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Abstract

Recent high-throughput efforts such as ENCODE have generated a large body of genome-scale transcriptional data in
multiple conditions (e.g., cell-types and disease states). Leveraging these data is especially important for network-based
approaches to human disease, for instance to identify coherent transcriptional modules (subnetworks) that can inform
functional disease mechanisms and pathological pathways. Yet, genome-scale network analysis across conditions is
significantly hampered by the paucity of robust and computationally-efficient methods. Building on the Higher-Order
Generalized Singular Value Decomposition, we introduce a new algorithmic approach for efficient, parameter-free and
reproducible identification of network-modules simultaneously across multiple conditions. Our method can accommodate
weighted (and unweighted) networks of any size and can similarly use co-expression or raw gene expression input data,
without hinging upon the definition and stability of the correlation used to assess gene co-expression. In simulation studies,
we demonstrated distinctive advantages of our method over existing methods, which was able to recover accurately both
common and condition-specific network-modules without entailing ad-hoc input parameters as required by other
approaches. We applied our method to genome-scale and multi-tissue transcriptomic datasets from rats (microarray-based)
and humans (mRNA-sequencing-based) and identified several common and tissue-specific subnetworks with functional
significance, which were not detected by other methods. In humans we recapitulated the crosstalk between cell-cycle
progression and cell-extracellular matrix interactions processes in ventricular zones during neocortex expansion and further,
we uncovered pathways related to development of later cognitive functions in the cortical plate of the developing brain
which were previously unappreciated. Analyses of seven rat tissues identified a multi-tissue subnetwork of co-expressed
heat shock protein (Hsp) and cardiomyopathy genes (Bag3, Cryab, Kras, Emd, Plec), which was significantly replicated using
separate failing heart and liver gene expression datasets in humans, thus revealing a conserved functional role for Hsp
genes in cardiovascular disease.
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Introduction

The increasingly cheaper and rapid accumulation of large -

omics datasets across several experimental conditions has

prompted generation of a wealth of data on biological networks.

This growth of network data now permits their large scale

applications to biomedical research, including analysis of gene

function, metabolic and signaling pathways, as well as disease-

related or cell function-related networks [1,2]. However, recon-

structing and interpreting large biological networks, such as

co-expression networks, protein-protein interaction networks or

genetic networks, with different features (e.g., sparse or densely

interconnected, etc.) poses many challenges, advocating efficient

and flexible methods for network inference and pattern discovery.

An important level of complexity in current network analysis

regards its extension to multiple conditions, for instance different

species [3], cell-types [4] or disease states [5,6]. For example,

reconstruction of networks across multiple disease-states is

becoming a useful approach for efficient drug-target discovery,

as networks can inform the ‘‘biological context’’ (e.g., pathways,

cellular processes) where genes operate and therefore can help

designing better therapeutic interventions [7]. In genetic studies of

complex diseases researchers increasingly focus on groups of

highly interconnected genes within larger networks (referred to as

clusters, modules or subnetworks) to elucidate specific cellular and

molecular processes that might represent functional disease

mechanisms and pathological pathways [8–10].

While several computational tools for network analysis in single

datasets or conditions are available, only few computationally

efficient methods for genome-scale network analysis across
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multiple conditions have been developed to date. These methods

can be broadly classified into two main categories: (i) methods to

find the ‘‘difference’’ between networks across conditions or to

pinpoint condition-specific networks [11–14], or (ii) methods to

identify the common parts in networks across conditions [15–17].

More recently, tensor-based computational frameworks [15] or

probabilistic Markov blanket search algorithms [18] have been

proposed to learn network structures across conditions. However,

these methods are either heavily influenced by the choice of input

parameters (e.g., number of clusters, number of nodes within a

cluster, cluster interconnectivity) [15] or, being based on

probabilistic graphical modelling, they become prohibitively slow

for high number of conditions since they are trying to learn the

structure of large graphs [18].

Complementary to the above approaches, spectral methods,

such as Singular Value Decomposition (SVD), have been also

proposed to investigate patterns of connectivity between nodes

within a single network [19,20] or for comparing two networks

[21]. Generally, any network can be described as a graph, which is

denoted as G�~(V�,E�) comprising a set V� of vertices or nodes

together with a set E� of edges [22]. The graph may be

represented by a square, symmetric, real-valued matrix A of size

V�j j whose entries denote the relationship between the corre-

sponding nodes. In the affinity matrix A[Rp|p, the element ajk,

called weight, represents the strength of connection between

vertices j and k. For instance, in gene regulatory (or co-expression)

networks, the nodes might represent genes (or mRNAs expression)

and edges represent the strength of gene-gene interactions (or

mRNAs co-expression).

Generalized Singular Value Decomposition (GSVD) can be used

to identify sub-network structures and for comparative analysis of

genomic datasets across two conditions [11,23]. Given two matrices

G1[Rl|n and G2[Rm|n [24,25], their GSVD is given by

G1~U1S1X{1 and G2~U2S2X{1, ð1Þ

where U1[Rl|n and U2[Rm|n have orthonormal columns,

X[Rn|n is invertible, Sh~diag(sh,i)[Rn|n with sh,iw0

(h~1,2 and i~1,2, . . . ,n), ST
1 S1zST

2 S2~I with I[Rn|n. The

ratios s1,i=s2,i are the generalized singular values of G1 and G2. In this

setup, the common factor X is informative of the cluster structure

shared across the two data matrices.

Recently, a novel mathematical formulation, higher-order

GSVD (HO GSVD), which is constructed for more than two

data matrices has been proposed [26]. Under this framework, the

H matrices Gh[Rph|n (h~1,2, . . . ,H,with H§2), each with full

column rank (i.e., the maximum number of linearly independent

column vectors of Gh is n), are decomposed as

G1 ~ U1S1VT ,

G2 ~ U2S2VT ,

..

.

GH ~ UHSH VT ,

ð2Þ

where Uh[Rph|n is composed of normalized left basis

vectors, Sh~diag(sh,i)[Rn|n with sh,iw0 (h~1,2, . . . ,H and i~

1,2, . . . ,n) and the latent factor matrix V[Rn|n is composed of

normalized right basis vectors. The HO GSVD can be also derived

in the special case of square, symmetric, full rank affinity matrices,

G~(gjkh)ph|ph|H , where each element gjkh represents the weight

of the edge between node j and k in the hth condition. It has been

previously employed to compare multiple datasets with identical

column size in order to detect their common substructures of

columns (i.e., observations) [26]. Yet, another useful application of

the HO GSVD to genomics is to set it to discover gene networks

across multiple conditions and pinpoint ‘‘common’’ and ‘‘differen-

tial’’ cluster structures.

