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Abstract

Recent high-throughput efforts such as ENCODE have generated a large body of genome-scale transcriptional data in
multiple conditions (e.g., cell-types and disease states). Leveraging these data is especially important for network-based
approaches to human disease, for instance to identify coherent transcriptional modules (subnetworks) that can inform
functional disease mechanisms and pathological pathways. Yet, genome-scale network analysis across conditions is
significantly hampered by the paucity of robust and computationally-efficient methods. Building on the Higher-Order
Generalized Singular Value Decomposition, we introduce a new algorithmic approach for efficient, parameter-free and
reproducible identification of network-modules simultaneously across multiple conditions. Our method can accommodate
weighted (and unweighted) networks of any size and can similarly use co-expression or raw gene expression input data,
without hinging upon the definition and stability of the correlation used to assess gene co-expression. In simulation studies,
we demonstrated distinctive advantages of our method over existing methods, which was able to recover accurately both
common and condition-specific network-modules without entailing ad-hoc input parameters as required by other
approaches. We applied our method to genome-scale and multi-tissue transcriptomic datasets from rats (microarray-based)
and humans (mRNA-sequencing-based) and identified several common and tissue-specific subnetworks with functional
significance, which were not detected by other methods. In humans we recapitulated the crosstalk between cell-cycle
progression and cell-extracellular matrix interactions processes in ventricular zones during neocortex expansion and further,
we uncovered pathways related to development of later cognitive functions in the cortical plate of the developing brain
which were previously unappreciated. Analyses of seven rat tissues identified a multi-tissue subnetwork of co-expressed
heat shock protein (Hsp) and cardiomyopathy genes (Bag3, Cryab, Kras, Emd, Plec), which was significantly replicated using
separate failing heart and liver gene expression datasets in humans, thus revealing a conserved functional role for Hsp
genes in cardiovascular disease.
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Introduction

The increasingly cheaper and rapid accumulation of large -
omics datasets across several experimental conditions has
prompted generation of a wealth of data on biological networks.
This growth of network data now permits their large scale
applications to biomedical research, including analysis of gene
function, metabolic and signaling pathways, as well as disease-
related or cell function-related networks [1,2]. However, recon-
structing and interpreting large biological networks, such as
co-expression networks, protein-protein interaction networks or
genetic networks, with different features (e.g., sparse or densely
interconnected, etc.) poses many challenges, advocating efficient
and flexible methods for network inference and pattern discovery.
An important level of complexity in current network analysis
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regards its extension to multiple conditions, for instance different
species [3], cell-types [4] or disease states [5,6]. For example,
reconstruction of networks across multiple disease-states is
becoming a useful approach for efficient drug-target discovery,
as networks can inform the “biological context” (e.g., pathways,
cellular processes) where genes operate and therefore can help
designing better therapeutic interventions [7]. In genetic studies of
complex diseases researchers increasingly focus on groups of
highly interconnected genes within larger networks (referred to as
clusters, modules or subnetworks) to elucidate specific cellular and
molecular processes that might represent functional disease
mechanisms and pathological pathways [8-10].

While several computational tools for network analysis in single
datasets or conditions are available, only few computationally
efficient methods for genome-scale network analysis across
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Author Summary

Complex biological interactions and processes can be
modelled as networks, for instance metabolic pathways or
protein-protein interactions. The growing availability of
large high-throughput data in several experimental condi-
tions now permits the full-scale analysis of biological
interactions and processes. However, no reliable and
computationally efficient methods for simultaneous analy-
sis of multiple large-scale interaction datasets (networks)
have been developed to date. To overcome this shortcom-
ing, we have developed a new computational framework
that is parameter-free, computationally efficient and highly
reliable. We showed how these distinctive properties make
it a useful tool for real genomic data exploration and
analyses. Indeed, in extensive simulation studies and real-
data analyses we have demonstrated that our method
outperformed existing approaches in terms of efficiency
and, most importantly, reproducibility of the results. Beyond
the computational advantages, we illustrated how our
method can be effectively applied to leverage the vast
stream of genome-scale transcriptional data that has risen
exponentially over the last years. In contrast with existing
approaches, using our method we were able to identify and
replicate multi-tissue gene co-expression networks that
were associated with specific functional processes relevant
to phenotypic variation and disease in rats and humans.

multiple conditions have been developed to date. These methods
can be broadly classified into two main categories: (i) methods to
find the “difference” between networks across conditions or to
pinpoint condition-specific networks [11-14], or (ii) methods to
identify the common parts in networks across conditions [15-17].
More recently, tensor-based computational frameworks [15] or
probabilistic Markov blanket search algorithms [18] have been
proposed to learn network structures across conditions. However,
these methods are either heavily influenced by the choice of input
parameters (e.g., number of clusters, number of nodes within a
cluster, cluster interconnectivity) [15] or, being based on
probabilistic graphical modelling, they become prohibitively slow
for high number of conditions since they are trying to learn the
structure of large graphs [18].

Complementary to the above approaches, spectral methods,
such as Singular Value Decomposition (SVD), have been also
proposed to investigate patterns of connectivity between nodes
within a single network [19,20] or for comparing two networks
[21]. Generally, any network can be described as a graph, which is
denoted as G* =(V*,E*) comprising a set V™ of vertices or nodes
together with a set E* of edges [22]. The graph may be
represented by a square, symmetric, real-valued matrix A of size
|V*| whose entries denote the relationship between the corre-
sponding nodes. In the affinity matrix A€R ™7, the element ay,
called weight, represents the strength of connection between
vertices j and k. For instance, in gene regulatory (or co-expression)
networks, the nodes might represent genes (or mRINAs expression)
and edges represent the strength of gene-gene interactions (or
mRNAs co-expression).

Generalized Singular Value Decomposition (GSVD) can be used
to identify sub-network structures and for comparative analysis of
genomic datasets across two conditions [11,23]. Given two matrices

G1eR" ™" and GLeR™*" [24,25], their GSVD is given by
G=UZ X' and G=UZ, X!, (1)
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where U 1€R1X" and U,eR™ " have orthonormal columns,
XeR"™" is invertible, Xj,=diag(c,,)eR"*" with a5,;>0
(h=12andi=12,...,n), 2[ X, +2I%, =T with IeR"*". The
ratios 01,/ 02,; are the generalized singular values of G and G». In this
setup, the common factor X is informative of the cluster structure
shared across the two data matrices.

Recently, a novel mathematical formulation, higher-order
GSVD (HO GSVD), which is constructed for more than two
data matrices has been proposed [26]. Under this framework, the
H matrices G,eRP"*" (h=1,2,... H,with H>2), each with full
column rank (i.e., the maximum number of linearly independent
column vectors of Gy is n), are decomposed as

G = U7,
G, = U, VT,

(2)
Gy = UgZgVT,

where U eRh*" is  composed of normalized left basis
vectors, X, =diag(ey,)eR"*" with 6;,;>0 (h=1,2,...,H and i=
1,2,...,n) and the latent factor matrix VeR"*" is composed of
normalized right basis vectors. The HO GSVD can be also derived
in the special case of square, symmetric, full rank affinity matrices,
G=(g,-k;,)ph xpp < H> where each element gy represents the weight

of the edge between node j and k in the /th condition. It has been
previously employed to compare multiple datasets with identical
column size in order to detect their common substructures of
columns (i.e., observations) [26]. Yet, another useful application of
the HO GSVD to genomics is to set it to discover gene networks
across multiple conditions and pinpoint “common” and “differen-
tial” cluster structures.

In this paper, we build on the flexible HO GSVD mathematical
framework and propose a new, parameter-free computational
algorithm (Cross-Conditions Cluster Detection or C3D) for
automatic detection of both similarity and dissimilarity clustering
patterns in large weighted (and unweighted) networks across
several conditions (H >2). The original HO GSVD model has
been employed for analysis of datasets G,eR”"*" (h=1,2,...,H)
that had varying number of genes (p;), the same number of
observations () (i.e., arrays/time points in [26]) across conditions
and with p,>n. As such, this illustrative application of the HO
GSVD in genomics was aimed at the identification of common
structures within the n observations [26]. Here, we built on the
mitial HO GSVD to extract sub-structures (i.e., common and
differential clusters) from p genes across multiple conditions
(h=1,2,...,H) by applying the decomposition to the transposed
expression matrix G,€R?*™. We show how this enables a more
general application of the HO GSVD framework to genome-scale
network analysis of genomic data (e.g., microarray, RNA-seq) in
multiple conditions. Besides, a distinctive feature of our method is
in its capability to take as an input either the raw expression
matrices or co-expression matrices, allowing flexibility in the
choice of the co-expression measures (e.g., Spearman, Kendall,
mutual information, etc.).

