
Assessment of skewed exposure in case-control studies with
pooling

Brian W. Whitcomb, Ph.D
Division of Biostatistics and Epidemiology, School of Public Health and Health Sciences,
University of Massachusetts Amherst

Neil J. Perkins, Ph.D.
Division of Epidemiology, Statistics, and Prevention Research, Eunice Kennedy Shriver National
Institute of Child Health and Human Development, NIH/DHHS

Zhiwei Zhang, Ph.D.
Division of Epidemiology, Statistics, and Prevention Research, Eunice Kennedy Schriver National
Institute of Child Health and Human Development, NIH/DHHS

Aijun Ye, Ph.D.
Division of Epidemiology, Statistics, and Prevention Research, Eunice Kennedy Schriver National
Institute of Child Health and Human Development, NIH/DHHS

Robert H. Lyles, Ph.D.
Department of Biostatistics and Bioinformatics, The Rollins School of Public Health of Emory
University

Abstract
Pooling based strategies that combine samples from multiple participants for laboratory assays
have been proposed for epidemiologic investigations of biomarkers to address issues including
cost, efficiency, detection, and when minimal sample volume is available. A modification of the
standard logistic regression model has been previously described to allow use with pooled data;
however, this model makes assumptions regarding exposure distribution and logit-linearity of risk
(i.e., constant odds ratio) that can be violated in practice. We were motivated by a nested case-
control study of miscarriage and inflammatory factors with highly skewed distributions to develop
a more flexible model for analysis of pooled data. Using characteristics of the gamma distribution
and the relation between models of binary outcome conditional on exposure and of exposure
conditional on outcome, we use a modified logistic regression to accommodate non-linearity due
to unequal shape parameters in gamma distributed exposure for cases and controls. Using
simulations, we compare our approach with existing methods for logistic regression for pooled
data considering: 1. Constant and dose-dependent effects; 2. Gamma and log-normal distributed
exposure; 3. Effect size, and; 4. The proportions of biospecimens pooled. We show that our
approach allows estimation of odds ratios that vary with exposure level, yet has minimal loss of
efficiency compared to existing approaches when exposure effects are dose-invariant. Our model
performed similarly to a maximum likelihood estimation approach in terms of bias and efficiency,
and provides an easily implemented approach for estimation with pooled biomarker data when
effects may not be constant across exposure.
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1. Introduction
Biomarkers are commonly used in epidemiological investigations to provide quantitative
information regarding exposure. However, use of biomarkers for epidemiologic
investigation entails significant expense related both to collection of biospecimens from
study participants and performance of laboratory tests to measure the biomarker of interest.
Additionally, practical limitations including those with instrumentation (such as detection
limits) and the availability of adequate sample volume may hinder epidemiologic biomarker
studies. In order to address these issues, pooling based approaches, as well as random
sampling, have been described [1-8].

Given a population of biospecimens of size N, pooling typically involves physically
combining biospecimens in pools of group size p and performing assays on the N/p resulting
pools. Laboratory assays commonly have the goal of measuring the concentration of the
biomarker of interest as units per volume. In such a setting, when equal volumes of two
individual biospecimens are combined, it is commonly assumed that the concentration in the
resultant pool represents the average of biospecimens in the pool, given that any error
introduced through the pooling process (e.g., due to incomplete mixing) is minor [3-7].
Thus, pooling designs are efficient for estimation of the mean [2]. A comparable random
sampling approach might entail random selection of N/p unpooled samples for assaying,
which while less efficient for mean estimation, retains individual level information and
provides more efficient estimation of variance than pooling [2]. A natural extension of
pooling is a hybrid design that exploits the benefits of pooling with those of random
sampling for estimation of both means and variance, respectively. This approach entails
performing assays on a sample that includes some pooled specimens and some specimens
unpooled according to optimality criteria that have been described [4].

Use of pooled exposure assessment for studies of binary disease has been previously
described [4,7]. Weinberg and Umbach (1999) introduced the ‘set-based logistic model’ to
evaluate the relation between a binary outcome variable and exposure measured in pools
grouped by outcome status [7]. The set-based logistic regression approach entails use of the
measured value for a pool, the pool size, and the assumption that measurements in pools
represent the arithmetic means of individual measurements to reconstruct the sum of
individual concentrations (equal to the set’s measurement multiplied by pool size).
Weinberg and Umbach have shown that use of this sum in a logistic model that includes
pool size as a predictor and the log ratio of case sets to control sets as an offset can be used
to estimate exposure effects. In the case-control setting, set-based logistic regression has
been shown to yield valid risk estimates with minimal loss of efficiency compared to
individual assays of exposures distributed as normal, lognormal or gamma under the
assumption of linear dose-response when a single estimate adequately describes the relation
between exposure levels and risk [7].