In this paper, we build on the flexible HO GSVD mathematical

framework and propose a new, parameter-free computational

algorithm (Cross-Conditions Cluster Detection or C3D) for

automatic detection of both similarity and dissimilarity clustering

patterns in large weighted (and unweighted) networks across

several conditions (H§2). The original HO GSVD model has

been employed for analysis of datasets Gh[Rph|n (h~1,2, . . . ,H)
that had varying number of genes (ph), the same number of

observations (n) (i.e., arrays/time points in [26]) across conditions

and with ph&n. As such, this illustrative application of the HO

GSVD in genomics was aimed at the identification of common

structures within the n observations [26]. Here, we built on the

initial HO GSVD to extract sub-structures (i.e., common and

differential clusters) from p genes across multiple conditions

(h~1,2, . . . ,H) by applying the decomposition to the transposed

expression matrix Gh[Rp|nh . We show how this enables a more

general application of the HO GSVD framework to genome-scale

network analysis of genomic data (e.g., microarray, RNA-seq) in

multiple conditions. Besides, a distinctive feature of our method is

in its capability to take as an input either the raw expression

matrices or co-expression matrices, allowing flexibility in the

choice of the co-expression measures (e.g., Spearman, Kendall,

mutual information, etc.).

Figure 1 illustrates the working principle of the C3D algorithm.

The input data for C3D can be provided into different formats to

be used by the HO GSVD: (i) the raw expression data matrices

(Gh[Rnh|p) or (ii) the co-expression data matrices (Eh~GT
h

Gh[Rp|p). In the former case, a first data initialization step is

conducted where the input expression matrices, with the same

Author Summary

Complex biological interactions and processes can be
modelled as networks, for instance metabolic pathways or
protein-protein interactions. The growing availability of
large high-throughput data in several experimental condi-
tions now permits the full-scale analysis of biological
interactions and processes. However, no reliable and
computationally efficient methods for simultaneous analy-
sis of multiple large-scale interaction datasets (networks)
have been developed to date. To overcome this shortcom-
ing, we have developed a new computational framework
that is parameter-free, computationally efficient and highly
reliable. We showed how these distinctive properties make
it a useful tool for real genomic data exploration and
analyses. Indeed, in extensive simulation studies and real-
data analyses we have demonstrated that our method
outperformed existing approaches in terms of efficiency
and, most importantly, reproducibility of the results. Beyond
the computational advantages, we illustrated how our
method can be effectively applied to leverage the vast
stream of genome-scale transcriptional data that has risen
exponentially over the last years. In contrast with existing
approaches, using our method we were able to identify and
replicate multi-tissue gene co-expression networks that
were associated with specific functional processes relevant
to phenotypic variation and disease in rats and humans.

Multi-tissue Analysis of Co-expression Networks
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number of genes p are converted to co-expression matrices

Eh[Rp|p by scaling their variance to 1 and taking their quadratic

form. In the second step (HO GSVD-based algorithm), an approxi-

mate HO GSVD is employed to identify a common basis

V~v1 . . . ,vd , with dƒ minh (nh) representing the dimension of

the GSVD common subspace, for the decomposition of the input

datasets and identify the common and differential correlation

structures. The HO GSVD-based algorithm computes a p|p
square matrix W , which is built on the arithmetic mean of all

pairwise quotients EhEz
r where Ez denotes the Moore-Penrose

inverse of the co-expression matrix E [24] (see Methods section).

The first eigenvectors of W (according to the norm of the

corresponding eigenvalues) are then used to identify an approx-

imate decomposition of the input co-expression matrices and form

the decomposition basis V . Specifically, each selected column

vector of V (v�[fv1,v2, . . . ,vdg) is used to reorder the input data

matrices such that candidate ‘‘common’’ (or ‘‘differential’’) clusters

can be identified. In the third step (cluster nodes selection and

validation), we employ a mixture model approach to classify genes

and assign them to each cluster based on a misclassification error

rate (MER). Finally, we implemented an empirical cluster

validation procedure to identify the conditions where clusters are

present and assess the level of significance for clusters within each

condition.

To demonstrate the increased power and benefits of our HO

GSVD-based algorithm, we carried out an extensive simulation

study and benchmarked C3D against commonly used methods

that were designed to detect either common (WGCNA [16,17]) or

differential network structures (DiffCoEx [13]) across multiple

conditions. We show that our approach has higher power and

stability in detecting both common and differential co-expression

clusters across all simulated conditions, while being two to seven

fold less computationally intensive than alternative methods. In

contrast with alternative approaches that require specification of

ad-hoc input parameters, the proposed method has the distinctive

advantage of being parameter-free, which makes it a powerful tool

for real data exploration and analysis. To substantiate this claim,

we applied C3D to publicly available transcriptomic datasets in

rats and humans and identified several multi-tissue gene co-

expression networks that were associated with specific functional

processes relevant to phenotypic variation and disease.

Results

Simulation studies
We carried out a simulation study to compare our method with

commonly used approaches for identification of ‘‘common’’ or

‘‘differential’’ clusters across multiple networks: (1) WGCNA and

Figure 1. Illustration of the C3D method. Graphical summary of the main steps of the C3D method: (1) data initialization, (2) HO-GSVD based
algorithm and (3) cluster nodes selection and validation. Input data can be either gene expression or co-expression matrices (graphs) and the output
include information about the identified clusters (cluster density, formatted network file), the conditions where the clusters are detected and the
cluster significance (p-value). To retrieve significant clusters, the user can specify (i) the misclassification error rate (MER) for inclusion of genes in the
cluster and (ii) the empirical p-value for significance of the cluster.
doi:10.1371/journal.pgen.1004006.g001

Multi-tissue Analysis of Co-expression Networks
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(2) DiffCoEx. The WGCNA method for detection of common

clusters across co-expression networks employs a ‘‘soft’’ threshold

to assign a connection weight to each gene pair and extract densely

connected gene clusters that are present in all conditions. The

DiffCoEx method follows a strategy similar to WGCNA but,

instead, it focuses on detecting the differences in co-expression

patterns (‘‘differential’’ clusters) between multiple conditions.

Additional details on the specific parameterizations used in for

WGCNA and DiffCoEx analyzes are reported in Text S1.

To simulate a realistic example of gene expression data from

multiple conditions that represent a typical ‘‘small n large p’’

scenario, we draw inspiration from a publicly available multi-tissue

microarray dataset consisting of genome-wide expression profiles

from n~29 recombinant inbred rat strains in seven tissues [27].