Figure 1 illustrates the working principle of the C3D algorithm.
The input data for CG3D can be provided into different formats to
be used by the HO GSVD: (i) the raw expression data matrices
(GReR™*P) or (ii) the co-expression data matrices (Ej= GZ
GeRP*P). In the former case, a first data initialization step is
conducted where the input expression matrices, with the same
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number of genes p are converted to co-expression matrices
E;eRP*? by scaling their variance to 1 and taking their quadratic
form. In the second step (HO GSVD-based algorithm), an approxi-
mate HO GSVD is employed to identify a common basis
V=vi...,v4, with d < miny, (n;) representing the dimension of
the GSVD common subspace, for the decomposition of the input
datasets and identify the common and differential correlation
structures. The HO GSVD-based algorithm computes a p X p
square matrix W, which is built on the arithmetic mean of all
pairwise quotients E,E" where E1 denotes the Moore-Penrose
inverse of the co-expression matrix E [24] (see Methods section).
The first eigenvectors of W (according to the norm of the
corresponding eigenvalues) are then used to identify an approx-
imate decomposition of the input co-expression matrices and form
the decomposition basis V. Specifically, each selected column
vector of ¥V (v*e{v,v2,...,v4}) is used to reorder the input data
matrices such that candidate “common” (or “differential”) clusters
can be identified. In the third step (cluster nodes selection and
validation), we employ a mixture model approach to classify genes
and assign them to each cluster based on a misclassification error
rate (MER). Finally, we implemented an empirical cluster
validation procedure to identify the conditions where clusters are
present and assess the level of significance for clusters within each
condition.

n, observations [
(matrix rows)

Multi-tissue Analysis of Co-expression Networks

To demonstrate the increased power and benefits of our HO
GSVD-based algorithm, we carried out an extensive simulation
study and benchmarked C3D against commonly used methods
that were designed to detect either common (WGCNA [16,17]) or
differential network structures (DiffCoEx [13]) across multiple
conditions. We show that our approach has higher power and
stability in detecting both common and differential co-expression
clusters across all simulated conditions, while being two to seven
fold less computationally intensive than alternative methods. In
contrast with alternative approaches that require specification of
ad-hoc input parameters, the proposed method has the distinctive
advantage of being parameter-free, which makes it a powerful tool
for real data exploration and analysis. To substantiate this claim,
we applied C3D to publicly available transcriptomic datasets in
rats and humans and identified several multi-tissue gene co-
expression networks that were associated with specific functional
processes relevant to phenotypic variation and disease.

Results

Simulation studies

We carried out a simulation study to compare our method with
commonly used approaches for identification of “common” or
“differential” clusters across multiple networks: (1) WGCNA and

— ftrix columns) g0 .Dqta g
5 genes (M2 initialization
(i) G, expression graphs (n,x p) = Ej = G;th (ii) E,;: co-expression graphs (p x p)
[| J
1. HO-GSVD approximation and eigen-decomposition of W
H H
!
Gn =~ UnSh VT W= gy >SS (BhBf + E.Ef)
h=1r>h
. i HO-GSVD based
A f reorder grap-h‘ G,” using v* tc->‘ prioritize candidate clusters . l, a Igorithm
i | ) i | I
€ common basis V (p xd, d < min(n,) )
selected vector v* € {Ul, Y2y 04 ,vd}

3. genes classification by mixture model approach % 4. assign genes to cluster s© =3 5. cluster validation

values in v*

MER cut-off 9enes ()

misclassification error (MER) for cluster genes
empirical P-value of cluster significance

Nodes selection &
cluster validation

frequency in
random samples

relative cluster density
P-value cut-off

Write output
cluster 5§
(cluster density, formatted network file)
L conditions Gi
(cluster density in condition G™)
L p-value for cluster §¢

Figure 1. lllustration of the C3D method. Graphical summary of the main steps of the C3D method: (1) data initialization, (2) HO-GSVD based
algorithm and (3) cluster nodes selection and validation. Input data can be either gene expression or co-expression matrices (graphs) and the output
include information about the identified clusters (cluster density, formatted network file), the conditions where the clusters are detected and the
cluster significance (p-value). To retrieve significant clusters, the user can specify (i) the misclassification error rate (MER) for inclusion of genes in the

cluster and (ii) the empirical p-value for significance of the cluster.
doi:10.1371/journal.pgen.1004006.g001
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condition 1

Cluster pattern 1. “common” cluster

Cluster pattern 2: “nested” cluster

Cluster pattern 3: “overlapping” cluster

Simulated cluster
[] Intersection cluster

D Union cluster

Multi-tissue Analysis of Co-expression Networks

condition 2 condition 3 condition H

Figure 2. Description of the cluster structures used in the simulation studies. We simulated three cluster types: “common” (Cluster pattern
1), “nested” (Cluster pattern 2) and “overlapping” (Cluster pattern 3) that are shared across three or more conditions. For Cluster pattern 2 and Cluster
pattern 3, the “intersection cluster” is defined by the nodes in common to all conditions (red square) whereas the “union cluster” is defined by the
nodes in common to all conditions plus the nodes present in individual conditions (black square).

doi:10.1371/journal.pgen.1004006.g002

(2) DiffCoEx. The WGCNA method for detection of common
clusters across co-expression networks employs a “soft” threshold
to assign a connection weight to each gene pair and extract densely
connected gene clusters that are present in all conditions. The
DiffCoEx method follows a strategy similar to WGCNA but,
instead, it focuses on detecting the differences in co-expression
patterns (“differential” clusters) between multiple conditions.
Additional details on the specific parameterizations used in for
WGCNA and DiffCoEx analyzes are reported in Text S1.

To simulate a realistic example of gene expression data from
multiple conditions that represent a typical “small n large p”
scenario, we draw inspiration from a publicly available multi-tissue
microarray dataset consisting of genome-wide expression profiles
from 7n=29 recombinant inbred rat strains in seven tissues [27].
We simulated different types of clusters that are either detected in
all conditions (“common” clusters) or are specific to a subset of
conditions (“differential” clusters), Figure 2. We considered dense
clusters of variable sizes (100-500 nodes) where each node is
connected with all other nodes in the cluster with a given weight
(gik #0), which is defined as the Pearson correlation between
expression profiles of genes j and k. We simulated clusters with
varying cluster densities (0.1, 0.3, 0.5, 0.7), which were defined as
the average Pearson correlation between any pair of nodes within
a cluster. In addition to the simple case of a cluster common to all
conditions and with the same size (Cluster pattern 1), we set out to
evaluate the sensitivity of our and alternative approaches to detect
clusters which are present only in a subset of conditions and that
overlap partially across conditions. This is more likely to be
relevant for analysis of pathways and gene networks across tissues
or during development, where varying gene-sets can exert their
function only at specific developmental times or in specific cell-
types. To account for these more complex scenarios, we simulated
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“nested” (Cluster pattern 2) and partially “overlapping” (Cluster
pattern 3) cluster structures (Figure 2). Cluster pattern 2 and Cluster
pattern 3 have an intersection part, defined by the nodes in common to
all conditions, and a union part, defined by the nodes in common to
all conditions plus the nodes present in individual conditions. In
summary, for each of the four cluster densities considered one
dataset consisted of a p=5,000 and =30 matrix in H=7
conditions, where each cluster type (Clusters patterns 1-3) was
simultaneously present in the data matrix. To assess reliability of
the results, for each of these data we generated 20 independent
replicates, yielding a total of 560 simulated datasets. Similarly, to
evaluate how the number of available observations affects the
methods’ performance we simulated datasets consisting of a
p=5,000 and n=10 matrix in H =7 conditions (20 replicates, 560
datasets in total). See Text S1 for additional details.

Comparison with other methods

The True Positive Rate (TPR) and the False Positive Rate (FPR)
are widely used as evaluation metrics for a classification model and
can be used to quantitatively assess (and compare) methods
performance [28]. The TPR defines how many correct positive
results (simulated clusters genes within the called cluster) occur
among all results called positive in the analysis by a given method.
FPR, on the other hand, defines how many incorrect positive
results occur among all results called positives. Typically, a
TPR=1 (100%) and the corresponding FPR=0 indicate a
perfect classifier (or a perfect method). In our simulation study,
the best cluster detection method would yield both high TPR and
low FPR levels for different cluster types, sizes and densities.

For each simulated cluster type, Figure 3 shows the TP/FP rates
for C3D, WGCNA and DiffCoEx methods as a function of the
simulated cluster densities. For C3D we controlled the (local)
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Figure 3. Performance comparison for C3D, WGCNA and DiffCoEx methods Top, three cluster types (“common” “nested” and
“overlapping”) were simulated in H =7 conditions where the cluster size (p;) is reported for both the intersection and union part of the clusters.
Bottom, for each method the average TPR and FPR (4 standard deviation) across 20 replicated datasets were calculated and reported for the
simulated cluster densities. For C3D analysis (blue lines) we required each cluster to be detected with a misclassification error rate (MER) of 5% or 20%
and P<0.001. For WGCNA (red line) and DiffCoEx (green line) we considered two “default values” for the cut-off threshold, which were chosen
according to the WGCNA guidelines (see Text S1 for details).

doi:10.1371/journal.pgen.1004006.g003

misclassification error (i.e., the probability to assign wrongly a gene densities (0.1-0.3), while controlling the FPR at low levels (< 5%,

to a cluster) to be less than 0.05 or less than 0.2, and required that Cluster pattern 2 intersection).
cach cluster is detected with P <0.001, whereas for WGCNA and In the case of partially overlapping clusters present in a subset of
DiffCoEx we used two (default) parameterizations chosen accord- conditions (Cluster patterns 2—3) we compared C3D with DiffCoEx

ing to the software guidelines (see Methods section). The C3D in respect of detecting the wunion part (500 nodes) of “differential”
method outperformed WGCNA in the identification of clusters clusters, and calculated TPR and FPR for detection of this cluster
present in all conditions (Cluster pattern 1, Figure 3), and showed to (indicated with a black square at the top of Figure 3). We found
have consistently high TPR (and very low FPR, <0.1%) that CG3D outperformed DiffCoEx across the simulated scenarios.