In this paper, we consider applications of a logistic regression model in a hybrid design
setting for assessment of risk related to biomarkers of exposure when the association
depends on the exposure level. In section 2, we introduce a case-control study of miscarriage
and biomarkers of inflammation as a motivating example and discuss potential limitations of
the set-based logistic regression model as previously described [7] that may apply in
scenarios observed with studies using biomarkers. In section 3, we propose an alternative
method based on a gamma model and describe modeling approaches to estimate the
parameters of interest. In section 4, we present results of a simulation study evaluating the
approach under a range of scenarios. In section 5, we revisit the motivating example and
apply the proposed approaches to a dataset from a case-control study of miscarriage and
circulating levels of chemokines. We conclude in section 6 with a discussion of our results.
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2. Motivating example – chemokines and miscarriage
2.1 Study design and population

Estimates of the proportion of recognized pregnancies that end in miscarriage range from 15
to 31% [9]. Inflammation and immune related factors have been considered as possible
mediators of pregnancy loss. Chemokines are small cell signaling proteins involved in
immunomodulatory and other biological processes. After binding to cell surface receptors,
chemokines trigger intracellular signaling that can stimulate feedback regulation through up-
or down-regulation of transcription, promote inflammation/immune responses, stem-cell
survival, chemotaxis of leukocytes, and angiogenesis and have suspected involvement in
pregnancy failures [10-13].

To evaluate the role of circulating chemokine levels as early indicators of miscarriage, we
conducted a case-control study nested in the Collaborative Perinatal Project (CPP), utilizing
the design of recently conducted studies of cytokines and pregnancy outcomes in the CPP
[13, 14, 15]. The CPP is a multi-site study of pregnancy and pediatric outcomes that
prospectively collected biospecimens and was conducted from 1959 to 1974 [16]. Because
of the large sample size and prospective sample collection of the CPP, it has great utility to
address questions of early gestation biomarker levels and uncommon pregnancy outcomes,
such as late miscarriage. Details of the sampling for this study have been previously
described [13]. Biospecimens from a total of 370 miscarriage cases and 388 controls were
available for assay in the current study. Assays were performed using a 10-plex assay from
BioSource (Invitrogen, Carlsbad, CA, USA) and the Luminex 100IS platform (Luminex
Corp, Austin, TX) as described elsewhere [13]. As specimens had been previously collected
with all identifying information removed, the Office of Human Subjects Research from the
National Institutes of Health and the University of Florida IRB determined this study to be
exempt from the requirement for further IRB approval.

In considering results of these assays, chemokine distributions were observed to be highly
right skewed. Q-Q plots for eotaxin, one of the chemokines evaluated, among miscarriage
cases and controls are shown in Figure 1, illustrating the gamma distributions’ fit to the data.
Lognormal distributions were considered as well, and distributions were compared using the
Akaike Information Criterion (AIC). Gamma (AICcases = −3097.9; AICcontrols = −3380.2)
was observed to provide a better fit compared to lognormal (AICcases = −3047.8; AICcontrols
= −3353.0). The distribution of eotaxin is representative of the other chemokines evaluated.

Assays such as enzyme-linked immunosorbent assays and multiplexed immunoassays may
be costly, and while sample volume requirements for these assays are low, ranging from
100-200μl, there is often limited available volume for subjects of particular interest in
repositories such as that for the CPP. For these reasons, we were motivated to explore
pooling based approaches using these case-control data. In addition to assessments on
individual samples, chemokines were measured in case-status specific pools (i.e., cases with
cases, etc.) for those with sufficient available sample volume.

2.2 Implications of the set-based logistic regression model
Existing methodology for analysis of pooled case-control data has considered normal as well
as skewed exposures in models to assess dose-invariant relations with disease risk, i.e., a
single odds ratio that does not vary by exposure level [7]. Such models have implications for
the exposure distribution in cases and controls. For example, in the case of an exposure
distributed gamma in the population, a constant risk model implies equal shape parameters
for the case and control distributions.
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Non-linear response models have been suggested in toxicology and risk assessment
literature to model several physiological response mechanisms [17]. Dose-varying effects
may be observed for factors that: are subject to feedback regulatory mechanisms such as
receptor up- or down-regulation; promote secondary cell-signaling effects; or follow a
threshold model [17,18]. Dose-varying effects have been suggested for toxicants including
heavy metals [19,20] and endocrine disrupting compounds [21] as well as for endogenous
factors involved in immune response [22].

In the context of biomarker research a more flexible model may be desirable, particularly for
skewed exposures. While quantiles and variable transformations are commonly used to
allow for departures from linearity or log(it)-linearity in the unpooled setting, they are not
accommodated by the set-based logistic regression model for pooled exposure assessment
[7], and an extension of this approach is needed.

