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Summary
We show that relative mean survival parameters of a semiparametric log-linear model can be
estimated using covariate data from an incident sample and a prevalent sample, even when there is
no prospective follow-up to collect any survival data. Estimation is based on an induced
semiparametric density ratio model for covariates from the two samples, and it shares the same
structure as for a logistic regression model for case-control data. Likelihood inference coincides
with well-established methods for case-control data. We show two further related results. First,
estimation of interaction parameters in a survival model can be performed using covariate
information only from a prevalent sample, analogous to a case-only analysis. Furthermore,
propensity score and conditional exposure effect parameters on survival can be estimated using
only covariate data collected from incident and prevalent samples.

Keywords
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1. Introduction
Survival analysis methodologies are designed for analysing time-to-event data. Usually, a
study records survival data as well as covariate information for incident cases over a certain
period of time. In most situations, survival data are only partially observed subject to right
censoring. Many common survival analysis methods are designed for analysing right-
censored survival data, such as the Kaplan & Meier (1958) estimator and the proportional
hazards model (Cox, 1972).

Collecting survival data from incident cases usually requires a long study period to gather
enough events for meaningful analysis. Alternatively, one might sample from a disease-
prevalent population cross-sectionally at a particular calendar time (Wang, 1991). A cross-
sectional study that draws samples from a disease-prevalent population is more focused and
economical than an incident study design (Wang, 1991; Wang et al., 1993). Cross-sectional
sampling yields length-biased survival outcome when the disease incidence is stationary
over time (Wang, 1991; Asgharian et al., 2002). Regression models for length-biased
survival data have been discussed by Wang (1996), Bergeron et al. (2008), Shen et al.
(2009), Chen (2010), Mandel & Ritov (2010), Qin & Shen (2010), Huang et al. (2012) and
Chan et al. (2012) among others.

While regression models for length-biased survival data are widely studied, all existing
methods require the survival time to be partially observable subject to right censoring. In
contrast to the existing literature, the main results of this paper concern identifiability and
estimation of relative mean survival parameters by comparing covariate distributions from
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an unbiased and a length-biased sample, without follow-up to collect survival data. Studies
can be designed to estimate survival parameters without a high cost of follow-up. In a
typical regression analysis, the marginal distribution of covariates does not contain any
information about regression parameters of interest when the sampling mechanism is
unbiased. Under length-biased sampling, however, covariate values associated with longer
survivors are preferentially sampled. We show that, in the absence of time-varying
covariates, relative mean survival parameters in a class of semipara-metric log-linear models
can be identified solely by comparing covariate distributions of an incident and a prevalent
cohort.

2. Data model and likelihood inference
Suppose T is the survival outcome of interest and X is a p-vector of explanatory variables.
We assume X are baseline variables that are not time-varying. The joint distribution of (T, X)
in a population of interest follows a probability model

where  is a vector of parameters of interest. For a length-biased sample, the
sampling distribution of (T, X) is

where μ = E(T). It follows that the sampling distribution of X is

(1)

where E(T | X = x; θ) = ∫t fT|X(t | x; θ) dt (Bergeron et al., 2008; Chan & Wang, 2012). That
is, the sampling distribution of covariates is proportional to the conditional mean of the
survival outcome, which depends on regression parameters θ. Both Bergeron et al. (2008)
and Chan & Wang (2012) considered right-censored length-biased data, and showed that (1)
is the sampling distribution of covariate X in the presence of right censoring. Since X is a
baseline variable and censoring happens only after an individual has been sampled, it is clear
that the sampling distribution of X does not depend on the censoring distribution.