We simulated different types of clusters that are either detected in

all conditions (‘‘common’’ clusters) or are specific to a subset of

conditions (‘‘differential’’ clusters), Figure 2. We considered dense

clusters of variable sizes (100–500 nodes) where each node is

connected with all other nodes in the cluster with a given weight

(gjk=0), which is defined as the Pearson correlation between

expression profiles of genes j and k. We simulated clusters with

varying cluster densities (0.1, 0.3, 0.5, 0.7), which were defined as

the average Pearson correlation between any pair of nodes within

a cluster. In addition to the simple case of a cluster common to all

conditions and with the same size (Cluster pattern 1), we set out to

evaluate the sensitivity of our and alternative approaches to detect

clusters which are present only in a subset of conditions and that

overlap partially across conditions. This is more likely to be

relevant for analysis of pathways and gene networks across tissues

or during development, where varying gene-sets can exert their

function only at specific developmental times or in specific cell-

types. To account for these more complex scenarios, we simulated

‘‘nested’’ (Cluster pattern 2) and partially ‘‘overlapping’’ (Cluster

pattern 3) cluster structures (Figure 2). Cluster pattern 2 and Cluster

pattern 3 have an intersection part, defined by the nodes in common to

all conditions, and a union part, defined by the nodes in common to

all conditions plus the nodes present in individual conditions. In

summary, for each of the four cluster densities considered one

dataset consisted of a p~5,000 and n~30 matrix in H~7
conditions, where each cluster type (Clusters patterns 1–3) was

simultaneously present in the data matrix. To assess reliability of

the results, for each of these data we generated 20 independent

replicates, yielding a total of 560 simulated datasets. Similarly, to

evaluate how the number of available observations affects the

methods’ performance we simulated datasets consisting of a

p~5,000 and n~10 matrix in H~7 conditions (20 replicates, 560

datasets in total). See Text S1 for additional details.

Comparison with other methods
The True Positive Rate (TPR) and the False Positive Rate (FPR)

are widely used as evaluation metrics for a classification model and

can be used to quantitatively assess (and compare) methods

performance [28]. The TPR defines how many correct positive

results (simulated clusters genes within the called cluster) occur

among all results called positive in the analysis by a given method.

FPR, on the other hand, defines how many incorrect positive

results occur among all results called positives. Typically, a

TPR~1 (100%) and the corresponding FPR~0 indicate a

perfect classifier (or a perfect method). In our simulation study,

the best cluster detection method would yield both high TPR and

low FPR levels for different cluster types, sizes and densities.

For each simulated cluster type, Figure 3 shows the TP/FP rates

for C3D, WGCNA and DiffCoEx methods as a function of the

simulated cluster densities. For C3D we controlled the (local)

Figure 2. Description of the cluster structures used in the simulation studies. We simulated three cluster types: ‘‘common’’ (Cluster pattern
1), ‘‘nested’’ (Cluster pattern 2) and ‘‘overlapping’’ (Cluster pattern 3) that are shared across three or more conditions. For Cluster pattern 2 and Cluster
pattern 3, the ‘‘intersection cluster’’ is defined by the nodes in common to all conditions (red square) whereas the ‘‘union cluster’’ is defined by the
nodes in common to all conditions plus the nodes present in individual conditions (black square).
doi:10.1371/journal.pgen.1004006.g002

Multi-tissue Analysis of Co-expression Networks
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misclassification error (i.e., the probability to assign wrongly a gene

to a cluster) to be less than 0.05 or less than 0.2, and required that

each cluster is detected with Pƒ0:001, whereas for WGCNA and

DiffCoEx we used two (default) parameterizations chosen accord-

ing to the software guidelines (see Methods section). The C3D

method outperformed WGCNA in the identification of clusters

present in all conditions (Cluster pattern 1, Figure 3), and showed to

have consistently high TPR (and very low FPR, v0:1%)

irrespective of the simulated cluster density. WGCNA perfor-

mance varied considerably as a function of the simulated cluster

density and, depending on the adopted parameterization, FPR

levels were w5% (reaching 20% in one case), Figure 3.

Furthermore, we observed large variations in WGCNA perfor-

mance (mostly in the TPR), which are indicated by the large

standard deviations in TPRs calculated from the 20 replicated

datasets. For more complicated patterns (‘‘nested’’ and ‘‘overlap-

ping’’ clusters), we compared C3D with WGCNA to detect the

intersection part (100 nodes) of common clusters. Since WGCNA is

designed to detect only those clusters shared across all conditions,

for clusters present in a subset of conditions, we run WGCNA only

in the set of conditions where the simulated clusters were present.

For Cluster patterns 2–3, C3D and WGCNA performances were

similar, reaching high TPR for detection of the intersection part of

clusters with simulated densitiesw0:3 (Figure 3). However, C3D

showed higher TPRs than WGCNA to detect clusters with low

densities (0.1–0.3), while controlling the FPR at low levels (ƒ5%,

Cluster pattern 2 intersection).

In the case of partially overlapping clusters present in a subset of

conditions (Cluster patterns 2–3) we compared C3D with DiffCoEx

in respect of detecting the union part (500 nodes) of ‘‘differential’’

clusters, and calculated TPR and FPR for detection of this cluster

(indicated with a black square at the top of Figure 3). We found

that C3D outperformed DiffCoEx across the simulated scenarios.

In the case of the ‘‘nested’’ cluster structures that are present in 5

out of 7 conditions, C3D had consistently higher TPR levels than

DiffCoEx, which showed comparable TPR levels only for

detection of highly-dense clusters (i.e., density~0:7, Cluster pattern

2 union, Figure 3). However, similarly to what observed for

WGCNA method, in this case DiffCoEx showed large variability

in its performance across the 20 replicated datasets. The difference

in performance between C3D and DiffCoEx was observed also in

the more complicated case of partially overlapping cluster

structures (Cluster pattern 3). In this case, C3D showed consistently

higher TPR than DiffCoEx that reached a maximum TPR*40%
as compared with *70% of C3D. Both methods showed