3. A flexible logistic regression model for pooling with gamma distributed
exposure

Let X denote a biomarker measured continuously in individuals with disease status Y (1 if
present; 0 if not). Suppose X follows a skewed distribution for each disease status, for which
a gamma model may be more appropriate than a normal model. Specifically, we assume that
given Y = y, X follows a gamma distribution with parameters (αy, βy). The corresponding
density function is given by

(1)

To understand the association between X and Y, we can use Bayes’ law to deduce from (1)
that

(2)

where

Thus, the log-odds ratio corresponding to a unit increase in X (from x to x + 1) is not
constant in x, but rather given by

which can be plotted as a function of x upon substituting estimates of (αy, βy), y = 0, 1.

Estimation of the relevant parameters is straightforward if X is measured on each individual
subject. Suppose, however, that X is measured for pooled specimens from subjects in a case-
control study. We assume pooling is homogeneous (cases with cases, controls with controls)
but otherwise random. Let the subscripts ij denote the jth subject in the ith pool, and Xi =
(Xi1,…, Ximi′ and Yi = (Yi1, …, Yimi′, j = 1, … , mi, i = 1, … , n. The pooling mechanism
implies that Yi is a constant vector (0 or 1). Unless mi = 1, we do not observe the Xij; rather,
the measured value in the ith pool represents the average of the j specimens in that pool.
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From these measured values, the sum of individual specimens can be calculated as

 by multiplying measurements by mi. It is important to observe that given Yi
= y1, Xi+ also follows a gamma distribution with parameters (miαy, βy). Thus the parameters
(αy, βy) can be estimated by maximizing the likelihood

(3)

where I(·) is the indicator function. Maximization of the above likelihood and close
approximation of the corresponding observed information matrix can be accomplished
directly using optimization routines available in standard statistical software (e.g., [23]);
however, variance estimation and performance of hypothesis tests are not straightforward.
Alternately, parameter estimation can be carried out using available routines for gamma
regression. In particular, well known properties of gamma distributions imply that

In other words, Xi+ in a case pool follows a gamma regression model with a log link, an

intercept log(α1)−log(β1), an offset log(mi), and a dispersion parameter . Replacing the
subscript 1 with 0 yields the parallel model for control pools. These models can be fitted to
case pools and control pools separately, and the resulting parameter estimates can be
converted into estimates for (αy, βy), y = 0, 1, which can be further converted into estimates
for (θ1,θ2). These approaches are theoretically sound but may not be easy to implement by
practitioners.

A more direct approach to estimate the risk associated with a given biomarker is based on
the more traditional binary regression model for Yi but given Xi+ in lieu of individual Xi.
This was the approach of Weinberg and Umbach (1999) who demonstrated that a set-based
model could be used to assess risk consistently in a variety of scenarios. Their method does
however, have the limitation of assuming logit-linearity in exposure, imposing difficulty
with non-linear transformations, and their result may not be directly applicable to the present
situation. Extending previous work, we can deduce a logistic regression model for Yi given
Xi+ directly from the gamma distribution of Xi+ given Yi. Invoking Bayes’ law once again,
we obtain

(4)

where

r(mi) is the number of case pools of size mi divided by the number of control pools of the
same size, andθ1 andθ2 are the same as in (2). Hereθ1 andθ2 are the parameters of interest,
while  is essentially a nuisance parameter that depends on unknown parameters in a
fairly complex way.

Just as with Weinberg and Umbach, standard software can be used to approximate the fit of
model (4) to allow for non-constant risk related to exposure. One may use logistic regression
after replacing  with mi(as a categorical variable), thereby accounting for the
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dependence of  on mi, as well as log r(mi) as an offset, though the term drops out of
the model in designs with equal numbers of case and control pairs. This way of handling

 is convenient and the associated loss of information should be small when the
number of different pool sizes is relatively small, as is often the case. The logistic approach
can be performed in virtually any statistical software with standard error estimates and tests
on regression parameters available in standard output. The log-odds ratio ψ (defined earlier)
can be estimated by

where  denotes the estimates from logistic regression. Let  denote the

estimated variance matrix for . Then the corresponding variance estimate for  is
given by

which can be used to make inference about ψ.

4. Simulation Study
4.1 Constant versus dose-dependent effect estimation with varying pooling proportions

We conducted a simulation study to compare the proposed approach with the Weinberg-
Umbach set-based logistic regression with respect to bias and mean squared error. We
initially considered: 1. Constant and dose-dependent effects of varying sizes for the effect of
exposure on disease risk, and; 2. Varying proportions of samples pooled.