irrespective of the simulated cluster density. WGCNA perfor- In the case of the “nested” cluster structures that are present in 5
mance varied considerably as a function of the simulated cluster out of 7 conditions, CG3D had consistently higher TPR levels than
density and, depending on the adopted parameterization, FPR DiffCoEx, which showed comparable TPR levels only for
levels were >5% (reaching 20% in one case), Figure 3. detection of highly-dense clusters (i.e., density =0.7, Cluster paitern
Furthermore, we observed large variations in WGCNA perfor- 2 union, Figure 3). However, similarly to what observed for
mance (mostly in the TPR), which are indicated by the large WGCNA method, in this case DiffCoEx showed large variability
standard deviations in TPRs calculated from the 20 replicated in its performance across the 20 replicated datasets. The difference
datasets. For more complicated patterns (“nested” and “overlap- in performance between C3D and DiffCoEx was observed also in
ping” clusters), we compared C3D with WGCNA to detect the the more complicated case of partially overlapping cluster
intersection part (100 nodes) of common clusters. Since WGCNA is structures (Cluster pattern 3). In this case, G3D showed consistently
designed to detect only those clusters shared across all conditions, higher TPR than DiffCoEx that reached a maximum TPR ~40%
for clusters present in a subset of conditions, we run WGCNA only as compared with ~70% of C3D. Both methods showed
in the set of conditions where the simulated clusters were present. comparably low FPR (<5%) for detection of the union part of

For Cluster patterns 2-3, C3D and WGCNA performances were Cluster patterns 2-3 (Figure 3). Similarly to what observed for the
similar, reaching high TPR for detection of the intersection part of simulated data with n=30 observations, C3D performed better
clusters with simulated densities > 0.3 (Figure 3). However, C3D than (or as good as) bothn WGCNA and DiffCoEx when
showed higher TPRs than WGCNA to detect clusters with low benchmarked on simulated datasets with only 7=10 observations
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(Figure S1). As expected, all methods had lower TPRs associated
with the detection of low-density clusters, however also with a
small number of observations, C3D showed significantly better
(and more stable) results than WGCNA and similar performance
as compared with DiffCoEx. Notably, for detection of “common”
clusters present in all conditions (Cluster pattern 1), CD3 held high
TPR levels (and <5% FPR) wherecas WGCNA’s performance
dropped significantly, reaching a maximum ~35% TPR (Figure
S1).

These data show that CG3D on balance performed better than
WGCNA and DiffCoEx across all simulated scenarios. We
underline that while WGCNA and DiffCoEx methods are
specifically designed to detect either common or differential
clusters, respectively, here we showed that C3D was equally or
more accurate than both methods in the detection of common and
differential cluster structures. We also highlight how C3D ability to
detect correctly the simulated clusters was highly consistent across
all runs on the replicated datasets, as shown by the small standard
deviations of the mean TP and FP estimates (Figure 3). In contrast,
we observed that both WGCNA and DiffCoEx performances
varied appreciably across the replicated simulations, often
resulting in large standard deviations of the mean TP and FP
estimates. To better assess the reliability of the different methods
we calculated the relative standard deviation (RSD=

tandard deviati
100 x Standard deviation lon) of the TPR measured in all analyzed
|mean|

datasets. In 560 simulated datasets of size 30 x 5,000, the C3D
method had a median RSD of TPR =5.77 (range 113.36) whereas
WGCNA and DiffCoEx have median RSD =37.53 (range 447.2)
and median RSD =78.15 (range 133.39), respectively. Similarly,
in 560 datasets of size 10 x 5,000 we estimated the following RSDs
of TPR: 12.43 (range 113.38) for C3D, 57.52 (range 161.89) for
WGCNA and 87.96 (range 120.59) for DiffCoEx. The large RSDs
of TPR calculated from the WGCNA and DiffCoEx analyzes
originated because these methods often detected the simulated
cluster(s) only in small number of replicates (e.g., 2 out of 20).
Besides, in a few cases the TP/FP rates of WGCNA and
DiftCoEx were influenced by the adopted parameterization (for
instance, FPR in the WGCNA analysis of Cluster patlern 1, Figure 3),
suggesting that different choices of the input parameters can affect
the detection of clusters (see Text S1 for additional details). The
C3D algorithm is built on the HO-GSVD framework and as such
does not require the user to specify ad-hoc parameters to detect
common or differential clusters. In our implementation of the
C3D algorithm the user can control the MER at a specified level
before the cluster genes are empirically validated using a
permutation-based procedure (see Methods section). In these
simulation studies, we have used two different MERs (5% and
20%) to inform a suitable choice of MER that maximizes true
positive without inflating false positive rates. On average, we
observed a ~10 - 15% increase in the TPR when MER =20%
was adopted as compared with MER = 5%. However, we found
no significantly higher FPR, which were always <5% across all
simulated datasets, this suggesting that using the less stringent
MER =20% in real data analyzes is likely to increase the detection
of true gene clusters, without increasing significantly false positives.
Finally, we used a standard desktop computer (Mac Pro,
2 x 2.4 GHz Quad-core Intel Xeon with 20 Gb RAM) to evaluate
the computational time required by C3D and compare it with
WGCNA and DiffCoEx to analyze the simulated datasets. While
the run time of C:3D scales exponentially with the number of genes
in the input matrices or the number of conditions, our Matlab
implementation of C3D is relatively fast and requires only 1,200s
to analyze a 10,000 x 10,000 gene co-expression matrix in H =3
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conditions and 10s to analyze a 1,000 x 1,000 gene co-expression
matrix in H =25 conditions (Figure S2). When compared with
competing approaches, we assessed that to process simulated
datasets of 1,000 and 10,000 genes (with n=30 observations and
H =7 conditions) C3D requires significantly smaller CPU time
than DiffCoEx (up to 2.3 fold more CPU time) and WGCNA (up
to 8.2 fold more CPU time), respectively (Figure S2).

Case studies

To show how CG3D provides a powerful, practical framework for
real genome-scale analyzes and yields new biological insights into
pathways and molecular networks, we report an application to two
large multi-tissue gene expression datasets in rats and humans.
Transcriptional profiling was carried out by Affymetrix microarray
in the rat and mRNA sequencing (RNA-seq) in humans,
respectively. The microarray dataset consisted of genome-wide
expression profiles (p=15,000 probe sets) that were measured in
seven tissues (adrenal, aorta, fat, kidney, left ventricle, liver and
skeletal muscle) in a panel of n=29 recombinant inbred rat strains
[29], which is a well characterized model of hypertension,
metabolic syndrome and cardiovascular disease [27,30,31]. The
RNA-seq datasets consisted of genome-wide transcriptomic data of
human fetal neocortex, which have been generated to investigate
the molecular mechanisms underlying differences in germinal
zones of the developing human brain. The human dataset
consisted of p=18,288 expressed genes which were analyzed in
four regions of the fetal neocortex (ventricular zone (VZ), inner
subventricular zone (ISVZ), outer subventricular zone (OSVZ)
and cortical plate (CP)) from six 13-16 weeks postconception
human fetuses [32]. In both rat and human analyzes, to identify
common and differential clusters we extracted the top ten
eigenvectors (based on the modulus of the eigenvalues of the
decomposition of W) as candidates which are then used as input
for the cluster nodes selection and validation step of the C3D algorithm
(see Methods).

Transcriptional network analysis in
tissues. We ecmployed a two-step strategy to identify co-
expression clusters present in all (or in a subset of) tissues: (i) we
prioritize candidate gene clusters using a “relaxed” MER <0.2 to
assign genes to each cluster (see Methods section) and then (i1) used
the permutation-based procedure (integrated in C3D) to select
significant clusters and identify the relevant tissues using a
stringent empirical P-value threshold (P<0.001). This strategy
yielded a set of 8 gene co-expression clusters: 3 clusters were
detected in all tissues and 5 clusters were specific to a sub-set of
tissues (T'able S1). We set out to systematically analyze these gene
co-expression clusters using four approaches: (i) functional
enrichment analysis using Gene Ontology and KEGG pathways
[33], (ii) cell-type specificity using Cell Type ENrichment (Cten)
analysis for microarray data [34], (iii) cluster conservation with
experimentally validated protein-protein interactions (PPI) and
protein complexes using the DAPPLE algorithm [35] and (iv)
enrichment of transcription factor binding sites (TFBSs) in the
putative promoter sequences of cluster genes using the Pastaa
algorithm [36]. (See Text S1 for additional details on cluster
annotation and analysis).

