the murine B-cell populations, we noticed a marked
upregulation of Phf6 transcripts in pre-B cells compared to both pro-B and mature B cells.
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PHF6 mutations are characteristically present in male patients with in AML
One of the most notorious features of PHF6 mutations in T-ALL is that they are almost
exclusively found in male patients with this disease (10), which may explain in part the 3:1
higher prevalence of T-ALL in males than in females. Notably, although to a less extent than
in T-ALL, AML is also more frequently found in males with a male to female ratio of 1.3 to
1. Analysis of the gender distribution in PHF6-mutated AML patients demonstrated that
genetic alterations in PHF6 are 7 times more frequent in male (9/195; 4.6%) than in female
(1/158; 0.6%) AML patient samples (P<0.05, Figure 3).

Discussion
The PHF6 tumor suppressor gene encodes a plant homeodomain (PHD) protein containing 4
nuclear localization signals and 2 imperfect PHD zinc finger domains(27) with a proposed
role in transcriptional regulation and/or chromatin remodeling(27, 28). Inactivating
mutations in PHF6 cause the Börjeson-Forssman-Lehman syndrome(29) (BFLS), a
relatively uncommon type of X-linked mental retardation that mainly affects males, and
shows milder clinical features in affected carrier females(30). A recent report described a
male BFLS patient that developed T-ALL, suggesting that BFLS represents a cancer
predisposition syndrome(31).

In this study, we evaluated if mutational loss of PHF6 might also be implicated in the
pathogenesis of adult AML and identified PHF6 mutations in ~3% (10/353) of adult AML
samples analyzed. PHF6 mutated primary AML cases were predominantly immature
leukemias (FAB subtypes M0–M2), however, they showed definite AML
immunophenotypes. Only in one case, retrospective analysis of one of the PHF6 mutated
AML M0 samples, showed weak cytoplasmic CD3 positivity, together with 8%
myeloperoxidase positive blasts and CD15/CD33 expression. Moreover, the presence of
additional cooperative mutations affecting prototypical AML associated oncogenes and
tumor suppressor genes such as IDH2, ASXL1, FLT3, CEBPα and NRAS (Table 1), in PHF6
mutated AML cases, further confirms the true myeloid nature of these samples.

Nonsense and frame-shift PHF6 mutations accounted for 70% (7/10) of all PHF6 mutations
identified in our series and were distributed throughout the complete PHF6 gene (Figure
1a,b). Missense mutations accounted for the remaining 30% (3/10) of PHF6 lesions and
mainly involved the second plant homeodomain (PHD)-like zinc finger domain of the PHF6
protein (Figure 1a,b). This includes an amino acid substitution (A40G) in the N terminus
region of PHF6, a variant that was unique among 546 hematologic tumors analyzed in our
lab. However, no remission material was available to test the somatic origin of this change.
Thus, this particular variant may correspond to a novel point mutation disrupting the tumor
suppressor function of PHF6 or alternatively correspond to a previously unreported
polymorphism. Notably, the other two missense mutations found in AML involved residues
R319 and H329 located in the second PHD-like domain of PHF6 (Figure 1a,b, Table 1),
which have been previously found mutated in T-ALL(10), further strengthening the idea that
the second PHD-like domain may mediate critical tumor suppressor functions of PHF6(10).

Overall, our results identify PHF6 as an X-linked tumor suppressor gene that is mutated in a
fraction of both de novo as well as secondary adult AMLs. PHF6 mutations occur at a lower
frequency in AML compared with T-ALL, but target mainly male patients in both
hematological malignancies. The prognostic impact of PHF6 mutations in AML will need to
be assessed in larger cohorts of patients collected on multi center clinical trials. In addition,
these results suggest the possibility that PHF6 mutations might occur in male patients with
other myeloid malignancies, such as myelodysplasia or myeloproliferative disorders which
should be the addressed in future studies.
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Figure 1. PHF6 mutations in AML
(A) Schematic representation of the PHF6 protein depicting the location of 4 nuclear
localization signals and 2 imperfect PHD zinc finger domains. Overview of PHF6 mutations
identified in primary AML samples. Filled circles represent nonsense and frameshift
mutations, whereas missense mutations are depicted as open circles. The circle filled in gray
indicates a frameshift PHF6 mutation identified in a female AML sample. (B)
Representative DNA sequencing chromatograms of AML DNA samples showing mutations
in exons 7, 9 and 10 of PHF6.
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Figure 2. Phf6 expression in HSC and myeloid progenitor populations
Quantitative RT-PCR analysis of murine Phf6 expression normalized to Gapdh in HSC,
myeloid progenitor and lymphoid populations. Error bars indicate s.d.
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Figure 3. Gender distribution of PHF6 mutations in AML
Differential distribution of PHF6 mutations in AML samples from male and female patients.
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