For the simulations, 1000 datasets were generated. In order to assess the impact of the size
and type (i.e., constant or dose-dependent) on estimates, a gamma distributed exposure was
generated with case status specific parameters α0 = 1, β0 = 1, α1 = {1.0, 1.5}, β1 = 1/{1.0,
1.25,2}. The number of assays performed (i.e., total of pools and individuals assayed) was
fixed at 2000. Pools of size mi= 2 were considered to mirror the data example, and as this
pool size affords the largest cost savings while minimizing loss of individual level
information. The proportion of samples pooled was varied to evaluate the method in the
context of the hybrid pooled-unpooled study design, and was set equal to 0 (all unpooled);
0.25 (250 pools of 2 and 750 unpooled observations per disease status), 0.50, 0.75, or 1.

Table I displays results of the simulations evaluating effect size and dose-dependency;
results are shown under 50% pooling, and are representative of those for other pooling
proportions. Relative bias and root mean squared error for estimates from the Weinberg-
Umbach model and from our proposed flexible approach are shown. The top half of the
table displays simulation results where exposure has a constant, dose-independent, effect
and the Weinberg-Umbach model is correctly specified, whereas our proposed flexible
approach includes an unnecessary non-linear term in the model (i.e., θ2milog(Xi+) from (4)) .
Our proposed flexible approach yielded approximately identical estimates to those of the
Weinberg-Umbach approach, and both methods resulted in very low relative biases ranging
from −0.4% to 1.1%. There was a small loss of precision with use of the flexible approach
reflected by slightly larger RMSEs due to the additional term to allow for non-linearity, θ2.

The bottom half of Table I compares the two approaches when the shape parameters are
unequal for cases and controls, θ2 ≠ 0 and effect estimates are dose-dependent. As shown in
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the table, in this setting, the constant effect model is misspecified and the effect of this
misspecification varies with the difference in the shape parameters. Whereas relative bias
was similar across quartiles and under all scenarios evaluated for the correctly specified
flexible approach, the same was not true for the Weinberg-Umbach approach; at the median,
relative bias ranged from −3% to 12%, but was larger at the 25th (from −20% to −17%) and
75th percentiles (from 29% to 34%).

The importance of the additional term for model specification is further illustrated in Table
II, which considers statistical inference under each approach. The table displays the
proportion of simulations where parameter estimates from each of the models had P-values
less than 0.05 for the 50% pooled and fully pooled circumstances. Under scenarios where
cases and controls were distributed gamma with equal shape parameters (α0 = α1 = 1), the
Weinberg-Umbach model was correctly specified and significant exposure effects were
consistently observed; the flexible approach yielded similar results, with the log-linear
exposure term significant in 91% of simulations. The flexible model appropriately
determines the risk to be truly linear with the estimate of θ2 significant 11% of the time.
While this is greater than the 5% that would be expected, the magnitude of θ2 in these
instances was small, and the estimated departure from constant risk negligible; this is further
shown in Table III. Under scenarios where cases and controls were distributed gamma with
unequal shape parameters (α0 ≠ α1) and our flexible approach model was correctly
specified, the model captured differences in shape and scale parameters, whereas the
Weinberg-Umbach model conflates differences of scale with those of shape. The Weinberg-
Umbach model correctly identified the increased risk due to exposure, but mistakenly
characterized it with a single OR estimate because it is restricted to linear risk where our
flexible approach was unrestricted.

Table III illustrates the performance of the flexible approach compared with the W-U model
when risk is truly constant across exposure levels, and considered different pooling
proportions. Point estimates from the two models were similar to each other, reflecting the
new more flexible approach’s ability to estimate constant as well as varied risk, and also
yielded nearly identical estimates of the odds ratio as the proportion pooled increases. As
seen in the standard error columns, efficiency increases as the proportion of pooled
increases, which has been shown for other estimators and is often the motivation for
analyzing pooled samples. This was observed to a similar extent for both methods, with only
a negligible decrease in efficiency for including the additional flexibility. These results show
that in the setting where the W-U model is correctly specified (i.e., constant odds ratio), our
flexible approach is not impacted by the additional parameter allowing for dose-variability
nor by the pooling proportion; the flexible approach yields similar point estimates and
efficiency for estimation of odds ratios to a dose-invariant estimation approach.

4.2 Comparison of flexible logistic approach with maximum likelihood estimation
Under the assumption that exposure in cases and controls follows a gamma distribution, we
considered a maximum likelihood approach based on the gamma model. Additional
simulations were conducted in order to compare the proposed flexible logistic with a
maximum likelihood approach based on maximization of equation (3). For these simulations
1000 datasets were generated with exposure following a gamma distributed with case status
specific parameters α0 = 1, β0 = 1, α1 = 1.5, β1 = 0.8. These correspond to a true odds ratio
of 1.91. Datasets included a total of 1000 cases and 1000 controls with exposure measured
individually and in pools of size mi= 2.