In standard regression analysis, it is usually optimal to maximize a conditional likelihood
function for the outcome given covariates because the marginal likelihood function of
covariates is typically strongly ancillary (Cox & Hinkley, 1974, pp. 31–5), since fX(x) does
not involve any regression parameters of interest. Under length-biased sampling, however,
the marginal sampling distribution of covariates involves the regression parameters, as seen
in (1), because the sampling bias depends on the relationship between survival outcome and
covariates. When the covariate distribution is not parameterized, the marginal likelihood of
covariates under length-biased sampling is nonparametric weakly ancillary, meaning that the
marginal likelihood is constant in θ after profiling fX(x). This can be shown using arguments
similar to those of Wang (1989) and Wang et al. (1993). When the population covariate
distribution fX(x) is parameterized, the joint likelihood of (T, X) under length-biased
sampling can improve efficiency over the conditional likelihood in finite samples but not
asymptotically, as shown by Bergeron et al. (2008). However, parameterizing the incident
covariate distribution may be too restrictive when multivariate covariates are considered. In
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the following discussions, we assume fX(x) to be nonparametric while estimating finite-
dimensional parameters θ.

Suppose we collect independent data from an incident cohort and from a prevalent cohort.
For example, the time from dementia onset to death was studied in the Canadian Study of
Health and Aging (Wolfson et al., 2001). The study randomly sampled individuals
throughout Canada and followed a prevalent subsample consisting of demented persons at
the baseline visit. The maximal follow-up period was five years. Based on prevalent survival
data, Wolfson et al. (2001) concluded that the survival time for female subjects were
significantly longer than that of male subjects. Suppose that additional incident data, perhaps
from a disease registry, can be collected from those who were free from dementia at
baseline, but developed dementia during the five-year study period. Suppose that we observe
that the proportion of women in the prevalent cohort is greater than that in the incident
cohort. This information alone can lead to a conclusion that female subjects lived longer,
even when survival endpoints are unobserved.

Let (x1, . . . , xp) denote independent and identically distributed covariate data in a prevalent

sample having density  in (1), and let (xp+1, . . . , xn) denote independent and
identically distributed covariate data from an incident sample. We assume the following log-
linear model for population mean survival:

(2)

Special cases of model (2) include an accelerated failure time model (Kalbfleisch &
Prentice, 2002, pp. 44–5; Cox & Oakes, 1984, pp. 64–5), log T = βTX + ε where X and ε are
independent and a proportional mean residual life model (Oakes & Dasu, 1990), E(T – t | T
≥ t, X = x) = m0(t) exp(βTx). Furthermore, model (2) can allow heteroscedastic errors, which
is more general than the accelerated failure time model; existing rank-based estimation
procedures (Tsiatis, 1990) cannot handle heteroscedastic errors. Models for marginal mean
survival are usually nonidentifiable for right-censored survival data with a limited study
period. However, relative mean survival parameters can be estimated in our setting without
observing survival outcomes. We do not consider the proportional hazards model (Cox,
1972) in this paper, because its conditional mean survival function depends on both the
baseline hazard and relative hazard parameters. It is unclear how the functional nuisance
parameter can be eliminated without any observation of failure events.

Under the log-linear model (2), the covariate sampling distribution under length-biased
sampling is

(3)

where α = α* – log(μ). Model (3) is called an exponential tilted density ratio model (Qin &
Zhang, 1997) and has been used as the basis of semiparametric estimation for case-control
data. Let D = {0, 1} be a case-control status and assume the logistic regression model

(4)

It can be shown by applying Bayes’ Theorem that f(x | D = 1) = exp(α + βTx) f (x | D = 0)
where α = α* – log{pr(D = 1)/pr(D = 0)}. Therefore, the probability structure incident and

CHAN Page 3

Biometrika. Author manuscript; available in PMC 2014 April 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



prevalent data under model (2) is the same as case-control data under logistic regression
model (4).

The likelihood function based on (x1, . . . , xn) is equivalent to the retrospective likelihood
for logistic regression (Prentice & Pyke, 1979; Qin & Zhang, 1997). Following their
arguments, we obtain a semi-parametric profile likelihood

(5)

This loglikelihood function is the same as that for case-control data under the logistic
regression model (Prentice & Pyke, 1979). It was further shown by Prentice & Pyke (1979)
and Qin & Zhang (1997) that the profile likelihood satisfies the usual properties of an
ordinary likelihood function. Based on this likelihood equivalence and the equivalence of
prospective and retrospective analysis for case-control data, the parameter β for the
semiparametric log-linear survival model can be estimated by maximizing log L using
commonly available software for logistic regression, as follows. Let Yi = 1 for i = 1, . . . , p
and Yi = 0 for i = p + 1, . . ., n. Maximizing the likelihood function for a logistic regression
model treating Y as an outcome and X as explanatory variables is equivalent to maximizing

(5). Standard logistic regression programs would give valid standard error estimates for .