One large “differential” cluster consisting of 172 microarray
probe sets (rat cluster 1) was identified in skeletal muscle, left
ventricle, aorta and liver tissues (empirical P<0.001, Figure 4A).
This cluster showed significant enrichment for “protein folding”
(P=2.8 x1073), “unfolded protein binding” (P=9.1 x 1073) and
“heat shock protein binding” biological processes (P=1.0Xx

seven rat

1073), Figure 4B, but did not revealed strong enrichment for
either specific cell-types or TFBSs in the cluster genes promoter
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(Table S2). We found that 7at cluster 1 included several heat shock
protein (Hsp) genes (Hsp90b1, Dnaf (Hsp40) homologs, Hspad, Hspb8,
Hsphl) and the Hsf1 (heat shock transcription factor 1), which
binds to the heat shock element in the promoters of Hsp genes and
induce their activation [37]. Heat shock transcription factor 1 is a
crucial transcription factor for heat shock proteins and appears to
serve a significant protective role in the heart [38,39]. Besides,
closer inspection of rat cluster 1 reveal genes known to have disease
mutations in hereditary cardiomyopathy in humans (Bag3, Cryab,
Kras, Emd, Plec) [40] (Figure 4A). Therefore, we investigated
whether rat cluster 1 genes have been previously implicated in
disease using the gene set analysis toolkit WebGestalt [41], which
relies on existing biomedical literature to retrieve accurate disease-
associated gene lists [42]. This analysis revealed marked and
specific enrichment for genes associated with circulatory shock,
stress and cardiac conditions (e.g., cardiomyopathies, hypertrophy,
cardiomegaly), Figure 4B and Table S3. Our C3D analysis
suggests that cardiomyopathy genes are co-expressed with Hsp
genes across several rat tissues including tissues enriched for
myocytes (skeletal muscle, heart and aorta) and in the liver, where
Hsp genes are known to be expressed in response to a variety of
stressful stimuli [43] or to an increase in body temperature [44].
Moreover, several mRNA-mRNA interactions between Hsp and
cardiomyopathy genes of rat cluster 1 were conserved at the protein
level (Figure 4C). We then investigated whether rat cluster 1 genes
were significantly conserved and co-expressed in human heart and
liver tissues. To this aim, we carried out genome-wide co-
expression network analysis using covariance selection models [45]
in two large, publicly available gene expression datasets in the
heart (=194 patients with advanced idiopathic or ischemic
cardiomyopathy, GSE5406 from Gene Expression Omnibus
(GEO) [46]) and liver tissue (n=427 healthy subjects, GSE9588
from GEO [47]). After computing the matrix of partial
correlations between the genes’ expression profiles in each tissue
separately, we tested whether the human-rat orthologous genes of
rat cluster 1 had significant connections (FDR <5%) in heart and
liver tissues more than what expected by chance. Sampling 10,000
random networks from each partial correlation matrix we
found that 95 and 108 human-rat orthologous genes have
significantly high interconnectivity in heart (P<107%) and liver
(P=1.1x1072) tissues, respectively (Figure 4D and 4E, and
Figure S3). This analysis provides independent replication of rat
cluster 1 in two separate datasets and confirms significant co-
expression between Hsp and cardiomyopathy genes in human
heart and liver tissues. Elevated Hsp gene expression was
previously observed in the heart of patients with dilated
cardiomyopathy [48,49] and our data showing conserved co-
expression between Hsp and cardiomyopathy genes in rats and
humans suggest a potential role for heat shock proteins in
cardiovascular disease [50,51].

We identified three co-expression gene clusters consisting of
234, 89 and 406 microarray probe sets, which were detected in all
tissues (P<0.001, Figure 5 and Table S1). In contrast with the
tissues-specific  clusters, all multi-tissue clusters were highly
conserved at the protein level where they show significantly high
protein-protein interconnectivity by DAPPLE analysis (P <0.001,
Figure 5). These clusters might represent shared gene-gene
interactions and gene expression signatures of fundamental
molecular processes, which are strongly conserved at the protein
level. These shared gene expression signatures are less likely to be
detected in individual tissues where local regulatory mechanisms
(translational and post-translational) are likely to be more
important [52,53]. One of these multi-tissue clusters (rat cluster 3)
included 234 probe sets (representing 214 annotated protein
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coding genes) and showed a striking enrichment for mitochondrial
related genes (P=1.6 x 10™%), enrichment for heart (P=1.0 x
1075) and lymphoblasts (P=1.1 x 1073) cell-types (Figure 5). This
cluster was also significantly overrepresented for the “oxidative
phosphorylation” KEGG pathway (P=1.3 x 10719), which is an
integrative function of mitochondria and that in muscle and heart
in controlled essentially at the level of the respiratory chain [54].
At the protein level, we found that rat cluster 3 identified two
important protein complexes: the mitochondrial NADH-Ubiqui-
none Oxidoreductase (Complex I) (blue circle, Figure 5) and
several mitochondrial ribosomal, large subunits, which is consis-
tent with the observed functional/cell-type annotation of the co-
expressed gene cluster. Lastly, we identified two common clusters
(rat cluster 4, rat cluster 5) that were most highly enriched for immune
response genes and specifically expressed in whole blood and
myeloid cell-types (Figure 5). In particular rat cluster 5 recapitulates
a previously identified co-expression network detected in seven
tissues (ff7-driven inflammatory gene network or IDIN) [27],
which comprised 209 genes directly (and indirectly) regulated by
the Irf7 transcription factor (a master regulator of the type 1
interferon response [55]). The multi-tissue cluster identified by
C3D was most highly enriched for genes related to “immune
response” (P=2.8 x 1071%) and expressed in myeloid and blood
cell-types (P-value range from 1072° to 10~3). This co-expression
network, which is highly expressed in immune cells, may represent
a molecular signature of macrophages in complex tissues and is
associated with risk of inflammatory diseases and autoimmune
disease Type 1 diabetes in humans [56,57], as previously
demonstrated [27]. Rat cluster 5 was also highly enriched for
known protein-protein interactions (P <0.001), and cluster genes
promoters contained TFBS motifs for the IRF transcription factor
family (TFBS enrichment P=59x1071  Table S2). We
highlight that this inflammatory network (IDIN) was previously
identified by complex integration of genome-wide TFBS predic-
tions, expression QT mapping using genome-wide SNPs and co-
expression network analysis in seven rat tissues, and was
experimentally validated and translated to humans [27]. Here,
we uncovered most of the IDIN (136 genes, 65%) and revealed
many key properties of this transcriptional network (functional
enrichment, cell-type specificity, IRF-dependent regulation) using
only the C3D approach on the gene expression data from seven
tissues.

Transcriptional network analysis in human brain
regions. We set out to identify co-expression gene clusters
across human fetal neocortical regions: VZ, ISVZ, OSVZ and CP
(RNA-seq datasets: p=18,288 genes in n=6 fetuses across H=4
regions). Similarly to the analysis of the rat microarray data, we
have used a two-step strategy to first prioritize candidate clusters
(using MER <0.2) and then validate the clusters by permutations
and pinpoint the neocortical regions where these clusters are
present (P<0.001). The clusters were annotated in detail and
compared with the large catalogue of differentially expressed genes
between fetal cortical zones previously reported in [32].

The C3D analysis revealed two large clusters (human cluster 1,
human cluster 2) including 2,318 and 1,460 genes, respectively,
which were highly enriched (>60% of genes) for differentially
expressed genes between the CP and VZ, ISVZ, OSVZ neocortex
regions (Table S4). These clusters were identified as “differential”
clusters, and were specifically expressed in VZ, ISVZ, OSVZ
(human cluster 1) and in CP (human cluster 2) fetal neocortex regions
with a high significance level (P<0.001). The identification of
“differential” clusters between different neocortex regions during
development matched the enrichment for differential expressed
genes within these clusters, where human cluster 1 was most highly
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Figure 4. Rat cluster 1 shows co-expression between Hsp and cardiomyopathy genes which is conserved with human heart and liver
tissues (A) Network of 135 annotated rat genes identified by C3D as co-expressed in heart, aorta, liver and skeletal muscle tissues (P <0.001). In each
tissue we selected the top 5% of edges based on the (absolute) covariance between gene expression profiles and then calculated the average
covariance across the four tissues. Edges are represented by lines connecting nodes (genes) and the thickness of the line is proportional to the
average covariance value. Within the network, heat shock protein (Hsp) and cardiomyopathy genes are highlighted in blue and red, respectively. The
Kendall correlations between the expression profiles of Hsp and cardiomyopathy genes are graphically represented as sub-networks separately for
each tissue. Line thickness is proportional to the value of the Kendall correlation. (B) Enrichment for functional categories (FDR < 5%, full list in Table
S2) and for disease association (adjusted P <0.01, details in Table S3). (C) Significant protein-protein interaction (PPI) network (P=0.03) where the
Hsp and cardiomyopathy genes showing conserved PPI are highlighted (blue and red circles). (D) Conserved co-expression network detected in
n=194 heart tissue samples from patients with advanced idiopathic or ischemic cardiomyopathy. The network includes all human orthologous genes
of the genes in rat cluster 1 that have significant edges by covariance selection (FDR < 5%). (E) Conserved co-expression network detected in n =427
liver tissue samples from healthy volunteers. The network includes all human orthologous genes of the genes in rat cluster 1 that have significant
edges by covariance selection (FDR < 5%).

doi:10.1371/journal.pgen.1004006.g004
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Figure 5. Co-expression clusters identified in all rat tissues. For each rat cluster detected in all seven tissues we report the number of probe sets,
the top five functional categories and their statistical significance (full list in Table S2), the summary of cell-type enrichment statistics expressed as
—log,, (Benjamini and Hochberg (BH)-adjusted p-value, Cten analysis) and the graph with the significant protein-protein interactions (PPI), including
the overall significance of the directed PPI network (DAPPLE analysis). The colour scale on the right indicate the significance of the detected PPI.
doi:10.1371/journal.pgen.1004006.g005
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enriched (1,450 out of 2,318 genes, 63%, hypergeometric tively (Table S5). In particular, human cluster 1 recapitulates the cell-
enrichment test P<10~'7) for genes down-regulated in CP as to-extracellular matrix interactions processes which were previ-
compared with VZ, ISVZ, OSVZ, whereas human cluster 2 was ously found to be associated with up-regulation in either VZ, ISVZ
most highly enriched (940 out of 1,460 genes, 64%, hypergeo- or OSVA neocortex regions [32]. However, our multi-tissue

metric enrichment test P<107!7) for genes up-regulated in the network analysis and annotation of the results suggest further
CP region as compared with VZ, ISVZ, OSVZ (Figure 6 and functional specialisation of the two clusters which was previously
Figure 7). Gene Ontology annotation of the cluster genes revealed unappreciated.
functionally coherent processes with the most significant enrich- In particular for human cluster 1 we found strong co-expression
ment for “cell cycle” (P<3x10™%) in human cluster 1 and between 1,450 of the differentially expressed genes which are
“synaptic transmission” (P <6 x 1072%) in human cluster 2, respec- enriched for cell adhesion and cell-extracellular matrix (ECM)
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Figure 6. Human co-expression cluster 1. Top left, each node in the network represents a gene and, in keeping with [61], for each gene we
highlight significant up-regulation in VZ (red) or CP (green) as compared with the other neocortex regions. Genes that are were not differentially
expressed between neocortex regions are coloured in grey. Genes present in relevant KEGG pathways (p53 signaling, ECM-receptor interaction, Cell
cycle and DNA replication) are extracted from the main network and highlighted. Top right, functional annotation for the network: top five significant
GO biological processes and KEGG pathways (full list in Table S3). Bottom left, summary of cell-type enrichment analysis expressed as —log,
(Benjamini and Hochberg (BH)-adjusted p-value, Cten analysis). Bottom right, graph with the significant protein-protein interactions (PPI), including
the overall significance of the directed PPl network (DAPPLE analysis, P<0.001). The colour scale on the right indicate the significance of the
detected PPI.

