1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

"% NIH Public Access
@@‘ Author Manuscript

2 HEpst

o WATIG,

Published in final edited form as:
Environ Int. 2013 September ; 59: . doi:10.1016/j.envint.2013.06.003.

A framework to spatially cluster air pollution monitoring sites in
US based on the PM,s composition

Elena Austin®", Brent A. Coull?, Antonella Zanobetti2, and Petros Koutrakis?
aDepartment of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA

bDepartment of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA

Abstract

Background—Heterogeneity in the response to PM, 5 is hypothesized to be related to
differences in particle composition across monitoring sites which reflect differences in source
types as well as climatic and topographic conditions impacting different geographic locations.
Identifying spatial patterns in particle composition is a multivariate problem that requires novel
methodologies.

Objectives—Use cluster analysis methods to identify spatial patterns in PM, 5 composition.
Verify that the resulting clusters are distinct and informative.

Methods—109 monitoring sites with 75% reported speciation data during the period 2003-2008
were selected. These sites were categorized based on their average PM> 5 composition over the
study period using k-means cluster analysis. The obtained clusters were validated and
characterized based on their physico-chemical characteristics, geographic locations, emissions
profiles, population density and proximity to major emission sources.

Results—Ouverall 31 clusters were identified. These include 21 clusters with 2 or more sites
which were further grouped into 4 main types using hierarchical clustering. The resulting
groupings are chemically meaningful and represent broad differences in emissions. The remaining
clusters, encompassing single sites, were characterized based on their particle composition and
geographic location.

Conclusions—The framework presented here provides a novel tool which can be used to
identify and further classify sites based on their PM> 5 composition. The solution presented is
fairly robust and yielded groupings that were meaningful in the context of air-pollution research.
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1. Introduction

First demonstrated by the Harvard Six-City study (Dockery et al., 1993) and the American
Cancer Society Study (Pope et al., 1995), the association between PM and mortality has
been replicated in many populations, both within the United States and abroad (Pope and
Dockery, 2006). However, the magnitude of the effect has displayed considerable
heterogeneity across studies (Bell et al., 2005; Janssen et al., 2002; Samet et al., 2000;
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Zanobetti et al., 2002). It is possible that this observed heterogeneity of effect may be
attributed to the considerable differences in the PM composition across these study sites
(Bell et al., 2007). This is further confirmed by investigations that attribute different levels
of toxicity to particles from different sources (Laden et al., 2000; Mar et al., 2000; Zhou et
al. (2011)). Toxicological studies have demonstrated the toxic potential of many individual
PM components including sulfate, zinc, nickel and lead (Chuang et al., 2007; Gao et al.,
2004; Lippmann et al., 2006; O’Neill et al., 2005).

The importance of considering multi-pollutant mixtures in air pollution was highlighted in
2004 by the National Academies of Science (NAS) (NRC, 2004). In response, the EPA is in
the process to develop a multi-pollutant air quality management plan as described in their
Multi-Pollutant Report of 2008 (EPA, 2008). Adopting a multi-pollutant approach is
extremely challenging due to the highly complex interactions between source emissions,
atmospheric processes and effects on human health and ecosystems. One of the key
components of a multi-pollutant approach is the ability to capture the multivariate
relationship between pollutants at a given site. A better grasp of this relationship will
enhance our understanding of the interaction between pollutants as well as further the human
health effects related to exposure to these complex mixtures.

The EPA has considered a variety of ways in which air pollutants might interact with each
other (Table 1). Practically however, because of a knowledge gap in the field, the EPA is
forced to consider all pollutant interactions as additive (Mauderly et al., 2010). Populations
are exposed daily to complex mixtures of pollutants, some of which are known or suspected
to cause health effects at ambient concentrations. Understanding the effect of the mixtures
on health, rather than the effect of the individual components is a crucial step that must be
undertaken in order to further our knowledge of this field. Therefore, it is essential that
exposure assessment develop new tools to describe population exposures that moves beyond
relating individual pollutant concentration at a given site on a given day.