3. Estimation of interaction parameters from prevalent data
In medical applications, it is common that an effect of an exposure variable could be
modified by other factors. Under gene-environment independence, a case-only design would
yield consistent estimates for odds-ratio interaction parameters in a logistic regression model
(Piegorsch et al., 1994). By exploiting the relationship between case-control and length-
biased data, we will show that interaction parameters in a survival model can be estimated
using data only from a prevalent sample.

We assume that

where X1 is a binary exposure variable and X2 can be discrete, continuous or a mixture of
both. The main scientific interest is the estimation of βI . If X1 and X2 are independent in the
population, then it follows from (1) that

Furthermore,

and
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Therefore, the conditional covariate distribution for X2 given X1 follows a density ratio
model

and the conditional distribution of X1 given X2 follows a logistic regression model

where . Therefore, the interaction parameter can be
estimated by fitting a logistic regression model using the prevalent sample only, treating X1
as a binary outcome and X2 as an explanatory variable.

The prevalent-only analysis has two advantages for estimating βI . First, it does not require
additional data collection from an incident population. Second, it has improved estimation
efficiency compared to the estimation from maximizing (5) using both incident and
prevalent samples. This is analogous to the improvement in efficiency for the estimation of
odds-ratio interaction by case-only analysis (Piegorsch et al., 1994). The main drawback,
similar to the case-only analysis, is that the estimator is biased when X1 and X2 are
dependent. The bias-variance trade-off can be optimized by using empirical Bayes
estimation for combining case-control and case-only estimators (Mukherjee & Chatterjee,
2008).

4. Propensity score and conditional treatment effect
Suppose A is a binary exposure variable. In an observational study, exposure is not
randomized and the effect of A on survival is likely to be confounded by additional
covariates X. The confounding relationship can be complex, and we assume that

(6)

where g(·) is an unspecified function and the parameter βA is the main interest. When the
confounding relationship is complex, so g(·) does not admit a known parametric form, an
alternative way to estimate βA is by propensity score subclassification or matching
(Rosenbaum & Rubin, 1984). Under length-biased sampling and model (6), we establish the
relationship between A and the propensity score π(X) = pr(A = 1 | X), and show that both βA
and propensity score parameters can be estimated without observing survival data. This
contrasts with a recent paper by Cheng & Wang (2012) that shows a similar relationship, but
their estimation requires the survival outcome to be observable.

The sampling distribution of (A, X) for a length-biased observation is
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The sample conditional probability of A = 1 given X = x is

(7)

where γ(x) = log[π(x)/{1 – π(x)}] is the log odds of the propensity score.

If the propensity score follows a logistic regression model

(8)

then  and

(9)

Expressions (7) and (9) lead to two methods for estimating βA, depending on whether or not
the propensity score is known. First, with known propensity score, it follows from (7) that
βA is the intercept term in a logistic regression model for A given X with an offset term γ(X),
using covariate information only from a prevalent sample. When π(x) is unknown but is
modelled by logistic regression model (8), βA and π(x) can be estimated simultaneously from
a combination of incident and prevalent samples. Let Y be a prevalent sample status
indicator, with Y = 1 corresponding to a prevalent observation and Y = 0 corresponding to an
incident observation. Combining (8) and (9) we have

which again follows a logistic regression model and both βA of model (6) and (γ0, γX) of
model (8) can be estimated simultaneously.

5. Simulation studies
We conducted simulation studies to examine the finite sample properties of the proposed
estimators in § § 2–4. For each simulation scenario, 5000 independent datasets were
generated. Each dataset consists of an incident cohort and a prevalent cohort both having n
observations, with n = 50, 100, 200.