comparably low FPR (ƒ5%) for detection of the union part of

Cluster patterns 2–3 (Figure 3). Similarly to what observed for the

simulated data with n~30 observations, C3D performed better

than (or as good as) both WGCNA and DiffCoEx when

benchmarked on simulated datasets with only n~10 observations

Figure 3. Performance comparison for C3D, WGCNA and DiffCoEx methods Top, three cluster types (‘‘common’’ ‘‘nested’’ and
‘‘overlapping’’) were simulated in H~7 conditions where the cluster size (pi) is reported for both the intersection and union part of the clusters.
Bottom, for each method the average TPR and FPR (+ standard deviation ) across 20 replicated datasets were calculated and reported for the
simulated cluster densities. For C3D analysis (blue lines) we required each cluster to be detected with a misclassification error rate (MER) of 5% or 20%
and Pƒ0:001. For WGCNA (red line) and DiffCoEx (green line) we considered two ‘‘default values’’ for the cut-off threshold, which were chosen
according to the WGCNA guidelines (see Text S1 for details).
doi:10.1371/journal.pgen.1004006.g003
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(Figure S1). As expected, all methods had lower TPRs associated

with the detection of low-density clusters, however also with a

small number of observations, C3D showed significantly better

(and more stable) results than WGCNA and similar performance

as compared with DiffCoEx. Notably, for detection of ‘‘common’’

clusters present in all conditions (Cluster pattern 1), CD3 held high

TPR levels (and ƒ5% FPR) whereas WGCNA’s performance

dropped significantly, reaching a maximum *35% TPR (Figure

S1).

These data show that C3D on balance performed better than

WGCNA and DiffCoEx across all simulated scenarios. We

underline that while WGCNA and DiffCoEx methods are

specifically designed to detect either common or differential

clusters, respectively, here we showed that C3D was equally or

more accurate than both methods in the detection of common and

differential cluster structures. We also highlight how C3D ability to

detect correctly the simulated clusters was highly consistent across

all runs on the replicated datasets, as shown by the small standard

deviations of the mean TP and FP estimates (Figure 3). In contrast,

we observed that both WGCNA and DiffCoEx performances

varied appreciably across the replicated simulations, often

resulting in large standard deviations of the mean TP and FP

estimates. To better assess the reliability of the different methods

we calculated the relative standard deviation RSD~ð

100|
standard deviation

meanj j Þ of the TPR measured in all analyzed

datasets. In 560 simulated datasets of size 30|5,000, the C3D

method had a median RSD of TPR~5:77 (range 113.36) whereas

WGCNA and DiffCoEx have median RSD~37:53 (range 447.2)

and median RSD~78:15 (range 133.39), respectively. Similarly,

in 560 datasets of size 10|5,000 we estimated the following RSDs

of TPR: 12.43 (range 113.38) for C3D, 57.52 (range 161.89) for

WGCNA and 87.96 (range 120.59) for DiffCoEx. The large RSDs

of TPR calculated from the WGCNA and DiffCoEx analyzes

originated because these methods often detected the simulated

cluster(s) only in small number of replicates (e.g., 2 out of 20).

Besides, in a few cases the TP/FP rates of WGCNA and

DiffCoEx were influenced by the adopted parameterization (for

instance, FPR in the WGCNA analysis of Cluster pattern 1, Figure 3),

suggesting that different choices of the input parameters can affect

the detection of clusters (see Text S1 for additional details). The

C3D algorithm is built on the HO-GSVD framework and as such

does not require the user to specify ad-hoc parameters to detect

common or differential clusters. In our implementation of the

C3D algorithm the user can control the MER at a specified level

before the cluster genes are empirically validated using a

permutation-based procedure (see Methods section). In these

simulation studies, we have used two different MERs (5% and

20%) to inform a suitable choice of MER that maximizes true

positive without inflating false positive rates. On average, we

observed a *10 - 15% increase in the TPR when MER~20%
was adopted as compared with MER~5%. However, we found

no significantly higher FPR, which were always ƒ5% across all

simulated datasets, this suggesting that using the less stringent

MER~20% in real data analyzes is likely to increase the detection

of true gene clusters, without increasing significantly false positives.

Finally, we used a standard desktop computer (Mac Pro,

2|2:4 GHz Quad-core Intel Xeon with 20 Gb RAM) to evaluate

the computational time required by C3D and compare it with

WGCNA and DiffCoEx to analyze the simulated datasets. While

the run time of C3D scales exponentially with the number of genes

in the input matrices or the number of conditions, our Matlab

implementation of C3D is relatively fast and requires only 1,200s

to analyze a 10,000|10,000 gene co-expression matrix in H~3

conditions and 10s to analyze a 1,000|1,000 gene co-expression

matrix in H~25 conditions (Figure S2). When compared with

competing approaches, we assessed that to process simulated

datasets of 1,000 and 10,000 genes (with n~30 observations and

H~7 conditions) C3D requires significantly smaller CPU time

than DiffCoEx (up to 2.3 fold more CPU time) and WGCNA (up

to 8.2 fold more CPU time), respectively (Figure S2).

Case studies
To show how C3D provides a powerful, practical framework for

real genome-scale analyzes and yields new biological insights into

pathways and molecular networks, we report an application to two

large multi-tissue gene expression datasets in rats and humans.

Transcriptional profiling was carried out by Affymetrix microarray

in the rat and mRNA sequencing (RNA-seq) in humans,

respectively. The microarray dataset consisted of genome-wide

expression profiles (p~15,000 probe sets) that were measured in

seven tissues (adrenal, aorta, fat, kidney, left ventricle, liver and

skeletal muscle) in a panel of n~29 recombinant inbred rat strains

[29], which is a well characterized model of hypertension,

metabolic syndrome and cardiovascular disease [27,30,31]. The

RNA-seq datasets consisted of genome-wide transcriptomic data of

human fetal neocortex, which have been generated to investigate

the molecular mechanisms underlying differences in germinal

zones of the developing human brain. The human dataset

consisted of p~18,288 expressed genes which were analyzed in

four regions of the fetal neocortex (ventricular zone (VZ), inner

subventricular zone (ISVZ), outer subventricular zone (OSVZ)

and cortical plate (CP)) from six 13–16 weeks postconception

human fetuses [32]. In both rat and human analyzes, to identify

common and differential clusters we extracted the top ten

eigenvectors (based on the modulus of the eigenvalues of the

decomposition of W ) as candidates which are then used as input

for the cluster nodes selection and validation step of the C3D algorithm

(see Methods).

