Table IV.
Pooling approach | Estimates | ||||||
---|---|---|---|---|---|---|---|
Model |
m
pool size |
N
sample size |
N/m
assays |
Mean 1(SD) | Mean 1 (SD) | Mean ln(SD) | Mean (SD) |
Logistic regression | 1 | 1000 | 1000 | 0.208 (0.097) | 0.502 (0.107) | 0.656 (0.071) | 1.932 (0.138) |
Maximum likelihood | 1 | 1000 | 1000 | 0.207 (0.087) | 0.503 (0.096) | 0.655 (0.071) | 1.930 (0.137) |
| |||||||
Logistic regression | 1 | 2000 | 2000 | 0.198 (0.075) | 0.503 (0.085) | 0.647 (0.043) | 1.912 (0.082) |
Flexible logistic regression | 2 | 2000 | 1000 | 0.199 (0.112) | 0.505 (0.140) | 0.649 (0.051) | 1.916 (0.098) |
Maximum likelihood | 2 | 2000 | 1000 | 0.201 (0.084) | 0.501 (0.107) | 0.647 (0.050) | 1.912 (0.096) |
Notes: 1,000 replications; true values: θ1, = 0.20, θ2 = 0.50, ln(OR) = 0.646, OR = 1.908