There are currently a limited number of approaches that allow for the investigation of multi-
pollutant mixtures in epidemiological studies (Dominici et al., 2010; Vedal and Kaufman,
2011). Exposure data is typically represented in high dimensionality data sets in which each
pollutant is assigned a concentration for each time period of observation. Previous published
multivariate approaches have included factor analysis methods and principle component
methods such as specific rotation factor analysis (Koutrakis and Spengler, 1987), absolute
principal-component analysis (Thurston and Spengler, 1985), UNMIX (Henry and Kim,
1990; Kim and Henry, 1999) and positive matrix factorization (Paatero and Tapper, 1994).
These methods have been successful at identifying individual source contributions to
integrated daily measurements samples at a specific or given site. The results of these
multivariate methods are used by epidemiologists in time series analysis to investigate the
health effects associated with specific sources (Schwartz et al., 2002; Thurston et al., 2005).

We propose an approach that uses cluster analysis to identify spatial patterns in air pollution
data. Short- and long-term patterns in air pollution as well as spatial distribution patterns
have been identified and described in the literature (Beelen et al., 2009; Jerrett et al., 2005;
Koutrakis et al., 2005; Lefohn et al., 2010). At a single site, these patterns are the result of
diurnal variations in UV intensity, season, temperature, cloud cover, mixing height as well
as changes in source emissions such as higher traffic density on weekdays, increased power
plant emissions during high demand periods and increase wood combustion in the winter.
Between sites, differences in air pollution patterns can be attributed to different source types,
different climatic conditions, distribution of regional pollutants over a geographic area and
differences in soil composition.
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Unsupervised cluster analysis encompasses a broad range of algorithms that identify
multivariate patterns in data sets. Two broad categories of these algorithms are hierarchical
and partitioning algorithms. The output of the algorithm may be “hard” if each observation
is attributed to only one cluster or “fuzzy” if an observation may be assigned to a certain
degree to more than one cluster. In this analysis, we were interesting in identifying a “hard”
solution so that each site was uniquely assigned to a single cluster.

Recently, we used cluster analysis to identify distinct daily multi-pollutant profiles at a
given site, Boston, MA, (Austin et al., 2012). Clustering has been used previously to
describe diurnal variation in gaseous and particle pollutants (Adame et al., 2012; Flemming
et al., 2005). K-means clustering was used by Kim et al. (2008) in order to group sites based
on the temporal fluctuation of PM, 5. Hierarchical clustering has also been used to identify
distinct sources of volatile organic compounds based on the grouping of the measured
concentrations (Kavouras et al., 2001). It has also been used to provide a description of
regional chemical and transport processes associated with particular regimes and can inform
which sources may be most important in the development of pollution episodes. Beaver and
Palazoglu (2006) used an aggregated solution of k-means cluster analysis to characterize
classes of ozone episodes occurring in the San Francisco bay. Pakalapati et al. (2009) used
hierarchical clustering and sequencing to group air flow patterns associated with elevated
ozone concentrations. Cluster analysis has also been used to cluster back trajectories to
identify different classes of synoptic regimes over the duration of the trajectories (Comrie,
1996; Taubman et al., 2006).

In this paper, cluster analysis will be used to group sites across the United States based on
their PM5 5 composition profiles using data collected between 2003 and 2008. The main
interest is identifying long-term differences in the composition of PM,, 5 across the different
sites. These clusters of cities will then be characterized and validated based on physico-
chemical characteristics, geographic locations, emission profiles, population density and
position with respect to major emitter sources. It is anticipated that this novel approach will
allow for a better understanding of the heterogeneity in PM5 5 composition across the United
States. We hope that the identified clusters can be used to further investigate the
heterogeneity in the relation-ship between PM, 5 concentration and mortality and morbidity
across the United States.