Transcriptional network analysis in seven rat

tissues. We employed a two-step strategy to identify co-

expression clusters present in all (or in a subset of) tissues: (i) we

prioritize candidate gene clusters using a ‘‘relaxed’’ MERƒ0:2 to

assign genes to each cluster (see Methods section) and then (ii) used

the permutation-based procedure (integrated in C3D) to select

significant clusters and identify the relevant tissues using a

stringent empirical P-value threshold (Pƒ0:001). This strategy

yielded a set of 8 gene co-expression clusters: 3 clusters were

detected in all tissues and 5 clusters were specific to a sub-set of

tissues (Table S1). We set out to systematically analyze these gene

co-expression clusters using four approaches: (i) functional

enrichment analysis using Gene Ontology and KEGG pathways

[33], (ii) cell-type specificity using Cell Type ENrichment (Cten)

analysis for microarray data [34], (iii) cluster conservation with

experimentally validated protein-protein interactions (PPI) and

protein complexes using the DAPPLE algorithm [35] and (iv)

enrichment of transcription factor binding sites (TFBSs) in the

putative promoter sequences of cluster genes using the Pastaa

algorithm [36]. (See Text S1 for additional details on cluster

annotation and analysis).

One large ‘‘differential’’ cluster consisting of 172 microarray

probe sets (rat cluster 1) was identified in skeletal muscle, left

ventricle, aorta and liver tissues (empirical Pƒ0:001, Figure 4A).

This cluster showed significant enrichment for ‘‘protein folding’’

(P~2:8|10{5), ‘‘unfolded protein binding’’ (P~9:1|10{5) and

‘‘heat shock protein binding’’ biological processes (P~1:0|

10{3), Figure 4B, but did not revealed strong enrichment for

either specific cell-types or TFBSs in the cluster genes promoter

Multi-tissue Analysis of Co-expression Networks
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(Table S2). We found that rat cluster 1 included several heat shock

protein (Hsp) genes (Hsp90b1, DnaJ (Hsp40) homologs, Hspa5, Hspb8,

Hsph1) and the Hsf1 (heat shock transcription factor 1), which

binds to the heat shock element in the promoters of Hsp genes and

induce their activation [37]. Heat shock transcription factor 1 is a

crucial transcription factor for heat shock proteins and appears to

serve a significant protective role in the heart [38,39]. Besides,

closer inspection of rat cluster 1 reveal genes known to have disease

mutations in hereditary cardiomyopathy in humans (Bag3, Cryab,

Kras, Emd, Plec) [40] (Figure 4A). Therefore, we investigated

whether rat cluster 1 genes have been previously implicated in

disease using the gene set analysis toolkit WebGestalt [41], which

relies on existing biomedical literature to retrieve accurate disease-

associated gene lists [42]. This analysis revealed marked and

specific enrichment for genes associated with circulatory shock,

stress and cardiac conditions (e.g., cardiomyopathies, hypertrophy,

cardiomegaly), Figure 4B and Table S3. Our C3D analysis

suggests that cardiomyopathy genes are co-expressed with Hsp

genes across several rat tissues including tissues enriched for

myocytes (skeletal muscle, heart and aorta) and in the liver, where

Hsp genes are known to be expressed in response to a variety of

stressful stimuli [43] or to an increase in body temperature [44].

Moreover, several mRNA-mRNA interactions between Hsp and

cardiomyopathy genes of rat cluster 1 were conserved at the protein

level (Figure 4C). We then investigated whether rat cluster 1 genes

were significantly conserved and co-expressed in human heart and

liver tissues. To this aim, we carried out genome-wide co-

expression network analysis using covariance selection models [45]

in two large, publicly available gene expression datasets in the

heart (n~194 patients with advanced idiopathic or ischemic

cardiomyopathy, GSE5406 from Gene Expression Omnibus

(GEO) [46]) and liver tissue (n~427 healthy subjects, GSE9588

from GEO [47]). After computing the matrix of partial

correlations between the genes’ expression profiles in each tissue

separately, we tested whether the human-rat orthologous genes of

rat cluster 1 had significant connections (FDRv5%) in heart and

liver tissues more than what expected by chance. Sampling 10,000

random networks from each partial correlation matrix we

found that 95 and 108 human-rat orthologous genes have

significantly high interconnectivity in heart (Pƒ10{4) and liver

(P~1:1|10{2) tissues, respectively (Figure 4D and 4E, and

Figure S3). This analysis provides independent replication of rat

cluster 1 in two separate datasets and confirms significant co-

expression between Hsp and cardiomyopathy genes in human

heart and liver tissues. Elevated Hsp gene expression was

previously observed in the heart of patients with dilated

cardiomyopathy [48,49] and our data showing conserved co-

expression between Hsp and cardiomyopathy genes in rats and

humans suggest a potential role for heat shock proteins in

cardiovascular disease [50,51].

We identified three co-expression gene clusters consisting of

234, 89 and 406 microarray probe sets, which were detected in all

tissues (Pƒ0:001, Figure 5 and Table S1). In contrast with the

tissues-specific clusters, all multi-tissue clusters were highly

conserved at the protein level where they show significantly high

protein-protein interconnectivity by DAPPLE analysis (Pƒ0:001,

Figure 5). These clusters might represent shared gene-gene

interactions and gene expression signatures of fundamental

molecular processes, which are strongly conserved at the protein

level. These shared gene expression signatures are less likely to be

detected in individual tissues where local regulatory mechanisms

(translational and post-translational) are likely to be more

important [52,53]. One of these multi-tissue clusters (rat cluster 3)

included 234 probe sets (representing 214 annotated protein

coding genes) and showed a striking enrichment for mitochondrial

related genes (P~1:6|10{49), enrichment for heart (P~1:0|

10{5) and lymphoblasts (P~1:1|10{3) cell-types (Figure 5). This

cluster was also significantly overrepresented for the ‘‘oxidative

phosphorylation’’ KEGG pathway (P~1:3|10{10), which is an

integrative function of mitochondria and that in muscle and heart

in controlled essentially at the level of the respiratory chain [54].