doi:10.1371/journal.pgen.1004006.9g006
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Figure 7. Human co-expression cluster 2. Top left, each node in the network represents a gene and, in keeping with [61], for each gene we
highlight significant up-regulation in CP (red) or VZ (green) as compared with the other neocortex regions. Genes that were not differentially
expressed between neocortex regions are coloured in grey. Genes present in KEGG pathways related to cognitive functions (MAPK signaling, axon
guidance, calcium guidance and long-term potentiation) are extracted from the main network and highlighted. Top right, functional annotation for
the network: top five significant GO biological processes and KEGG pathways (full list in Table S3). Bottom left, summary of cell-type enrichment
analysis expressed as —log;, (Benjamini and Hochberg (BH)-adjusted p-value, Cten analysis) showing the most significant enrichment for fetal brain,
prefontal cortex and amygdala tissues. Bottom right, graph with the significant protein-protein interactions (PPI), including the overall significance of
the directed PPI network (DAPPLE analysis, P <0.0001). The colour scale on the right indicate the significance of the detected PPI.

doi:10.1371/journal.pgen.1004006.g007

interaction processes during cortical development [32]. This co-
expression pattern suggests crosstalk between different pathways
across neocortex regions, as it is shown here for “cell cycle” and
“ECM-receptor interaction” (Figure 6). This is in keeping with
the notion that cell cycle progression in mammalian cells is
strictly regulated by both integrin-mediated adhesion to the
extracellular matrix and by binding of growth factors to their
receptors [58]. Surprisingly, cell-type enrichment analysis
suggested highly specific expression of human cluster 1 in
MOLT-4 (human T lymphoblast; acute lymphoblastic leukemia)
cell line, which constitutively does not express p53 (a key
regulator of the cell cycle, DNA repair and cell death). However,
since we found down-regulation of p53 signalling and other
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related pathways, the observed enrichment for MOLT-4 cell-
type most likely reflected cell-type-specific depletion of p53
expression and of many target genes in the CP region. Analysis
of TFBS motifs in the promoter of human cluster 1 genes revealed
the E2F1 transcription factor (TFBS enrichment P=1.7 x 1073),
which plays a crucial role in the control of cell cycle regulation/
progression and have been implicated in neural stem cell
maintenance and commitment [59]. Taken together, these
analyzes of fhuman cluster 1 suggest that differentially expressed
genes related to cell-ECM interaction exert their function in a
highly coordinated fashion where multiple pathways are involved
in cell proliferation and self-renewal of neural progenitors in
developing human neocortex.
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Similarly to the first cluster, human cluster 2 was significantly
enriched for differentially expressed genes between CP and VZ,
ISVZ, OSVZ regions, but in this case with marked up-regulation
of gene expression in the CP region (Figure 7). Functional
enrichment analysis suggested up-regulation of several KEGG
pathways, such as “calcium signaling pathway” and “long-term
potentiation” (Figure 7) that are associated with key cognitive
functions, including memory and learning. Cell-type enrichment
and protein-protein interaction analyzes for human cluster 2 showed
high specificity of this cluster in fetal brain, prefontal cortex,
amygdala tissues (enrichment P <1074%) and strong conservation
of the network at the protein level (P<1x10~%), Figure 7.
Analysis of TFBS enrichment in the promoter of cluster genes
revealed different sets of TFs including neuronal-specific factors
like Rest that regulates repression of multiple neuron-specific genes
(TFBS enrichment P=4.3x 10~} or TFAP2A that is essential
for development of sympathetic neurons by controlling the survival
of a subpopulation of migrating neural crest cells [60](TFBS
enrichment P=53x10"7), and other myogenic regulatory
factors (Myf, TFBS enrichment P=1.1x107% or factors
regulating transcriptional events during hemopoietic development
(MZF1, TFBS enrichment P=1.1x 107!7). The original investi-
gation of gene expression variation across human fetal neocortexes
regions reported in [32] suggested a role for extracellular matrix in
progenitor neuronal cells self-renewal. Here, our C3D analysis was
able to recapitulate these biological processes and furthermore
highlight extensive co-expression between cell-cycle and ECM-
interaction genes in proliferation and renewal of neuronal
progenitors in specific neocortex regions (human cluster I). In
addition, our analysis revealed a distinct functionally-coherent
network (human cluster 2) related to development of later cognitive
functions in developing brain, which was not reported in the
original study [32]. These new findings are consistent with recent
data on human-specific gene expression changes taking place
during postnatal brain development in the prefrontal cortex [61].

Discussion

Building on the HO GSVD framework, we have developed a
new algorithm (C3D) for efficient, parameter-free and automatic
detection of co-expression clusters and networks in multiple
conditions. Our method is designed for analysis of weighted (and
unweighted) networks (input matrices) Gy, across H >2 conditions,
enabling applications to diverse data types and structures.
Although the original HO GSVD algorithm assumes the non-
singularity of the co-expression matrix E;=G,G], by using the
Moore-Penrose pseudo-inverse, our CG3D algorithm can be
applied to the non-invertible case. We show that when an exact
HO-GSVD of the input matrices exists (as defined in (4), see
Methods), our HO GSVD is able to extract the right decomposition
basis V' through the eigen-decomposition of W, whereas it finds an
approximate decomposition of the data in the absence of an exact
solution (Figure S4). In particular, our empirical simulations and
real-case applications reveal that our approximate decomposition
is able to capture both common and differential co-expression
structures for a wide range of noise levels, suggesting that our
algorithm can be useful for practical applications to genomic data.

Here, through the HO GSVD of large-scale genomic datasets
we aimed to uncover the complex interactions between genes
(networks) that can occur within or across multiple conditions.
One distinctive feature of our computational method is in the
flexible and simultaneous identification of both “common” and
“differential” sub-network structures across several conditions.
Selecting informative vectors of V', we provide different orderings
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of Gj to reveal candidate clusters that are important to all
conditions or specific to a sub-set of conditions; then, we can
distinguish the specific conditions where the clusters are present
using a permutation-based approach. This procedure allows to
pinpoint automatically the specific conditions where the sub-
network structures are present and, at the same time, to provide an
empirical estimate of the statistical significance (empirical P-value)
for each cluster identified.

In simulation studies, we demonstrated how C3D outperforms
competing approaches in accuracy and reliability while being
computationally less demanding. We highlight how our method
allowed accurate detection of clusters within complex structures
(.e., “common”, ‘“nested” and “overlapping” networks) by
specifying only the desired level of statistical significance:
misclassification error rate to assign genes to clusters and empirical
P-value for cluster detection. In contrast with other approaches,
C3D does not need the user to specify ad-hoc parameters related to
the expected number of clusters or cluster density [15] or
necessary to determine the optimal height cut-off in the gene
clustering tree [13,16,17]. Typically, these unknown parameters
need to be “finely tuned” on each dataset in order to obtain the
best compromise between TP and FP for each cluster (see Text S1
for additional details). We also showed that the results obtained by
two competing and widely-used methods (WGCNA and Diff-
CoEx) were less stable than those provided by C3D. This was
apparent in the significantly smaller relative standard deviations in
TPR calculated across >1,000 simulated datasets in the C3D
analyzes as compared with WGCNA and DiffCoEx. Since C3D
utilised raw gene expression data matrices as input, the higher
stability of C3D might be due to the reduced influence of the small
number of observations on the stability of co-expression estimates,
which can result in extreme patterns of correlation changes,
corresponding to stable and fragile co-expression, as previously
shown [62].