2. Methods

2.1. Data collection

Data for this analysis was obtained from the HEI Air Quality Database (2010). This database
includes pollutant concentrations from the EPA’s AQS Particulate Matter Air Quality Data.
The PM5 5 mass and speciation data is available for 54 CORE sites and 234 supplemental
sites from 2000 to 2010. These are 24-h samplers, midnight to midnight local standard time,
with different sampling frequencies depending on the site location. Emissions data for each
site is obtained from the National Emissions Inventory Data of 2002 and Census population
data from the 2000 Census. We require that sites have less than 25% missing observations
for the elements of interest. In addition, we require that each season within the time period
has less than 25% missing data. This is to ensure that the site means are not unduly
influenced by missing data within a given season. This resulted in 109 sites with complete
data sets between January 2003 and December 2008. These dates were chosen in order to
maximize the number of sites with 5 years of complete data. At each site, sampling occurred
every 3rd or every 6th day throughout the year. Fig. 1 presents the location of the sampling
sites.
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2.2. Data preparation

The variables used in the clustering were the following components of PM, 5: total EC, total

OC, SO37,NO3, Na*, NH, Se, Si, Ca, Fe, Ni, V, Cu, Zn, Pb, Mn, As, Cr, and K. Other
elements obtained as part of the speciation of the filters were considered were excluded
either because of the analytical measurement was judged to be unreliable or because a large
proportion of the measurements were below the detection limit. For each site, an overall site
mean of each variable was obtained. These means were divided by the mean PM, 5
concentration of that site to create a unique set of species fractions used to characterize the
PM5 5 composition. These species fractions reflect the unique interplay of sources and
meteorology at each site and they describe the composition of PM, 5 in a given element at
that site (Eg. 1). To eliminate differences in the order of magnitude between concentration
levels of the measured pollutants, the species fractions were transformed to a robust z-score
as described in Eq. 2.

2.3. Clustering

The main objective of this analysis was to cluster together cities with the most similar
species fractions. Clustering of the mean values of the multi-pollutant profiles represents the
overall population exposures in these cities over the study period. These clusters may
improve our understanding of the heterogeneity in the long-term effects of PM> 5 exposure
among populations.

The k-means algorithm used was developed by Hartigan and Wong (1979). It seeks to
partition M points in N dimensions into k clusters. This iterative algorithm searches for a
local solution that minimizes the Euclidean distance between the observations and the
cluster centers. Advantages of the k-means algorithm are that it is easily implemented and
has been used in a wide range of applications and is computationally efficient (Jain et al.,
1999; Steinley, 2006). It has also been suggested that this algorithm is somewhat less
sensitive to outliers than hierarchical clustering methods (Punj and Stewart, 1983). The
initial k-values used in the algorithm can be randomly selected from the dataset being
clustered, or the initial values can be specified by the user. In this case, we chose to specify
the initial values of the clusters in order to increase the stability of the solution. Several
methods have been proposed to initialize k-means. We used hierarchical clustering
(described below) to identify k-centers and then using these centers to initialize k-means.
Maitra et al. (2010) found this method of initializing k-means performed best for small
datasets. Following the hierarchical analysis with k-means had the advantage of minimizing
the impact of outlier points on the solution.

A major obstacle in using k-means is that the number of clusters (k) must be assigned a
priori based either on pre-existing knowledge of the data or observable characteristics of the
data set. Although there was no pre-existing knowledge of the number of unique spatial
clusters to expect, we used characteristics of air pollutant mixtures in order to make the best
possible selection. This is consistent with the recommendation of Jain et al. (1999) that
subject specific knowledge is the best way to select the number of clusters. We considered
the variability of pre-defined pollutant ratios within each cluster. Solutions with less total
variability within the clusters were judged to be better than solutions with more variability

within each cluster. Pollutant concentration ratios considered were: SO3~ /NOj, EC/OC, Ni/
V and Fe/Si. The rational was that solutions that were better at recognizing sites with similar
pollution profiles would also minimize the variability of these important pollutant rations
within each cluster. The variability of the ratios was reduced by maximizing the decrease in
overall change in deviation as described in Eq. 3. The percent change in overall deviation
represents how effectively different solutions capture the unique sources that contributed to
the mixture at the individual sites. The advantage of using this indicator is that it explicitly
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uses knowledge of air pollution sources and contributions to inform the decision of how
many clusters best describe the data. The rational for selecting these ratios is discussed
below.

In addition to maximizing the decrease in the overall deviation, we sought to minimize the
number of clusters containing a single site in each solution. As the total number clusters
increases, the number of clusters including only 1 site likewise increases. This leads to a
decrease in the % change in overall deviation without necessarily resulting in a more
interpretable solution. K-means was performed using the function kmeans in R v.2.15.1.