Results of these simulations are shown in Table IV. In both the unpooled and pooled cases,
the maximum likelihood approach leads to noticeably more precise estimates of the
regression parameters θ1 and θ2 than use of a logistic regression model; however, there is
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little difference between the approaches for estimates of the odds ratio. Similar results were
observed with pooling. The maximum likelihood approach lead to better efficiency than our
proposed flexible logistic regression for pooled data, but this difference was negligible for
odds ratio estimates. Additionally, as expected, pooling was an effective approach to
improve efficiency. Estimates based on 1000 assays using pools of two (i.e., 1000 cases and
1000 controls in pools) were markedly more efficient for odds ratio estimates than those
based on 1000 assays of individual samples (i.e., 500 cases and 500 controls).

4.3 Evaluation of additional underlying dose-dependent risk models
In section 4.1, we considered an exposure distributed gamma in the population and exploited
the relation between the true risk model and the case-status specific exposure distributions
under the circumstance where case-status specific distributions are gamma, thereby
extending previous work to remove restrictions on shape and rate parameters. Our next
concern was for circumstances where exposure in the population and/or cases and controls
may take distributions other than gamma. In this section, we consider these circumstances to
evaluate the robustness of our flexible model when X|Y is not distributed gamma, and our
approach misspecifies the risk model. For this assessment, we considered the circumstances
where exposure is distributed log-normal, and the underlying risk model varies from that in
(4). We simulated exposures with a log-normal distribution in the population and the
following relation with disease risk,

where δ0 =0,δ1={−0.50, 0.50},δ2={−0.50, −0.25, 0.25, 0.50}. These parameters lead to ORs
ranging from 0.44 to 2.22, with protective, harmful effects corresponding to δ1=−0.50, 0.50,
respectively and positive or negative δ2resulting in decreasing or increasing ORs across
biomarker levels. In this setting, we evaluated the proposed logistic regression approach.
Additionally, we compared the flexible logistic regression approach with that of Weinberg-
Umbach.

Bias and root mean squared error for each of the approaches are shown in Table V. Bias
under the Weinberg-Umbach method was similar to that of the flexible approach with
exposure at the median level but with bias increasing in magnitude moving towards
exposures in the tails. Estimates from the proposed flexible approach were able to capture
some of the dose variability of the ORs, though not as effectively as for the circumstance
where the flexible model correctly specifies the underlying risk model. At the 25th and 75th

percentiles, bias was of lower magnitude under the flexible approach than under Weinberg-
Umbach method. In this setting, RMSE of the estimators was not substantially different
between the two approaches; variance was slightly larger for the flexible approach but was
offset by the reduction in bias.

5. Motivating example revisited
We compared use of the Weinberg-Umbach set-based model with our flexible set-based
model using the cytokines and miscarriage nested case-control dataset. Serum chemokine
levels were measured for all samples individually as well as in pools of two where pooling
was performed by case status. For this analysis, we therefore have individual measurements
for 370 cases and 388 controls, as well as measurements for 185 samples of two pooled
cases and 194 samples of two pooled controls. We considered five pooling scenarios: 1. One
with no pooling; 2-4. Hybrid approaches with 25, 50 and 75% pooled, and; 5. Fully pooled.
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Results of this comparison are shown in Table VI. In the unpooled data, the Weinberg-
Umbach set-based approach yielded an OR estimate of 0.997 (P=0.96). In the analyses using
pooling (i.e., the hybrid pooled-unpooled and fully pooled), non-significant estimates were
observed, with odds ratio point estimates that ranged from 1.00 to 1.08. We used the flexible
approach to evaluate the possibility of a dose-varying association that the Weinberg-
Umbach method would not detect. Under the flexible approach, odds ratio estimates were
not statistically significant at the evaluated quartiles, and significant dose-variability was not
observed. Consistent with our simulations, estimates at the median were close to the
Weinberg-Umbach estimate. The quartile specific estimates from our flexible approach
varied only slightly and non-significantly. Pooling further reduced differences across
quartiles of the exposure. Estimates varied minimally as the pooling proportion increased
from 25% to fully pooled. Given the P-value on θ2 of the flexible approach, a single OR
may be reported, in this case indicating no significant log-linear relation between serum
eotaxin levels and miscarriage risk.

6. Discussion
Biomarker assessment using pooled study designs has been described for assessment of
binary variables, as with group testing for presence of an antibody [1] or for detection of rare
genotypes [24]. When exposures are continuous, previous work has required assumptions of
multiplicative risk and logit-linearity in exposure [7]. In this paper we have described a more
flexible method for analysis of case-control data. We considered a gamma distributed
exposure that allows for unequal shape parameters between cases and controls. This
increased flexibility is appropriate when investigators suspect a dose-dependent effect. This
relaxation of assumptions entails little cost in terms of efficiency; in simulations where
exposure effects were set to be constant across dose, mean squared error for the flexible
approach compared favorably with that of a constant, dose-invariant exposure effect model.
Notably, in case-control biomarker studies, investigators may use available data to assess
distributions of exposure conditional on outcome status, and the risk models that are
implied.