At the protein level, we found that rat cluster 3 identified two

important protein complexes: the mitochondrial NADH-Ubiqui-

none Oxidoreductase (Complex I) (blue circle, Figure 5) and

several mitochondrial ribosomal, large subunits, which is consis-

tent with the observed functional/cell-type annotation of the co-

expressed gene cluster. Lastly, we identified two common clusters

(rat cluster 4, rat cluster 5) that were most highly enriched for immune

response genes and specifically expressed in whole blood and

myeloid cell-types (Figure 5). In particular rat cluster 5 recapitulates

a previously identified co-expression network detected in seven

tissues (Irf7-driven inflammatory gene network or IDIN) [27],

which comprised 209 genes directly (and indirectly) regulated by

the Irf7 transcription factor (a master regulator of the type 1

interferon response [55]). The multi-tissue cluster identified by

C3D was most highly enriched for genes related to ‘‘immune

response’’ (P~2:8|10{19) and expressed in myeloid and blood

cell-types (P-value range from 10{20 to 10{5). This co-expression

network, which is highly expressed in immune cells, may represent

a molecular signature of macrophages in complex tissues and is

associated with risk of inflammatory diseases and autoimmune

disease Type 1 diabetes in humans [56,57], as previously

demonstrated [27]. Rat cluster 5 was also highly enriched for

known protein-protein interactions (Pƒ0:001), and cluster genes

promoters contained TFBS motifs for the IRF transcription factor

family (TFBS enrichment P~5:9|10{10, Table S2). We

highlight that this inflammatory network (IDIN) was previously

identified by complex integration of genome-wide TFBS predic-

tions, expression QTL mapping using genome-wide SNPs and co-

expression network analysis in seven rat tissues, and was

experimentally validated and translated to humans [27]. Here,

we uncovered most of the IDIN (136 genes, 65%) and revealed

many key properties of this transcriptional network (functional

enrichment, cell-type specificity, IRF-dependent regulation) using

only the C3D approach on the gene expression data from seven

tissues.
Transcriptional network analysis in human brain

regions. We set out to identify co-expression gene clusters

across human fetal neocortical regions: VZ, ISVZ, OSVZ and CP

(RNA-seq datasets: p~18,288 genes in n~6 fetuses across H~4
regions). Similarly to the analysis of the rat microarray data, we

have used a two-step strategy to first prioritize candidate clusters

(using MERƒ0:2) and then validate the clusters by permutations

and pinpoint the neocortical regions where these clusters are

present (Pƒ0:001). The clusters were annotated in detail and

compared with the large catalogue of differentially expressed genes

between fetal cortical zones previously reported in [32].

The C3D analysis revealed two large clusters (human cluster 1,

human cluster 2) including 2,318 and 1,460 genes, respectively,

which were highly enriched (w60% of genes) for differentially

expressed genes between the CP and VZ, ISVZ, OSVZ neocortex

regions (Table S4). These clusters were identified as ‘‘differential’’

clusters, and were specifically expressed in VZ, ISVZ, OSVZ

(human cluster 1) and in CP (human cluster 2) fetal neocortex regions

with a high significance level (Pƒ0:001). The identification of

‘‘differential’’ clusters between different neocortex regions during

development matched the enrichment for differential expressed

genes within these clusters, where human cluster 1 was most highly
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Figure 4. Rat cluster 1 shows co-expression between Hsp and cardiomyopathy genes which is conserved with human heart and liver
tissues (A) Network of 135 annotated rat genes identified by C3D as co-expressed in heart, aorta, liver and skeletal muscle tissues (Pƒ0:001). In each
tissue we selected the top 5% of edges based on the (absolute) covariance between gene expression profiles and then calculated the average
covariance across the four tissues. Edges are represented by lines connecting nodes (genes) and the thickness of the line is proportional to the
average covariance value. Within the network, heat shock protein (Hsp) and cardiomyopathy genes are highlighted in blue and red, respectively. The
Kendall correlations between the expression profiles of Hsp and cardiomyopathy genes are graphically represented as sub-networks separately for
each tissue. Line thickness is proportional to the value of the Kendall correlation. (B) Enrichment for functional categories (FDRƒ5%, full list in Table
S2) and for disease association (adjusted Pƒ0:01, details in Table S3). (C) Significant protein-protein interaction (PPI) network (P~0:03) where the
Hsp and cardiomyopathy genes showing conserved PPI are highlighted (blue and red circles). (D) Conserved co-expression network detected in
n~194 heart tissue samples from patients with advanced idiopathic or ischemic cardiomyopathy. The network includes all human orthologous genes
of the genes in rat cluster 1 that have significant edges by covariance selection (FDRv5%). (E) Conserved co-expression network detected in n~427
liver tissue samples from healthy volunteers. The network includes all human orthologous genes of the genes in rat cluster 1 that have significant
edges by covariance selection (FDRv5%).
doi:10.1371/journal.pgen.1004006.g004

Figure 5. Co-expression clusters identified in all rat tissues. For each rat cluster detected in all seven tissues we report the number of probe sets,
the top five functional categories and their statistical significance (full list in Table S2), the summary of cell-type enrichment statistics expressed as
{log10 (Benjamini and Hochberg (BH)-adjusted p-value, Cten analysis) and the graph with the significant protein-protein interactions (PPI), including
the overall significance of the directed PPI network (DAPPLE analysis). The colour scale on the right indicate the significance of the detected PPI.
doi:10.1371/journal.pgen.1004006.g005
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enriched (1,450 out of 2,318 genes, 63%, hypergeometric

enrichment test Pƒ10{175) for genes down-regulated in CP as

compared with VZ, ISVZ, OSVZ, whereas human cluster 2 was

most highly enriched (940 out of 1,460 genes, 64%, hypergeo-

metric enrichment test Pƒ10{175) for genes up-regulated in the

CP region as compared with VZ, ISVZ, OSVZ (Figure 6 and

Figure 7). Gene Ontology annotation of the cluster genes revealed

functionally coherent processes with the most significant enrich-

ment for ‘‘cell cycle’’ (Pƒ3|10{45) in human cluster 1 and

‘‘synaptic transmission’’ (Pƒ6|10{20) in human cluster 2, respec-

tively (Table S5). In particular, human cluster 1 recapitulates the cell-

to-extracellular matrix interactions processes which were previ-

ously found to be associated with up-regulation in either VZ, ISVZ

or OSVA neocortex regions [32]. However, our multi-tissue

network analysis and annotation of the results suggest further

functional specialisation of the two clusters which was previously

unappreciated.