2.4. Hierarchical clustering (Ward’s method)

Ward’s hierarchical clustering method (Ward, 1963) is an agglomerative process that begins
with 1 cluster for every observation and then iteratively combines the points that lead to the
minimal increase in the sum of squares. Because this method is agglomerative, the solution
reached is constrained by the previous choices made by the algorithm. Therefore, for a given
number of clusters, the solution reached by the Ward method is often not the solution that
has the minimal sum of squares error. An advantage of this method is that it produces
clusters that are relatively compact. It is criticized for sometimes producing clusters that are
too small for the given data (Cormack, 1971). In this paper, hierarchical clustering was used
to initialize k-means. It was also used after the analysis was completed to group together the
clusters with the most similar enrichment factors. Hierarchical clustering was performed
using the function hclust in R v2.15.1.

2.5. Enrichment factors

Enrichment factors were calculated in order to better compare the clusters. These enrichment
factors represent the enrichment of a given constituent (element) of PM> 5 within a cluster as
compared to the entire sample (Eq. 1).

2.6. Grouping clusters

Clusters were grouped together based on the enrichment factors within each cluster. The
clustering was performed with hierarchical clustering using the hclust function in R v.2.15.1.

2.7. Comparing clustering solutions (Rand Index)

3. Results

The Rand Index is a measure of similarity between two different partitions of the same data
set. The Rand index ranges between 0 and 1 where 0 indicates that two data clusters do not
agree on any pair of points and 1 indicating that the data clusters are exactly the same. The
Rand Index represents a weight of the sites classified together in the two solutions versus the
sites classified separately (Rand, 1971). In this paper, we used the adjusted Rand Index in
order to compare different clustering solutions. The adjusted Rand Index, first proposed by
Hubert and Arabie (1985) the adjusted Rand Index corrects the Rand Index for the random
chance that pairs are classified together. Steinley (2004) suggested that an adjusted Rand
Index greater than 0.9 reflected excellent agreement, values greater than 0.8 reflected good
agreement, values greater than 0.65 indicated moderate agreement and less than 0.65
indicated poor agreement.

3.1. Selecting the number of clusters k

Selecting the value of k is a balance between the advantage in decreasing the variability in
the diagnostic ratios within clusters and minimizing the number of single city clusters in a
given solution. Fig. 2 presents the overall variability of the pollutant ratios alongside the
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number of single city clusters for solutions containing between 1 and 50 clusters. Based on
the desire to balance these two features, 31 clusters was selected as the optimal value as it
represents a significant drop in the overall decrease in variability measure (55% as compared
to the dataset as a whole) while there are 11 clusters that contain only a single site. Other
possible values of k were explored including k = 26 and k = 37. The solution of k = 26 was
judged to not be satisfactory because it lacked good distinction between east and west coast
cities. The solution for k = 37 was judged to be too unwieldy because of the high number of
single city clusters.

3.2. Chemical characteristics

The chemical characteristics for the clusters containing 2 or more cities are presented as
heatmaps in Fig. 4. These heatmaps represent the log of the enrichment factors of the
pollutants of interest. For the heatmap representation, the enrichment factors were
logarithmically transformed so that a value of O represents no enrichment, 1 represents 2.7
times enrichment and —1 represents 0.4 times enrichment. The clusters are presented in 4
groupings, where there are some overall similarities between the clusters in the same
grouping. The similarities were determined based on hierarchical clustering of the
enrichment factors in each cluster.

3.3. Geographic distribution

The locations of the 31 clusters identified are presented by group in Figs. 6-9. Evident in
these maps, is that in some cases, sites that are geographically close belong to different
clusters This is due to differences in composition, even at nearby monitoring sites and will
be discussed further below. There is a clear separation between coastal and interior
monitoring sites as well as between western, central and eastern sites. This agrees with
previous studies showing that PM, 5 composition is related to geographic location and
reflects the impacting sources and climatic conditions (Bell et al., 2007; Zanobetti and
Schwartz, 2008).