In comparisons of our flexible model with the Weinberg-Umbach model, statistical
differences between models were seen in our simulations using a sample size of 2000 (1000
cases and 1000 controls); however, estimation of dose-varying effects is impacted by sample
size and the nature of the exposure effect. In simulations with minimal departures from log-
linearity of risk, the additional dose-varying risk term in the flexible model was not
significant, and flexible model estimates were approximately equal to those of the
Weinberg-Umbach model. Similarly, pooling was observed to impact the flexible model and
the requirement for the dose-varying term. As the pooling proportion increased, differences
between the models were less pronounced. This reflects the impact of pooling on the tails of
skewed distributions; the reduction in skewness that occurs with pooling led to reduced
differences in shape between cases and controls in our data.

The relation between risk models that describe a binary outcome distribution conditional on
exposure, and models of exposure distribution conditional on binary outcome status is
closely related to classical discriminant function analysis [25]. In the discriminant function
analysis setting, prior work considering normally distributed exposures has shown that
efficiency of log odds ratio estimation can be improved relative to use of the corresponding
logistic regression model [26]. Similarly, in comparison with the logistic regression
approach in the current setting, use of a maximum likelihood estimation approach
[expression (3)] resulted in improved efficiency for estimates of model parameters (θ1 and
θ2), but only minimal difference in empirical standard errors for odds ratio estimates, which
are the quantities of greatest interest. Although the efficiency for this logistic approach may
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be slightly lower than for a true maximum likelihood analysis of model (4), the convenience
advantage is substantial as it may be employed in virtually any statistical software, allows
for straightforward inference, and is less directly reliant upon the gamma distributional
assumptions.

In our analysis, we considered exposures with right skewed distributions; the gamma
distribution was a good fit to the data from our nested case-control study of cytokines and
miscarriage. Highly skewed distributions are often appropriate to describe biomarkers. In
epidemiological studies of biomarkers, exposure is frequently modeled to allow for non-
linearity. Categorization of a continuous exposure into biologically significant ranges or into
quantiles is a common practice; however, this approach results in decreased statistical power
and a loss of information if parametric assumptions can be made. We considered a gamma
for the X|Y distributions in cases and controls; however, estimates from our method capture
dose-variance effects that result from underlying risk models other than the gamma case
upon which it is based. In scenarios that considered exposure distributed log-normal at the
population level with alternative underlying risk models that give rise to the X|Y
distributions, the proposed flexible approach had lower bias than existing approaches for
analysis of pooled data when exposure effects vary and a single effect estimate is not valid.
We did not evaluate other risk models such as a threshold effect. As previously noted,
investigators should consider available information regarding the X|Y distributions, whether
under pooling or otherwise, to empirically assess the validity of assumptions required by
modeling approaches.

Previous work has described inclusion of covariates to the set-based model by inclusion of
sums across individuals in each set [7]. While we did not explicitly demonstrate this here,
covariates could be included in a similar manner here given that our model is merely an
expansion of that previous work. We plan in future work to explore alternative means of
accommodating such covariate adjustment in the case of right-skewed exposure. An
alternative for incorporating covariates when important covariates are known to
investigators prior to creating pools is a “smart pooling” approach. Specifically, pool groups
may be formed such that the sample is stratified to address covariates.

Pooled biomarker assessment strategies in case-control studies hold potential to address cost
constraints as well as situations when biospecimen volumes are limited; however, analysis
of such data has previously been limited to dose-invariant effects, which correspond to an
equal variance assumption for normally distributed biomarkers, or to an equal shape
parameter assumption for gamma distributed biomarkers. Our proposed flexible logistic
regression approach for pooled case-control data allows for estimation of exposure effects
with minimal loss of efficiency and without limiting to constant, dose-invariant effects.
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Appendix
The following R code is provided for implementation of maximum likelihood estimation of
gamma distribution parameters (αy ,βy) by maximizing the likelihood in equation (3) of
section 3.