In particular for human cluster 1 we found strong co-expression

between 1,450 of the differentially expressed genes which are

enriched for cell adhesion and cell-extracellular matrix (ECM)

Figure 6. Human co-expression cluster 1. Top left, each node in the network represents a gene and, in keeping with [61], for each gene we
highlight significant up-regulation in VZ (red) or CP (green) as compared with the other neocortex regions. Genes that are were not differentially
expressed between neocortex regions are coloured in grey. Genes present in relevant KEGG pathways (p53 signaling, ECM-receptor interaction, Cell
cycle and DNA replication) are extracted from the main network and highlighted. Top right, functional annotation for the network: top five significant
GO biological processes and KEGG pathways (full list in Table S3). Bottom left, summary of cell-type enrichment analysis expressed as {log10

(Benjamini and Hochberg (BH)-adjusted p-value, Cten analysis). Bottom right, graph with the significant protein-protein interactions (PPI), including
the overall significance of the directed PPI network (DAPPLE analysis, Pƒ0:001). The colour scale on the right indicate the significance of the
detected PPI.
doi:10.1371/journal.pgen.1004006.g006

Multi-tissue Analysis of Co-expression Networks

PLOS Genetics | www.plosgenetics.org 10 January 2014 | Volume 10 | Issue 1 | e1004006



interaction processes during cortical development [32]. This co-

expression pattern suggests crosstalk between different pathways

across neocortex regions, as it is shown here for ‘‘cell cycle’’ and

‘‘ECM-receptor interaction’’ (Figure 6). This is in keeping with

the notion that cell cycle progression in mammalian cells is

strictly regulated by both integrin-mediated adhesion to the

extracellular matrix and by binding of growth factors to their

receptors [58]. Surprisingly, cell-type enrichment analysis

suggested highly specific expression of human cluster 1 in

MOLT-4 (human T lymphoblast; acute lymphoblastic leukemia)

cell line, which constitutively does not express p53 (a key

regulator of the cell cycle, DNA repair and cell death). However,

since we found down-regulation of p53 signalling and other

related pathways, the observed enrichment for MOLT-4 cell-

type most likely reflected cell-type-specific depletion of p53

expression and of many target genes in the CP region. Analysis

of TFBS motifs in the promoter of human cluster 1 genes revealed

the E2F1 transcription factor (TFBS enrichment P~1:7|10{5),

which plays a crucial role in the control of cell cycle regulation/

progression and have been implicated in neural stem cell

maintenance and commitment [59]. Taken together, these

analyzes of human cluster 1 suggest that differentially expressed

genes related to cell-ECM interaction exert their function in a

highly coordinated fashion where multiple pathways are involved

in cell proliferation and self-renewal of neural progenitors in

developing human neocortex.

Figure 7. Human co-expression cluster 2. Top left, each node in the network represents a gene and, in keeping with [61], for each gene we
highlight significant up-regulation in CP (red) or VZ (green) as compared with the other neocortex regions. Genes that were not differentially
expressed between neocortex regions are coloured in grey. Genes present in KEGG pathways related to cognitive functions (MAPK signaling, axon
guidance, calcium guidance and long-term potentiation) are extracted from the main network and highlighted. Top right, functional annotation for
the network: top five significant GO biological processes and KEGG pathways (full list in Table S3). Bottom left, summary of cell-type enrichment
analysis expressed as {log10 (Benjamini and Hochberg (BH)-adjusted p-value, Cten analysis) showing the most significant enrichment for fetal brain,
prefontal cortex and amygdala tissues. Bottom right, graph with the significant protein-protein interactions (PPI), including the overall significance of
the directed PPI network (DAPPLE analysis, Pƒ0:0001). The colour scale on the right indicate the significance of the detected PPI.
doi:10.1371/journal.pgen.1004006.g007
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Similarly to the first cluster, human cluster 2 was significantly

enriched for differentially expressed genes between CP and VZ,

ISVZ, OSVZ regions, but in this case with marked up-regulation

of gene expression in the CP region (Figure 7). Functional

enrichment analysis suggested up-regulation of several KEGG

pathways, such as ‘‘calcium signaling pathway’’ and ‘‘long-term

potentiation’’ (Figure 7) that are associated with key cognitive

functions, including memory and learning. Cell-type enrichment

and protein-protein interaction analyzes for human cluster 2 showed

high specificity of this cluster in fetal brain, prefontal cortex,

amygdala tissues (enrichment Pƒ10{40), and strong conservation

of the network at the protein level (Pƒ1|10{4), Figure 7.

Analysis of TFBS enrichment in the promoter of cluster genes

revealed different sets of TFs including neuronal-specific factors

like Rest that regulates repression of multiple neuron-specific genes

(TFBS enrichment P~4:3|10{11) or TFAP2A that is essential

for development of sympathetic neurons by controlling the survival

of a subpopulation of migrating neural crest cells [60](TFBS

enrichment P~5:3|10{7), and other myogenic regulatory

factors (Myf, TFBS enrichment P~1:1|10{6) or factors

regulating transcriptional events during hemopoietic development

(MZF1, TFBS enrichment P~1:1|10{17). The original investi-

gation of gene expression variation across human fetal neocortexes

regions reported in [32] suggested a role for extracellular matrix in

progenitor neuronal cells self-renewal. Here, our C3D analysis was

able to recapitulate these biological processes and furthermore

highlight extensive co-expression between cell-cycle and ECM-

interaction genes in proliferation and renewal of neuronal

progenitors in specific neocortex regions (human cluster 1). In

addition, our analysis revealed a distinct functionally-coherent

network (human cluster 2) related to development of later cognitive

functions in developing brain, which was not reported in the

original study [32]. These new findings are consistent with recent

data on human-specific gene expression changes taking place

during postnatal brain development in the prefrontal cortex [61].

Discussion

Building on the HO GSVD framework, we have developed a

new algorithm (C3D) for efficient, parameter-free and automatic

detection of co-expression clusters and networks in multiple

conditions. Our method is designed for analysis of weighted (and

unweighted) networks (input matrices) Gh across H§2 conditions,

enabling applications to diverse data types and structures.

Although the original HO GSVD algorithm assumes the non-

singularity of the co-expression matrix Eh~GhGT
h , by using the

Moore-Penrose pseudo-inverse, our C3D algorithm can be

applied to the non-invertible case. We show that when an exact

HO-GSVD of the input matrices exists (as defined in (4), see

Methods), our HO GSVD is able to extract the right decomposition

basis V through the eigen-decomposition of W , whereas it finds an

approximate decomposition of the data in the absence of an exact

solution (Figure S4). In particular, our empirical simulations and

real-case applications reveal that our approximate decomposition

is able to capture both common and differential co-expression

structures for a wide range of noise levels, suggesting that our

algorithm can be useful for practical applications to genomic data.

Here, through the HO GSVD of large-scale genomic datasets

we aimed to uncover the complex interactions between genes

(networks) that can occur within or across multiple conditions.

One distinctive feature of our computational method is in the

flexible and simultaneous identification of both ‘‘common’’ and

‘‘differential’’ sub-network structures across several conditions.

Selecting informative vectors of V , we provide different orderings

of Gh to reveal candidate clusters that are important to all

conditions or specific to a sub-set of conditions; then, we can

distinguish the specific conditions where the clusters are present

using a permutation-based approach. This procedure allows to

pinpoint automatically the specific conditions where the sub-

network structures are present and, at the same time, to provide an

empirical estimate of the statistical significance (empirical P-value)

for each cluster identified.