3.4. Concentration ratios

To aid in cluster interpretation, the log of the pollutant concentration ratios of selected
species are presented as a heatmap in Fig. 5. Similar to the enrichment factors, the pollutant
ratios have been normalized and represent the ratio in a particular cluster as compared to the
entire sample. These normalized values have been log transformed so that a value of 0
represents no difference between the cluster and the sample as a whole, a value of 1
represents 2.7 times increase of the ratio within this cluster and sample as a whole and a
value of -1 represents a 0.4 relationship between the ratio in this cluster and the whole
sample.

These ratios served as diagnostic tools to aid in attributing the sites to certain types of

pollution regimes. Specifically: 1) higher SO3~ /NOj ratios indicate a sulfate-dominated
system, reflecting pre-dominance of power plant emissions vs. traffic; 2) higher EC/OC
ratios suggest the predominance of primary carbon from traffic as opposed to secondary
carbon. In some cases, lower EC/OC ratios can also be indicative of biogenic sources of air
pollution; 3) the Ca/Si ratio is indicative of differences in soil composition between sites; 4)
Ni and V are mostly released from oil combustion and the Ni/V ratio is affected by the
temperature of the combustion process (Peltier and Lippmann, 2009). The ratio decreases as
the temperature of combustion increases, leading to lower ratios in port locations exposed to
emissions from maritime vessels as compared to those from oil-fired furnaces (assuming no
impact of Ni or V of point sources, such as smelters); 5) higher Fe/Si ratios indicate a larger
road dust contribution, relative to soil dust (assuming no impact of Fe point sources, such as
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steel mills); and 6) higher Pb/Br concentrations suggest enrichment of Pb with respect to
background soil concentrations which can be observed near smelters. The ratios selected are
by no means exhaustive and others may be of interest in other studies. These were thought to
reflect the source profiles previously identified within the continental United States.

3.5. Site characteristics

Table 2 shows the classification within each cluster of sites deemed to be *urban’,
‘suburban’ and ‘rural’ based on the designations assigned by the EPA. Sites do not
necessarily have the same designation within a cluster. In part, this may be related to
whether classification was influenced by regional pollution versus local pollution.

3.6. Sampling frequency

As discussed above sites were sampled either every three or six days. We wanted to verify
that taking the global mean of these different sites did not lead to bias. In order to do so, we
took the sites sampled every 3 days and calculated the global means based on every 6th
sample day (dropping half the data). Of the 109 sites included in the study, 40 sites were
sampled every 3rd day. We found that the ratios of the 6th day to 3rd day global mean are
on average 1.00 with small standard deviations. Chromium showed a slightly higher
standard deviation than other elements, but it was considered acceptable. Results are
presented in Table 4.

4. Discussion

Clustering data from 109 monitoring sites across the US yielded a solution with 31
distinguishable clusters. For each site, a single species fraction was obtained for the different
PM, 5 components of interest. Although this approach does not account for season
differences within sites, it captures the differences in long-term exposure across different
cities in the United States. The 31 cluster solution was selected in order to minimize the
number of clusters with only a single city as well as to minimize the variability of selected
species ratios within each cluster. The overall PM, 5 composition differed substantially
among clusters, indicating that this method does allow for an efficient classification of sites
based on their differences in multi-pollutant relationships. To better understand the
clustering results, clusters containing 2 or more cities were grouped into 4 main types based
on the cluster PM, 5 enrichment by cluster. Although there are differences between the
clusters in each of groups, overall they show similarities in chemical composition.

The clusters in the first grouping, Eastern US locations, show high to average SOZ‘/NO;
ratios, suggesting the considerable impact of power plant emissions in these locations. This
is consistent with previous studies that identify transported power plant emissions as a major
source of regional air pollution in the Eastern United States (Bell et al., 2007). The clusters
in the second grouping, are impacted by industrial processes and tend to be are located near
large Iron and Steel Mills (EPA, 2011). These sites show high to average Ni/V, Fe/Si and
Pb/Br ratios. The PM> 5 at these sites is also enriched in metals indicating the impact of
industrial processes relative to the other US areas. This is consistent with research that
shows significant contribution of heavy metals to the PM, 5 composition from industrial
point sources (de Foy et al., 2012; Lee and Hopke, 2006). The third grouping, located in the