We considered the setting in § 2 in the first simulation study. We generated a U(0, 1)
variable X. In the first case, a homoscedastic error ε was generated from a centred Gaussian
distribution with variance σ2, where σ = 0·5. In the second case, a heteroscedastic error ε
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was generated from a centred Gaussian distribution with variance Xσ2. In both cases, the
logarithmic survival time was  and the mean survival time followed a log-

linear model log E(T | X) = β1X, where  under homoscedasticity and 
under heteroscedasticity. We considered cases where β1 = 0 and 1·5. Residual censoring
time C, defined as the time from recruitment to censoring, was generated from a U(0, 2)

distribution. We compared the proposed estimator  with the solution  of a log-rank
estimating equation using only incident survival data (Tsiatis, 1990). The log-rank
estimating equation was expected to yield inconsistent estimates for β1 or  when the error
term was heteroscedastic. Table 1 shows that the proposed estimator had small bias and the
log-rank estimating equation was biased under heteroscedasticity. We also performed Wald
tests for testing the hypothesis H0 : β1 = 0 at 5% significance level. The test based on the
proposed estimator had correct empirical Type I error and adequate power for both cases,
while the test based on a log-rank estimating equation had incorrect size under
heteroscedasticity.

To study the estimator of interaction parameters as discussed in § 3, we generated X1 from a
Bernoulli distribution with p = 0·1 or 0·5, and X2 from a standard normal distribution. The
survival time T was generated from an exponential distribution with mean exp(βIX1X2),
where βI = 1. The residual censoring time was generated from a U(0, 5) distribution. We

compared three estimators for βI : the proposed case-control estimator  in § 2 using data

from both incident and prevalent cohorts, the proposed case-only estimator  in § 3 using

data from the prevalent cohort, and the solution  to a log-rank estimating equation using
data from the incident cohort. Table 2 showed that the proposed case-only estimator gained
efficiency by recognizing the independence relationship between X1 and X2. When p = 0·1,

X1 = 1 is uncommon in the population and the estimate  using only incident cohort data
had low efficiency. Prevalent sampling preferentially samples individuals with X = 1 and
estimators using information from prevalent data were more efficient than those using
information only from incident data.

Next, we studied the performance of the propensity score methods proposed in § 4. Two
covariates (X1, X2) were generated from U(0, 1) and N(0, 2) distributions. Exposure A was
generated by a propensity score model logit{pr(A = 1 | X1, X2) = γ0 + γ1X1 + γ2X2, where
(γ0, γ1, γ2) = (–1, 2, 2) and survival time followed log T = β0 + βAA – |X1X2 – 0·5| + ε where
ε was standard normal. Censoring followed a U(0, 2) distribution. We compared three

estimators for βA: the estimator  which is the solution to a log-rank estimating
equation based on a misspecified model log T = β0 + βAA + β1X1 + β2X2 + ε; the proposed

estimator assuming the propensity score is known, ; and the proposed estimator with
unknown propensity score, βunknown. Table 3 shows that the two propensity score methods
had a small bias, while the estimator based on a misspecified regression model was biased.
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Table 2

Comparisons among the proposed estimators and log-rank estimating equation for interaction parameters

β̂CO β̂CC β̂LR

n Bias × 103 SSE × 103 Bias × 103 SSE × 103 Bias × 103 SSE × 103

p = 0·1 50 79 164 103 360 −76 502

100 22 104 58 197 51 328

200 19 74 58 198 147 203

p = 0·5 50 7 113 31 159 −38 139

100 19 76 12 105 47 85

200 7 52 10 72 −8 57

SSE, the sampling standard deviation.
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Table 3

Comparisons among estimators under a propensity score model

β̂LR,MIS β̂known β̂unknown

n Bias × 103 SSE × 103 Bias × 103 SSE × 103 Bias × 103 SSE × 103

50 357 603 66 526 93 848

100 315 392 23 386 41 572

200 295 282 22 262 42 376

SSE, the sampling standard deviation.
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