The high stability in the results and the parameter-free “nature”
of the HO GSVD approach make the C3D algorithm a powerful
computational tool for real genomic data exploration and analysis.
To demonstrate this point, we reported an application of C3D to
two large transcriptional datasets: (i) microarray-based gene
expression profiles in seven rat tissues and (i) RINA-seq-based
gene expression analysis of germinal zones from human fetal
neocortex. In the rat analysis, we reported several functionally
enriched co-expression clusters, including a previously identified
inflammatory gene network driven by the IRF7 transcription
factor that represents a gene expression signature of macrophages
within complex tissues. While this co-expression network was
experimentally validated [27] it was not recovered by WGCNA,
that surprisingly placed the IRF7 transcription factor and many
regulated target genes in the group of “non-clustered” genes. In
addition, our C3D analyzes revealed novel gene co-expression
networks in sub-sets of tissues. For instance, we identified a
network comprising Hsp and known cardiomyopathy genes, which
suggested coordinated regulation of heat shock proteins genes in
multiple tissues, and their potential functional role in cardiovas-
cular disease [50]. While this network was not recovered by either
WGCNA or DiffCoEx analyzes, we were able to replicate this new
finding using separate cardiac and liver gene expression datasets in
humans (Figure 4). In the study of human fetal neocortex we
demonstrated previously undescribed co-expression between cell
cycle and ECM-receptor interaction pathways and support their
role in the proliferation and self-renewal of neural progenitors. In
addition, our analyzes highlighted that pathways central to later
cognitive functions (e.g., calcium signaling, long-term potentiation,
axon guidance) are present at an early stage in the developing
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human brain [61], which was not previously appreciated. These
studies illustrated how our method can be effectively applied to
leverage the vast stream of genome-scale transcriptional data that
has risen exponentially over the last years, promising to aid the
fine-scale characterization of both context-specific and systems-
level networks and pathways.

Methods

We describe a new computational method (Cross-Conditions
Cluster Detection or C3D) to detect both similarity and
dissimilarity clustering patterns in weighted networks across
multiple conditions (H >2). After a data initialization step, C3D
employs HO GSVD-based algorithm and cluster nodes selection and
validation procedures to identify clusters, the specific conditions
where the clusters are detected and the statistical significance of
the clusters, as summarized in Figure 1 and detailed below.

Data initialization

In this step we assume the input data are non-square matrices
GeR" P (h=1,...,H, H>2), where the n rows represent the
observations and the p columns indicate genes. The number of
genes must be the same across datasets while the number of
observations can differ. We first log transform the data and subtract
for each gene its average gene expression to avoid capturing
differences in average gene expression across conditions. We then
calculate the co-expression matrices corresponding to each condi-
tion Ej, = G,ZT G,eRP*P, Fach Ej, represents the covariance matrix of
the data in condition /4. As in classic principal component analysis,
the columns of Gj, can be scaled to unit variance to work on the
correlation matrices rather than the covariance. Alternatively, our
algorithm can directly take any p X p co-expression matrix Ej as
mput. This feature of our algorithm allows to extract common and
differential clusters from matrices based on different co-expression
measures, including robust correlation (e.g. Spearman, Kendall)
and non linear metrics such as mutual information [63].

The HO GSVD-based algorithm

Similarly to classic SVD, each observation from the input data
Gy, can be characterized by its expression profile and represented
by a data point in a p dimensional space. The observations from
all datasets are contained in a subspace of dimension d < Y, iy,
which thereafter is referred to as the HO GSVD subspace. Here,
we aim at finding directions in the HO GSVD subspace that either
capture the variability in gene expression that is common to all
conditions (common factors) or that is specific to a subset of
conditions (differential factors). Inspired by [26] we developed a
general algorithm that allows computation of an approximate
solution to the HO GSVD problem in the non full column
rank case. In the HO GSVD, G, are decomposed into
Gy=UZ, VT (h=12,...,H) where UyeR"*? 5,eR"*? is a
diagonal matrix with elements o4, >0 fork=1...d and VeR’ xd
contain the right basis vectors of the HO GSVD subspace where
0<d< ), my. The right basis vectors v; (i=1,...,d) allow to
identify set of genes (clusters) with similar co-expression patterns,
that are either specific to a subset of conditions or common to all
conditions. Here we explain the derivation of our HO GSVD-
based algorithm in the general case of H >2 non-square matrices.
The derivation and discussion of the special cases (H =2 square,
symmetric matrices with full rank and H >2 square, symmetric
matrices with full rank) is reported in Text S1. In the most general
case, we define the right basis vectors V' as the solution of the
eigen-decomposition problem of the matrix
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W=

ZZ(E/,E +EE]})

h=1r>h

H(H )

where WeRFP*? is the arithmetic mean of all the pairwise
quotients E Er (h=12,...,Hand r=h+1,...,H) and E*
denotes the Moore-Penrose inverse of the co-expression matrix
E [24]. Here the Moore-Penrose inverse is used as a substitute of
E~! since the invertibility of E is not guaranteed when p>n,
which is the typical scenario in genomics. We now assume there is
an approximate HO GSVD G, ~ U2, VT (h=1,2,...,H) where
UpeR™ >4 s composed of orthonormal left basis vectors and
d < min, (n;). In this case, for all # we have

E=GlG,=VvEvT (4)

and its Moore-Penrose inverse is given by

EF=(Gra)t~vhyr@EHtvt.

Therefore Vh,r we have

EE ~[VE VT [V T (ENT VT
=VE[VThHrEH vt (6)
=VEEHtrt

since V7T is full row rank. Hence we can rewrite W as follows

W= H(H ;;(EhE +EE})
(7)
2 2
H(Hil) ;;Z(zﬁﬂ(m V.

When there exists a common subspace of dimension d <miny(ny,),
with basis vectors V', for which the decomposition of the co-
expression matrices Ej (4) is exact, equation (7) becomes an
equality and the eigenvectors of W will lead to the exact basis V' of
the common subspace. In HO GSVD applications to genomics
data, d can be as large as the total number of observations (i.c.,
d<3,n), and an exact common decomposition of the co-
expression matrices Ej might not be possible. In this case the
eigenvectors of W do not provide an exact decomposition of the
subspace. Moreover, W is not guaranteed to be non-defective and
have a full set of real eigenvalues and eigenvectors. However, even
in the absence of an exact common decomposition, the real part of
the complex eigenvectors can be used to derive a low rank
approximation of the common subspace and extract common and
differential covariance structures from the data. To test the ability
of our HO GSVD based algorithm to capture these covariance
structures in the data in the presence of a “noisy” HO GSVD
decomposition we performed an empirical simulation study (see
Text S1 for details). Our simulations suggest that if a common
subspace of dimension d<miny(n;) with basis vectors
v; (i=1,...,d) explains a significant fraction of the variance in
the original datasets Gy, the approximation (4) holds and the first
eigenvectors of the matrix W (corresponding to the largest
eigenvalues of W) will provide a good approximation of the basis
vectors v; of the HO GSVD subspace (Figure S4).
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Cluster nodes selection and cluster validation

Cluster nodes selection. After we identified V' using our
approximate HO GSVD, the input datasets can be reordered by
using the informative vectors of V, so that nodes that share similar
characteristics tend to cluster into the same diagonal block of the co-
expression matrix E,eRP*? or in the same block formed by
reordered rows of the expression matrix G,eR"*”. For each selected
v (v'e{vi,v2,...,v4}), the identification of a sub-set of nodes that
have significantly large similarity with each other as compared with
the rest of the nodes is obtained using a Gaussian Mixture Model
(GMM). Similarly to [64], here we assume that each informative v*
can be decomposed into two components since we are interested in
learning how likely the distribution of v* is unimodal (v* cannot be
used for data clustering) or bimodal. Moreover, we assume that the
two components (groups) are not treated symmetrically since the
component with smaller weight identifies the cluster of nodes with
high similarity. Conditionally on v*, the posterior probability that the
Jjth node belongs to gth component, 7,;(v*) (g=1,2, j=1,...,n) is
calculated using the function fdrtool in the R package fdrtool [65] with
the normal mixture distribution option. Nodes are classified into the
two components depending upon the (local) misclassification error
rate (MER)

Tefs (V)

1= 7y (v)=1— -~ <,
g() Zn~ g(V(,))
g

where v(;) is the jth ordered element of v*, 7 and f,(*) are the weight
and the gth component with smaller weight, respectively. In contrast
with alternative commonly used methods [13,16,17], our approach
does not use arbitrary parameters external to the data (apart from
the MER level), such as the size of the cluster or the cluster density, to
select the significant nodes.
The C3D method integrates an auto-
matic permutation-based approach to assess the significance of
clusters across multiple conditions (H >2). This allows to (i)
identify the specific conditions where each cluster is detected and
(i1) assess an empirical measure of significance for each cluster.
This cluster “validation” approach can be divided into 2 steps.
The first step is implemented to identify the subset of the input
data G"={G"eG:a=12,....H"} with 0<H™<H, which
represents the conditions where the clusters are present. Likewise,
the subset G ={G{*eG : b=1.2,... H*} with H*=H—H"
indicates the conditions where the cluster is not present. We used
an estimate of the cluster “quality” ¢ (see below) to calculate an
individual P-value (Pj) indicating the significance of one candidate
cluster in each dataset Gj. For each dataset Gy, separately, Py, is
computed as the proportion of the cluster quality calculated from
random samples that exceed cj, where ¢;, indicates the mndividual
cluster quality in Gj. In the second step, we evaluate the overall
significance (overall P-value or P) of the cluster present in conditions
G™ but not in G*. The overall P-value for the target cluster is
computed as the proportion of cluster quality of the random
samples that exceed g, where g represents the overall cluster quality in
all input datasets. In both steps, we used incremental permutations
to generate random samples in a computationally efficient way
and regard a P-value (P, and P) below 0.05 as significant.

The cluster “quality” measurements (¢, and ¢) are defined as
follows:

Cluster validation.

__ the density within the cluster in G,
" the density outside the cluster in G, ’

(8)

Ch
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where ¢™ represents the cluster quality ¢ calculated in the
condition Gfl” whereas ¢;* denotes ¢; calculated in G§*. The cluster
density for the weighted graphs was calculated as previously shown
[14]. More details are provided and discussed in Text S1.