Central and Western US, show significantly lower SO3~ /NOj ratios which confirms that
these sites are less impacted by power plant sources. The fourth grouping, located in coastal
sites, has sites that have average to higher EC/OC ratios as well as higher Ni/V ratios. This
is consistent with studies that have shown ship emissions to include high concentrations of
Ni and V as well as high concentrations of EC and SO, (Agrawal et al., 2008; Ault et al.,
2010; Isakson et al., 2001).
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4.1. Cluster description

4.1.1. Group 1 — Eastern and central US—There are 7 clusters in this group that
include a total of 62 single sites. Some major characteristics of this group are the higher

enrichment in SO2~, Se and average to low enrichment in elements such as Si, Ca, Fe, Ni,

V, Zn and Mn. Cluster 1 shows particularly high SOi‘/NOg ratios and lower Ni/V, Fe/Si
and Pb/Br. Geographically, the sites in cluster 1 show geographical cohesiveness and are
primarily in the Southeastern US. The sites in cluster 2 do not show as clear of a
geographical connection; however, they are all predominantly located in rural and suburban
locations. As can be expected, given their lower urbanization, these sites are less impacted
by road emissions as indicated by a lower EC enrichment factor. Cluster 6 is similar to
cluster 2 in that the sites are mostly in rural and suburban locations and the EC enrichment is
low. A major difference is that cluster 6 also shows a significantly lower NO3 proportion.
This suggests that these sites are less impacted by agricultural sources. The sites in cluster 3
are primarily located in the Midwest states. The PM> 5 in this cluster is heavily enriched by
Se, an element whose major source is power plant emissions. Cluster 4 is similar to cluster 3
in both geographic location and chemical composition. However, this cluster shows less
evidence of power plant contributions as evidenced by average enrichment factors for Se

and SO3™. Cluster 5 has lower Ni/V and Fe/Si ratios. Unlike cluster 1 it also has a low Cu
enrichment factor. This cluster is primarily located in the central part of the country and may
represent locations that are affected by SO, emissions from power plants while having lower
metal enrichment factors. Cluster 12 is distinct because of its relatively high Pb enrichment
factor. Although the concentrations of Pb at these three locations (Davenport IA, Arnold
MO and Buffalo NY) are within EPA guidelines, historic presence of Pb smelters in these
locations may explain the apparent enrichment in this element. Although this cluster
demonstrates high concentrations of Pb, it does not group with the clusters in group 2
because other metals do not show high enrichment factors.

4.1.2. Group 2 — Industrial sites—There are 3 clusters in this group that include a total
of 11 sites. Geographically, many of these sites are located in the Midwest, more specifically
in the Great Lakes region. The sites in this group are primarily urban, there are some
suburban sites and no rural sites. The enrichment factors for Mn, Zn and Pb are particularly
high. The ratios of Ni/V, Fe/Si and Pb/Br are all elevated in these locations as well. Cluster
7 has particularly high enrichment factors for Fe, Zn, Pb and Mn, while the enrichment in Ni
is below average. Enrichment in these metals suggests contributions from industrial
processes and smelters. Cluster 8 has average enrichment factors for Pb and Zn, although
still shows a higher enrichment factor for Mn. Cluster 19 is enriched in Mn, suggesting
possible anthropogenic sources in these locations such as alloy production and steel
foundries. In fact, both Canton OH and Waukesha OH are the location of working steel
foundries. Otherwise, cluster 19 is similar to cluster 7 except that the enrichment factor for
Ni is higher in Cluster 19, while the enrichment factor for V is lower.

4.1.3. Group 3 — Central & Western US—There are 5 clusters in this group that
include a total of 13 sites. The main commonality between these sites is the lower
enrichment factor for sulfate and higher enrichment factor for. This results in low

SO~ /NOj; ratios across this group. Clusters 14, 15 and 16 are all located in California.
Cluster 15 (Los Angeles area) has higher EC enrichment and the highest enrichment in
NOg3. Cluster 14 is enriched in NOj3 but unlike the other California clusters, it is very low in