OR.f.g.mle=function(data0,data1,poolsize0,poolsize1){
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mmu.0=mean(data0)
vvar.0=var(data0)

op=optim(c(mmu.02/vvar.0,mmu.0/vvar.0),likelihood,control=list(m
axit=10000),data=data0,poolsize=poolsize0)$par
a.0.hat=abs(op[1])
b.0.hat=abs(op[2])

mmu.0=mean(data1)
vvar.0=var(data1)

op=optim(c(mmu.02/vvar.0,mmu.0/vvar.0),likelihood,control=list(m
axit=100000),data=data1,poolsize=poolsize1)$par
a.1.hat=abs(op[1])
b.1.hat=abs(op[2])

logit.g.abx(a0=a.0.hat,b0=b.0.hat,a1=a.1.hat,b1=b.1.hat,x=1,offs
et=1,thetas=T)[2:4]
}
likelihood=function(para,data,poolsize) {
a=abs(para[1])
b=abs(para[2])

logl=0
for(i in 1:length(data)) {
temp=dgamma(data[i],shape=a*poolsize[i],rate=b)
logl=logl+log(temp)
}
return(-logl)
}

logit.g.abx=function(a0,b0,a1,b1,x,offset=1,thetas=F){
t0=log(offset)+a1*log(b1)-
a0*log(b0)+log(gamma(a0)/gamma(a1))
t1=b0-b1
t2=a1-a0
output=t0+t1*x+t2*log(x)
if(thetas){output=c(output,t0,t1,t2)}
output
}
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Figure I.
Displays Q-Q plots for miscarriage cases (a) and controls (b). Levels of eotaxin are plotted
on the x axis against gamma distribution quantiles based on maximum likelihood estimates
for gamma distribution parameters (αY, βY), Y in {0, 1}.
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Table I

Relative bias and root mean squared error of odds ratio estimates from the Weinberg-Umbach set-based
logistic regression and the flexible approach under various scenarios

Simulated parameter values Estimates

True OR Relative bias RMSE

α 1 β 1 (Q1):(Q2):(Q3) Model Q1 Q2 Q3 Q1 Q2 Q3

1.0 (1.000): (1.000): (1.000) Flexible
W-U

0.003
0.002

0.002
0.002

0.002
0.002

0.042
0.038

0.037
0.038

0.043
0.038

1 0.8 (1.221): (1.221): (1.221) Flexible
W-U

0.005
0.003

−0.001
0.003

−0.004
0.003

0.057
0.047

0.051
0.047

0.061
0.047

0.5 (1.649): (1.649): (1.649) Flexible
W-U

0.011
0.004

−0.001
0.004

−0.007
0.004

0.082
0.072

0.075
0.072

0.090
0.072

1.0 (2.116): (1.563): (1.312) Flexible
W-U

−0.020
−0.202

−0.035
0.080

−0.041
0.286

0.141
0.437

0.134
0.151

0.157
0.385

1.5 0.8 (2.584): (1.909): (1.602) Flexible
W-U

−0.012
−0.181

0.008
0.108

0.022
0.320

0.179
0.484

0.133
0.239

0.176
0.527

0.5 (3.488): (2.577): (2.163) Flexible
W-U

−0.019
−0.170

0.031
0.124

0.063
0.339

0.257
0.618

0.180
0.366

0.238
0.754

Notes: Results shown for hybrid pooled-unpooled design with 50% pooling. W-U corresponds to the Weinberg-Umbach set-based logistic
regression approach [7]
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Table II

Statistical testing results: proportion of simulations with statistically significant parameter estimates from the
Weinberg-Umbach set-based logistic regression and the flexible approach under various scenarios of risk

SIMULATED VALUES % of simulations with P<0.05

pooling
proportion

α 1 β 1 W-U 1 Flexible 2

Coeff. Coeff. 1 Coeff. 2

1.00 0.062 0.034 0.032

1.0 0.80 1 0.916 0.121

0.50 1 1 0.113

0.5

1.00 1 0.788 1

1.5 0.80 1 0.905 1

0.50 1 0.997 1

1.00 0.055 0.033 0.038

1.0 0.80 1 0.816 0.037

0.50 1 1 0.042

1.0

1.00 1 0.047 1

1.5 0.80 1 0.509 0.999

0.50 1 0.982 0.993

Notes: α0 = 1, β0 = 1.

logit P(Yi = 1) = θ0 (mi) + θ1Xi + θ2mi log(Xi +) + log(rmi)

1
W-U corresponds to the Weinberg-Umbach [7] set-based logistic regression approach; coefficient is β from: logit P(Yi =1) = μ(mi) + β Xi+ +

log(rmi)

2
Coefficient 1 is θ1, and coefficient 2 is θ2 from:
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Table III

Simulation results comparing different pooling proportions with regard to risk estimates and standard errors
with dose-invariant exposure effects a with the number of assays (i.e., total measurements) fixed at 2000 (i.e.,
1000 cases and 1000 controls)