Experimental data description

We selected two large gene expression datasets from rats and
humans, where genome-wide expression profiles were assessed in
the same subject/animal across multiple tissues. The rat datasets
consisted of microarray-based expression profiles for p=15,000
probe sets that were measured in adrenal, aorta, fat, kidney, left
ventricle, liver and skeletal muscle tissues in a panel of n=29
recombinant inbred rat strains [29]. Microarray expression data
were retrieved from ArrayExpress, http://www.ebi.ac.uk/
arrayexpress/, (skeletal muscle, E-TABM-458; aorta, E-MTAB-
322; liver, E-MTAB-323, fat and kidney, E-AFMX-7; heart,
MIMR-222; adrenal, E-TABM-457); gene expression summaries
were derived using robust multichip average (RMA) algorithm
[66] and normalized using Z-score transformation before analysis
with C3D. The human data were retrieved from the Gene
Expression Omnibus (GEO) database (www.ncbi.nlm.nih.gov/
geo) under accession number GSE38805. Briefly, total RNA from
the VZ, ISVZ, OSVZ, and CP of six 13-16 wk postconception
human fetuses was isolated from laser-capture microdissected
Nissl-stained cryosections of dorsolateral telencephalon (see [32]
for additional details on experimental procedures). RNA-seq data
were expressed as fragments per kilobase of exon per million
fragments mapped (FPKM) values and normalized on log2 scale,
yielding an expression matrix of p=18,289xn=6 in H=4
neocortex regions, which were analyzed by G3D.

Software availability

The Matlab implementation of the C3D algorithm, detailed
instructions to run the code and an example of the simulated
datasets used in these studies can be downloaded from http://
www.csc.mrc.ac.uk/Research/Groups/IB/IntegrativeGenomics
Medicine/ contact information: enrico.petretto@csc.mrc.ac.uk or
xiaolin.xiao@csc.mrc.ac.uk

Supporting Information

Figure S1 Comparison between C3D, WGCNA and DiffCoEx
methods for analysis of simulated datasets consisting of 5,000 genes
and 10 observations in 7 conditions. SD, standard deviation
measured over 20 replicated datasets; dashed line, FPR =5%.
(TIFF)

Figure 82 7op, computational time required by C3D algorithm
to analyze 1,000 genes in 25 conditions (top left) and 10,000 genes
in 3 conditions (top right). Bottom, comparison of computational
times of C3D, WGCNA and DiffCoEx methods for analysis of
1,000 (left) and 10,000 (right) genes in 7 conditions. All
comparison were carried out using a standard desktop computer
(Mac Pro, 2 x 2.4 GHz Quad-core Intel Xeon with 20 Gb RAM).
(TIFF)

Figure S3 We assessed whether rat cluster 1 genes were
significantly co-expressed in human heart and liver tissues. We
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carried out genome-wide co-expression network analysis by Graph-
ical Gaussian models using human gene expression datasets from the
heart (n=194 subjects, GEO: GSE5406) and liver tissue (n=427
subjects, GEO: GSE9588). We first selected the top 10,000 varying
genes in each dataset using co-variance filtering and then calculated
the partial correlation matrix. We then tested whether the human-rat
orthologous genes of rat cluster 1 (=132 annotated genes) had
significant partial-correlations more than what expected in 10,000
randomly sampled networks. Out of 132 genes in rat cluster 1, 132 and
115 had human-rat orthologous genes in heart and liver expression
datasets, and included all Hsp and cardiomyopathy genes identified
in the rat (except for PLEC which was not present in the human liver
dataset). At 5% FDR we detected 95 genes (forming 194 significant
edges) in the heart and 108 genes (forming 439 significant edges) in
the liver tissue, respectively. We report the density of the number of
edges observed i 10,000 randomly sampled networks and number of
significant edges detected in each tissue (indicated by the red dot).
The dashed red line indicates the 95 percentile of the distribution. For
each tssue, the P-values were calculated as follows:

(number of significant edges in random samples) > (number of significant edges in human-rat orthologous genes) + 1

P—value = (number of random samples + 1)

(TIFF)

Figure 84 Correlation between the solutions of the approximate
HO GSVD (eigenvectors of W) and simulated cluster structures
for different noise levels (i.e., proportion of the error variance,
ranging from 20% to 80%). For each dataset, we simulated 1,000
genes and 3 independent cluster structures: one “common” cluster
structure is present simultaneously in 3 conditions (leff panels), one
“differential” cluster structure is present in 2 conditions (middle
panels) and another “differential” cluster structure is present in 1
condition (right panels). For each level of error variance (x-axes), 100
independent replicates were generated and the absolute correla-
tions between the first three eigenvectors of W and the simulated
patterns are reported as median and interquartile range (y-axes).
The quality of the pattern reconstruction decreases when the error

References
1. Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-

based approach to human disease. Nature Reviews Genetics 12: 56-68.

2. Cho DY, Kim YA, Przytycka TM (2012) Chapter 5: Network biology approach
to complex diseases. PLoS Comput Biol 8: ¢1002820.

3. Gholami AM, Fellenberg K (2010) Cross-species common regulatory network
inference without requirement for prior gene affiliation. Bioinformatics 26:
1082-1090.

4. Chen Y, Zhu J, Lum PY, Yang X, Pinto S, et al. (2008) Variations in DNA
elucidate molecular networks that cause disease. Nature 452: 429-435.

5. Lin B, White JT, Lu W, Xie T, Utleg AG, et al. (2005) Evidence for the presence
of diseaseperturbed networks in prostate cancer cells by genomic and proteomic
analyses: A systems approach to disease. Cancer Research 65: 3081-3091.

6. Min JL, Nicholson G, Halgrimsdottir I, Almstrup K, Petri A, et al. (2012)
Coexpression network analysis in abdominal and gluteal adipose tissue reveals
regulatory genetic loci for metabolic syndrome and related phenotypes. PLoS
Genet 8: €1002505.

7. Schadt EE, Friend SH, Shaywitz DA (2009) A network view of disease and
compound screening. Nature Reviews Drug Discovery 8: 286-295.

8. Chuang HY, Lee E, Liu YT, Lee D, Ideker T (2007) Network-based
classification of breast cancer metastasis. Molecular Systems Biology 3: 140.

9. Franke L, van Bakel H, Fokkens L, de Jong ED, Egmont-Petersen M, et al.
(2006) Reconstruction of a functional human gene network, with an application
for prioritizing positional candidate genes. The American Journal of Human
Genetics 78: 1011-1025.

10. Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, et al. (2005) An integrative
genomics approach to infer causal associations between gene expression and
discase. Nature Genetics 37: 710-717.

11. Alter O, Brown PO, Botsein D (2003) Generalized singular value decomposition
for comparative analysis of genome-scale expression data sets of two different
organisms. PNAS 100: 3351-3356.

12. Dawson N, Xiao X, McDonald M, Higham DJ, Morris BJ, et al. (2012)
Sustained NMDA receptor hypofunction induces compromised neural systems
integration and schizophrenia-like alterations in functional brain networks.
Cerebral cortex [epub ahead of print].

PLOS Genetics | www.plosgenetics.org

Multi-tissue Analysis of Co-expression Networks

variance increases for all cluster structures. As expected, the drop
is higher for the cluster structure that is unique to one condition
since it explains a lower amount of the total variance across the
three conditions. Please refer to Text S1 for additional details on
the simulated data.

(TIFF)

Table S1
(XLSX)

Table S2 Functional
identified in rat.
(XLSX)

Table S3 Discase Enrichment for rat cluster 1. R: Ratio of
enrichment for disease associated genes, rawP: enrichment p-value
from hypergeometric test, adjP: enrichment p-value adjusted for
the multiple testing.

Co-expression clusters identified by C3D in the rat.

annotation of co-expression clusters

(XLSX)

Table S4 Co-expression clusters identified by C3D in human
fetal neocortex.

(XLSX)

Table S5 Functional annotation of co-expression clusters
identified in human fetal neocortex.

(XLSX)

Text S1 Supporting methods.
(PDF)

Author Contributions

Conceived and designed the experiments: XX EP. Performed the
experiments: XX MR AMM. Analyzed the data: AMM EP. Contributed
reagents/materials/analysis tools: LB EP. Wrote the paper: XX AMM MR
LB EP. Developed the code for the C3D analyses: XX. Coordinated the
study: LB EP. Contributed equally to this work: XX AMM MR.

13. Tesson B, Breitling R, Jansen R (2010) DiffCoEx: a simple and sensitive method
to find differentially coexpressed gene modules. BMC Bioinformatics 11: 497.

14. Xiao X, Dawson N, Maclntyre L, Morris B, Pratt J, et al. (2011) Exploring
metabolic pathway disruption in the subchronic phencyclidine model of
schizophrenia with the Generalized Singular Value Decomposition. BMC
Systems Biology 5: 72.

15. Li W, Liu CC, Zhang T, Li H, Waterman MS, et al. (2011) Integrative analysis
of many weighted co-expression networks using tensor computation. PLoS
Comput Biol 7: €1001106.

16. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted
correlation network analysis. BMC Bioinformatics 9: 559.

17. Zhang B, Horvath S (2005) A general framework for weighted gene co-
expression network analysis. Statistical Applications in Genetics and Molecular
Biology 4: Articlel7.

18. Roy S, Werner-Washburne M, Lane T (2011) A multiple network learning
approach to capture system-wide condition-specific responses. Bioinformatics
27: 1832-1838.

19. Higham DJ, Kalna G, Kibble M (2007) Spectral clustering and its use in
bioinformatics. Journal of Computational and Applied Mathematics 204: 25-37.