SO~ which suggests that there are fewer oil combustion sources impacting these sites.
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4.1.4. Group 4 — Coastal Sites—There are 5 clusters in this group that include a total
of 12 unique sites. The sites in this cluster are primarily located along the coasts. Cities in
this cluster have higher Ni and very high Vanadium enrichment factors. They also have a
high Na* enrichment factor. The Ca/Si ratio is high, a reflection of differences in soil
composition at these sites. Cluster 11 encompasses a sampling site in Queens, NY, and a
sampling site in Manhattan, NY. This cluster has the highest enrichment factor of Ni of all
the multi-site clusters identified. The Bronx, NY, location of NYC clustered separately due
to its higher EC. This group is striking in the geographic distribution of the sites. All sites
are either located in proximity to the ocean or to a major body of inland water. It may be that
the Ni/V ratio is shifted in these locations due to marine sources such as ship engine exhaust.

4.2. Single site clusters

There were 11 clusters that contained only one city. These cities are presented in Table 3
along with heatmaps representing the enrichment factors and normalized ratios at these
locations (Fig. 10). Several of these locations exhibit extreme enrichment factors for one or
more element as well as extremes in the normalized ratios which helps explains why they do
not group with any other sites. On the other hand, a site such as Ironton, OH, does not
exhibit extreme values in a single element. However, the relationship between the elements
at this site shows some distinct differences as compared to multi-city clusters. The clusters
most resembling the pollutant distribution of Ironton are the cities in the Industrial group.
These cities have similar Fe/Si ratios and Fe, Mn, Zn and Pb enrichment factors. The Ironton
site however, also demonstrates higher K enrichment as well as a higher EC/OC ratio. This
suggests that this location is impacted by wood combustion as well as by emissions from
industrial processes.

5. Sensitivity analysis

5.1. Data completeness

Because each site is represented by a set site mean species proportions we wanted to
determine how sensitive the results were to the data points included in calculating the mean.
For each site, 20% of the days were randomly excluded and the mean site species
proportions were recalculated (Fig. 11). This was repeated 100 times. The solutions obtained
were compared to the original one using the Adjusted Rand Index. The mean agreement
between the clustering obtained from the analysis of the original data and the test data was
adequate (Adjusted Rand Index: 0.66). This test does suggest that there is some sensitivity to
the completeness of the original data and supports the choice to require greater than 80%
completeness for the cities included in the analysis.

5.2. Sensitivity to site inclusion

The clustering is also subject to which sites are included in the analysis. As such we
randomly removed 10% of the sites and repeated the clustering over 100 iterations. We
compared the adjusted Rand Index over the 100 iterations, as described above. The results
indicate that the solution is somewhat sensitive to which sites are included in the clustering
(Fig. 12). Overall, the agreement between the test solutions and the original solution were
good with a mean adjusted Rand Index 0.71.

5.3. Number of clusters selected

The selection of 31 as an appropriate number of clusters is not an absolutely correct
solution. The 31 cluster-solution was compared to other possible solutions encompassing a
different number of clusters (k = 1 to 50) using the Adjusted Rand Index. As shown in Fig.
3, for values of k values between 26 and 36 the adjusted Rand Index is higher than 0.70,
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which suggests that the agreement between solutions is good. This implies that selecting a
different value of k would not have yielded dramatically different solutions.

5.4. Presence of outlier sites

Because there were 11 single city clusters, we wanted to determine whether removing these
sites from the initial data set affected the clustering of the remaining cities. After removing
the 11 single city sites, the clustering was re-run. The 20 cluster solution on the reduced
dataset is highly comparable to the original clustering with an adjusted rand index of 0.9,
and 97% of cases in matched pairs. This confirms that it is not necessary to remove outlier
sites prior to clustering.

6. Conclusions

The framework presented here provides a novel tool with which to identify and further
classify sites based on their PM, 5 composition. The 31 clusters identified included 21
clusters with 2 or more sites which were classified into four groups. The solution presented
is fairly robust to the completeness of data at the sampling sites as well as to the choice of
sites to include.