Pooling
proportion

Number of assays
by pooling status

Total N
assayed

Exposure effect estimates

pools individual
samples

OR̄ SE (OR̄)b

W-Uc Flexible d W-U Flexible d

0.00 0 2000 2000 1.228 1.228 0.059 0.059

0.25 500 1500 2500 1.227 1.221 0.053 0.055

0.50 1000 1000 3000 1.225 1.220 0.047 0.051

0.75 1500 500 3500 1.225 1.222 0.045 0.048

1.00 2000 0 4000 1.223 1.224 0.042 0.043

a
Exposure was distributed gamma with parameter values: α1 = 1.0, β1=0.8; α0=1.0, β0=1.0 (yields true OR = 1.221)

b
Standard errors are empirical

c
W-U corresponds to the Weinberg-Umbach set-based logistic regression approach [7]

d
Estimates are shown for the median exposure value
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Table IV

Simulation results comparing standard logistic regression, flexible logistic regression for pooling, and
maximum likelihood approaches with regard to parameter and odds ratio estimates under different pooling
conditions and sample sizes.

Pooling approach Estimates

Model
m

pool
size

N
sample

size

N/m
assays

Mean θ̄11(SD) Mean θ̄21 (SD) Mean ln(OR̄)(SD) Mean OR̄(SD)

Logistic regression 1 1000 1000 0.208 (0.097) 0.502 (0.107) 0.656 (0.071) 1.932 (0.138)

Maximum likelihood 1 1000 1000 0.207 (0.087) 0.503 (0.096) 0.655 (0.071) 1.930 (0.137)

Logistic regression 1 2000 2000 0.198 (0.075) 0.503 (0.085) 0.647 (0.043) 1.912 (0.082)

Flexible logistic regression 2 2000 1000 0.199 (0.112) 0.505 (0.140) 0.649 (0.051) 1.916 (0.098)

Maximum likelihood 2 2000 1000 0.201 (0.084) 0.501 (0.107) 0.647 (0.050) 1.912 (0.096)

Notes: 1,000 replications; true values: θ1, = 0.20, θ2 = 0.50, ln(OR) = 0.646, OR = 1.908
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Table V

Evaluating the robustness of the proposed approach to misspecification of the underlying risk modela:
simulation results for bias and RMSE of odds ratio estimates from the proposed flexible logistic approach.

Simulated parameter values Estimates

True OR Bias RMSE

δ 1 δ 2 (Q1):(Q2):(Q3) Q1 Q2 Q3 Q1 Q2 Q3

0.50

0.50 (2.224): (2.084): (1.981) −0.075 0.027 0.111 0.268 0.255 0.293

0.25 (1.915): (1.854): (1.807) −0.017 0.027 0.065 0.228 0.212 0.230

−0.25 (1.420): (1.466): (1.504) 0.060 0.035 0.012 0.159 0.139 0.145

−0.50 (1.222): (1.304): (1.372) 0.087 0.039 −0.008 0.152 0.113 0.113

−0.50

0.50 (0.818): (0.767): (0.729) −0.050 −0.023 0.002 0.088 0.064 0.061

0.25 (0.704): (0.682): (0.665) −0.021 −0.009 0.002 0.073 0.063 0.065

−0.25 (0.522): (0.539): (0.553) 0.012 −0.001 −0.012 0.060 0.058 0.064

−0.50 (0.450): (0.480): (0.505) 0.020 −0.001 −0.021 0.060 0.056 0.064

a
Risk model used to determine case status: logit P(Y = 1) = δ0 + δ1X + δ2 X0.5
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Table VI

Results from models of miscarriage risk and levels of eotaxin in the nested case-control study – odds ratio
estimatesa and 95% confidence intervals from Weinberg-Umbach set-based logistic regression and the
proposed flexible logistic regression

W-Ub Flexible logistic model

Q1 Q2 Q3

Pooling OR̄ [95% CI] OR̄ [95% CI] OR̄ [95% CI] OR̄ [95% CI]

none 1.013 [0.865, 1.187] 1.034 [0.867, 1.232] 0.978 [0.797, 1.201] 0.970 [0.774, 1.216]

0.25 1.072 [0.936, 1.228] 1.083 [0.941, 1.246] 1.039 [0.865, 1.247] 1.032 [0.845, 1.261]

0.50 1.096 [0.972, 1.235] 1.102 [0.975, 1.245] 1.068 [0.904, 1.261] 1.063 [0.886, 1.274]

0.75 1.058 [0.959, 1.168] 1.069 [0.965, 1.183] 1.022 [0.893, 1.170] 1.015 [0.875, 1.178]

all 1.065 [0.968, 1.172] 1.066 [0.968, 1.174] 1.058 [0.926, 1.210] 1.057 [0.913, 1.224]

a
Estimates for the flexible logistic model are shown at the 25th(Q1), 50th (Q2), and 75th (Q3) percentiles of the eotaxin distribution

b
W-U corresponds to the Weinberg-Umbach [7] set-based logistic regression approach
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