20. Kalna G, Vass JK, Higham DJ (2008) Multidimensional partitioning and bi-
partitioning: analysis and application to gene expression datasets. International
Journal of Computer Mathematics 85: 475-485.

21. Zhang W, Edwards A, Fan W, Zhu D, Zhang K (2010) svdPPCS: an effective
singular value decomposition-based method for conserved and divergent co-
expression gene module identification. BMC Bioinformatics 11: 338.

22. de Silva E, Stumpf MPH (2005) Complex networks and simple models in
biology. Journal of the Royal Society Interface 2: 419-430.

23. Lee CH, Alpert BO, Sankaranarayanan P, Alter O (2012) GSVD comparison of
patient-matched normal and tumor aCGH profiles reveals global copy-number
alterations predicting glioblastoma multiforme survival. PLoS ONE 7: ¢30098.

24. Golub GH, Van Loan CF (1996) Matrix Computations. Baltimore: Johns
Hopkins University Press, third edition.

25. Paige CC, Saunders MA (1981) Towards a generalized singular value
decomposition. SIAM Journal on Numerical Analysis 18: 398-405.

January 2014 | Volume 10 | Issue 1 | e1004006



26.

27.

28.

29.

30.

31.

32.

33.

34.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Ponnapalli SP, Saunders MA, Van Loan CF, Alter O (2011) A Higher-Order
Generalized Singular Value Decomposition for Comparison of Global mRNA
Expression from Multiple Organisms. PLoS ONE 6: ¢28072.

Heinig M, Petretto E, Wallace C, Bottolo L, Rotival M, et al. (2010) A trans-
acting locus regulates an anti-viral expression network and type 1 diabetes risk.
Nature 467: 460-464.

Zhou XH, McClish DK, Obuchowski NA (2002) Statistical Methods in
Diagnostic Medicine (Wiley Series in Probability and Statistics). Wiley-
Interscience.

Hubner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, et al. (2005)
Integrated transcriptional profiling and linkage analysis for identification of
genes underlying disease. Nature Genetics 37: 243-253.

Petretto E, Sarwar R, Grieve I, Lu H, Kumaran MK, et al. (2008) Integrated
genomic approaches implicate osteoglycin (Ogn) in the regulation of left
ventricular mass. Nature Genetics 40: 546-552.

Pravenec M, Churchill PC, Churchill MC, Viklicky O, Kazdova L, et al. (2008)
Identification of renal ¢d36 as a determinant of blood pressure and risk for
hypertension. Nature Genetics 40: 952-954.

Fietz SA, Lachmann R, Brandl H, Kircher M, Samusik N, et al. (2012)
Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a
role of extracellular matrix in progenitor self-renewal. Proceedings of the
National Academy of Sciences 109: 11836-11841.

Huang DW, Sherman BT, Lempicki RA (2008) Systematic and integrative
analysis of large gene lists using david bioinformatics resources. Nature Protocols
4: 44-57.

Shoemaker J, Lopes T, Ghosh S, Matsuoka Y, Kawaoka Y, et al. (2012) Cten: a
web-based platform for identifying enriched cell types from heterogeneous
microarray data. BMC Genomics 13: 460.

. Rossin EJ, Lage K, Raychaudhuri S, Xavier RJ, Tatar D, et al. (2011) Proteins

encoded in genomic regions associated with immune-mediated disease physically
interact and suggest underlying biology. PLoS Genet 7: ¢1001273.

Roider HG, Manke T, O’Keeffe S, Vingron M, Haas SA (2009) Pastaa:
identifying transcription factors associated with sets of co-regulated genes.
Bioinformatics 25: 435-442.

Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross
talk between a family of heat shock factors, molecular chaperones, and negative
regulators. Genes & Development 12: 3788-3796.

Ma H, Gong H, Chen Z, Liang Y, Yuan J, et al. (2012) Association of stat3 with
HSF1 plays a critical role in g-csf-induced cardio-protection against ischemia/
reperfusion injury. Journal of Molecular and Cellular Cardiology 52: 1282
1290.

Stephanou A, Isenberg DA, Nakajima K, Latchman DS (1999) Signal
transducer and activator of transcription-1 and heat shock factor-1 interact
and activate the transcription of the hsp-70 and hsp-90B gene promoters.
Journal of Biological Chemistry 274: 1723-1728.

Kimura A (2010) Molecular basis of hereditary cardiomyopathy: abnormalities
in calcium sensitivity, stretch response, stress response and beyond. Journal of
Human Genetics 55: 81-90.

Zhang B, Kirov S, Snoddy J (2005) Webgestalt: an integrated system for
exploring gene sets in various biological contexts. Nucleic Acids Research 33:
W741-W748.

Zhao Z, Huang Y, Zhang B, Shyr Y, Xu H (2012) Genomics in 2012: challenges
and opportunities in the next generation sequencing era. BMC Genomics 13:
SI.

Strauss M, Porras N (2007) Differential expression of hsp70 and ultrastructure of
heart and liver tissues of rats treated with adriamycin: protective role of
l-carnitine. Investigacion Clinica 48: 33.

Schiaffonati L, Tacchini L, Pappalardo C (2005) Heat shock response in the
liver: expression and regulation of the hsp70 gene family and early response
genes after in vivo hyperthermia. Hepatology 20: 975-983.

PLOS Genetics | www.plosgenetics.org

16

46.

47.

48.

49.

50.

51.

52.

53.

54.

59.

60.

61.

62.

63.

64.

66.

Multi-tissue Analysis of Co-expression Networks

Schifer J, Strimmer K, et al. (2005) A shrinkage approach to large-scale
covariance matrix estimation and implications for functional genomics.
Statistical Applications in Genetics and Molecular Biology 4: 32.

Hannenhalli S, Putt ME, Gilmore JM, Wang J, Parmacek MS, et al. (2006)
Transcriptional genomics associates fox transcription factors with human heart
failure. Circulation 114: 1269-1276.

Schadt EE, Molony C, Chudin E, Hao K, Yang X, et al. (2008) Mapping the
genetic architecture of gene expression in human liver. PLoS Biology 6: ¢107.
Knowlton AA, Kapadia S, Torre-Amione G, Durand JB, Bies R, et al. (1998)
Differential expression of heat shock proteins in normal and failing human
hearts. Journal of Molecular and Cellular Cardiology 30: 811-818.

Latif N, Taylor P, Khan M, Yacoub M, Dunn M (1999) The expression of heat
shock protein 60 in patients with dilated cardiomyophathy. Basic Research in
Cardiology 94: 112-119.

Pockley A, Frostegard J (2005) Heat shock proteins in cardiovascular disease and
the prognostic value of heat shock protein related measurements. Heart 91:
1124.

Willis MS, Patterson C (2013) Proteotoxicity and cardiac dysfunction
alzheimer’s disease of the heart? New England Journal of Medicine 368: 455—
464.

Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, et al. (2001)
Multiclass cancer diagnosis using tumor gene expression signatures. Proceedings
of the National Academy of Sciences 98: 15149-15154.

Abeyta MJ, Clark AT, Rodriguez RT, Bodnar MS, Pera RAR, et al. (2004)
Unique gene expression signatures of independently-derived human embryonic
stem cell lines. Human Molecular Genetics 13: 601-608.

Rossignol R, Letellier T, Malgat M, Rocher C, Mazat JP (2000) Tissue variation
in the control of oxidative phosphorylation: implication for mitochondrial
diseases. Biochem J 347: 45-53.

. Honda K, Yanai H, Negishi H, Asagiri M, Sato M, et al. (2005) IRF-7 is the

master regulator of type-I interferon-dependent immune responses. Nature 434:
772-777.

5. Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140: 871-882.
. Roep B (2003) The role of T-cells in the pathogenesis of Type 1 diabetes: from

cause to cure. Diabetologia 46: 305-321.

Schwartz MA, Assoian RK (2001) Integrins and cell proliferation: regulation of
cyclin-dependent kinases via cytoplasmic signaling pathways. Journal of Cell
Science 114: 2553-2560.

Palm T, Hemmer K, Winter J, Fricke IB, Tarbashevich K, et al. (2013) A
systemic transcriptome analysis reveals the regulation of neural stem cell
maintenance by an E2F1-miRNA feedback loop. Nucleic Acids Research 41:
3699-3712.

Schmidt M, Huber L, Majdazari A, Schiitz G, Williams T, et al. (2011) The
transcription factors ap-2B and ap-2o are required for survival of sympathetic
progenitors and differentiated sympathetic neurons. Developmental Biology 355:
89-100.

Liu X, Somel M, Tang L, Yan Z, Jiang X, et al. (2012) Extension of cortical
synaptic development distinguishes humans from chimpanzees and macaques.
Genome Research 22: 611-22.

Kinoshita K, Obayashi T (2009) Multi-dimensional correlations for gene
coexpression and application to the large-scale data of arabidopsis. Bioinfor-
matics 25: 2677-2684.

Meyer PE, Lafitte F, Bontempi G (2008) minet: A R/Bioconductor package for
inferring large transcriptional networks using mutual information. BMC
bioinformatics 9: 461.

Xiang T, Gong S (2008) Spectral clustering with eigenvector selection. Pattern
Recognition 41: 1012-1029.

Strimmer K (2008) fdrtool: a versatile R package for estimating local and tail
arca-based false discovery rates. Bioinformatics 24: 1461-1462.

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, et al. (2003)
Exploration, normalization, and summaries of high density oligonucleotide array
probe level data. Biostatistics 4: 249-264.

January 2014 | Volume 10 | Issue 1 | e1004006