The clusters in the first grouping are located in the Eastern United states. They generally
have lower to average enrichment factors for N, V, Si, Ca, Mn and Cr. The urban and rural
sites however, are clustering into separate clusters. These sites show average to high

concentrations of SO3™, Se and As. The enrichment in EC is average to low depending on
the urbanization and the enrichment in OC is average. The clusters in the second grouping
are located in more industrialized areas. They generally show average to high enrichment
factors for metals such as Mn, Pb, Zn, Cr and Fe. The enrichment factors of Si, Ca and Na
are average to low. Otherwise, the enrichment factors in this grouping are average. The
clusters in the third grouping are located in the western and central United States. The

enrichment factor for SO}~ is very low to average, the enrichment factors of EC and OC are
average to high and the Se is average to low. The enrichment factor of NO3 is generally
high in this grouping. Overall, the species fractions of Zn, Pb, Mn and As are low in this
grouping. The last grouping corresponds to clusters located in coastal areas. The enrichment
factor of Na* is average to high, the enrichment factors of Ni and especially the V ones are

average to high. The enrichment in SO?[ and NOj3 show some variability within these sites
as do the Zn, Mn, K and Cr ones.

Further investigation will be conducted to determine whether the associations between long-
term health effects and the different types of mixtures provide meaningful information about
composition of PM, 5 and/or types of sources posing higher risks. For example, meta-
analysis of the long-term health response to PM5, 5 could include effect modification by
cluster type.
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Chemical speciation sites (n = 109).
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Variability of the adjusted Rand Index as a function of the number of clusters selected. (The
vertical line represents the number of clusters, k = 31, selected for this study).
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Heatmap of the log of the species enrichment factors by cluster.
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Sensitivity analysis; removing 20% of the observations before calculating global mean.
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Sensitivity analysis; removing 10% of the sites prior to clustering.
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where:

SF;; represents the Fraction of Species j at a site i
PM,s; represents the mean PM, g concentration at site i
S_ij represents the mean concentration of Species j at site i

Eq. 1.
Species fraction.
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. SF;—Median (SFj>
" Median <5F j—Median (SFj ) )

where:

Zij represents the robust z score of the Fraction of Species j at
site i

SF;;  represents the Fraction of Species j at a site i

SF;  represents the Fraction of Species j at each site

Eq. 2.
Modified Z-score.
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4 [k
Decrease in overall deviation (%) =100 [ 1—>_ |>_ LSSWU
i=1 |j=1 SSE;

where:

SSW represents the sum of squared errors

SSE represents the sum of squared errors

i represents the diagnostic ratio (SO,/NO3, EC/OC, Ni/V, Fe/Si)
j  represents the individual cluster (1 to k)

Eq. 3.
Change in overall deviation.
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EF.. = S - g
J PMZ.Si ' PM2_5

where:

EF; represents the Species Fraction of species i at site |

Sij represents the mean Species Concentration (Fe, OC, Na™,
etc.) at site i

S; represents the mean Species Concentration

PM, 5 represents the concentration of PM5 g

i the different sites

Jj  represents the different elements

Eq. 4.
Enrichment factors.
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Table 1

Interaction of pollutants.

(EPA, 2000)

Additivity: Effect of the combination equals the sum of individual effects
Synergism: Effect of the combination is greater than the sum of individual effects
Antagonism:  Effect of the combination is less than the sum of individual effects
Inhibition: A component having no effect reduces the effect of another component

Potentiation:

Masking:

A component having on effect increases the effect of another component

Two components have opposite, canceling effects such that no effect is observed from the combination
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Table 3

Single city cluster locations.

Cluster  City State
21 Birmingham AL
22 Phoenix AZ
23 Tucson AZ
24 Macon GA
25 Missoula MT
26 New York City (Bronx) NY
27 Ironton OH
28 Lorain OH
29 Youngstown OH
30 Pittsburgh PA
31 Chester PA
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Table 4

Comparing 3 and 6 day averaging of elements.

Element Mean SD
PM, 5 1.00 0.03
EC 1.00 0.03
oC 1.00 0.02
1.00 0.03
SO;~
Se 1.00 0.06
NO; 1.00 0.04
NHI 1.00 0.04
Si 1.00 0.04
Ca 1.00 0.04
Fe 1.00 0.03
Ni 1.00 0.09
\% 1.02 0.05
Cu 1.00 0.08
Zn 1.00 0.04
Pb 1.00 0.06
Mn 1.00 0.04
As 1.02 0.05
K 1.01 0.08
Cr 0.99 0.12
Na+ 1.00 0.04
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