In simulation studies, we demonstrated how C3D outperforms

competing approaches in accuracy and reliability while being

computationally less demanding. We highlight how our method

allowed accurate detection of clusters within complex structures

(i.e., ‘‘common’’, ‘‘nested’’ and ‘‘overlapping’’ networks) by

specifying only the desired level of statistical significance:

misclassification error rate to assign genes to clusters and empirical

P-value for cluster detection. In contrast with other approaches,

C3D does not need the user to specify ad-hoc parameters related to

the expected number of clusters or cluster density [15] or

necessary to determine the optimal height cut-off in the gene

clustering tree [13,16,17]. Typically, these unknown parameters

need to be ‘‘finely tuned’’ on each dataset in order to obtain the

best compromise between TP and FP for each cluster (see Text S1

for additional details). We also showed that the results obtained by

two competing and widely-used methods (WGCNA and Diff-

CoEx) were less stable than those provided by C3D. This was

apparent in the significantly smaller relative standard deviations in

TPR calculated across w1,000 simulated datasets in the C3D

analyzes as compared with WGCNA and DiffCoEx. Since C3D

utilised raw gene expression data matrices as input, the higher

stability of C3D might be due to the reduced influence of the small

number of observations on the stability of co-expression estimates,

which can result in extreme patterns of correlation changes,

corresponding to stable and fragile co-expression, as previously

shown [62].

The high stability in the results and the parameter-free ‘‘nature’’

of the HO GSVD approach make the C3D algorithm a powerful

computational tool for real genomic data exploration and analysis.

To demonstrate this point, we reported an application of C3D to

two large transcriptional datasets: (i) microarray-based gene

expression profiles in seven rat tissues and (ii) RNA-seq-based

gene expression analysis of germinal zones from human fetal

neocortex. In the rat analysis, we reported several functionally

enriched co-expression clusters, including a previously identified

inflammatory gene network driven by the IRF7 transcription

factor that represents a gene expression signature of macrophages

within complex tissues. While this co-expression network was

experimentally validated [27] it was not recovered by WGCNA,

that surprisingly placed the IRF7 transcription factor and many

regulated target genes in the group of ‘‘non-clustered’’ genes. In

addition, our C3D analyzes revealed novel gene co-expression

networks in sub-sets of tissues. For instance, we identified a

network comprising Hsp and known cardiomyopathy genes, which

suggested coordinated regulation of heat shock proteins genes in

multiple tissues, and their potential functional role in cardiovas-

cular disease [50]. While this network was not recovered by either

WGCNA or DiffCoEx analyzes, we were able to replicate this new

finding using separate cardiac and liver gene expression datasets in

humans (Figure 4). In the study of human fetal neocortex we

demonstrated previously undescribed co-expression between cell

cycle and ECM-receptor interaction pathways and support their

role in the proliferation and self-renewal of neural progenitors. In

addition, our analyzes highlighted that pathways central to later

cognitive functions (e.g., calcium signaling, long-term potentiation,

axon guidance) are present at an early stage in the developing
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human brain [61], which was not previously appreciated. These

studies illustrated how our method can be effectively applied to

leverage the vast stream of genome-scale transcriptional data that

has risen exponentially over the last years, promising to aid the

fine-scale characterization of both context-specific and systems-

level networks and pathways.

Methods

We describe a new computational method (Cross-Conditions

Cluster Detection or C3D) to detect both similarity and

dissimilarity clustering patterns in weighted networks across

multiple conditions (H§2). After a data initialization step, C3D

employs HO GSVD-based algorithm and cluster nodes selection and

validation procedures to identify clusters, the specific conditions

where the clusters are detected and the statistical significance of

the clusters, as summarized in Figure 1 and detailed below.

Data initialization
In this step we assume the input data are non-square matrices

Gh[Rnh|p (h~1, . . . ,H, H§2), where the nh rows represent the

observations and the p columns indicate genes. The number of

genes must be the same across datasets while the number of

observations can differ. We first log transform the data and subtract

for each gene its average gene expression to avoid capturing

differences in average gene expression across conditions. We then

calculate the co-expression matrices corresponding to each condi-

tion Eh~GT
h Gh[Rp|p. Each Eh represents the covariance matrix of

the data in condition h. As in classic principal component analysis,

the columns of Gh can be scaled to unit variance to work on the

correlation matrices rather than the covariance. Alternatively, our

algorithm can directly take any p|p co-expression matrix Eh as

input. This feature of our algorithm allows to extract common and

differential clusters from matrices based on different co-expression

measures, including robust correlation (e.g. Spearman, Kendall)

and non linear metrics such as mutual information [63].

The HO GSVD-based algorithm
Similarly to classic SVD, each observation from the input data

Gh can be characterized by its expression profile and represented

by a data point in a p dimensional space. The observations from

all datasets are contained in a subspace of dimension dƒ

P
h nh,

which thereafter is referred to as the HO GSVD subspace. Here,

we aim at finding directions in the HO GSVD subspace that either

capture the variability in gene expression that is common to all

conditions (common factors) or that is specific to a subset of

conditions (differential factors). Inspired by [26] we developed a

general algorithm that allows computation of an approximate

solution to the HO GSVD problem in the non full column

rank case. In the HO GSVD, Gh are decomposed into

Gh~UhShVT (h~1,2, . . . ,H) where Uh[Rnh|d , Sh[Rd|d is a

diagonal matrix with elements sh,k§0 for k~1 . . . d and V[Rp|d

contain the right basis vectors of the HO GSVD subspace where

0vdƒ

P
h nh. The right basis vectors vi (i~1, . . . ,d) allow to

identify set of genes (clusters) with similar co-expression patterns,

that are either specific to a subset of conditions or common to all

conditions. Here we explain the derivation of our HO GSVD-

based algorithm in the general case of H§2 non-square matrices.

The derivation and discussion of the special cases (H~2 square,

symmetric matrices with full rank and H§2 square, symmetric

matrices with full rank) is reported in Text S1. In the most general

case, we define the right basis vectors V as the solution of the

eigen-decomposition problem of the matrix

W~
1

H(H{1)

XH
h~1

XH
rwh

(EhEz
r zErE

z
h ) ð3Þ

where W[Rp|p is the arithmetic mean of all the pairwise

quotients EhEz
r (h~1,2, . . . ,H and r~hz1, . . . ,H) and Ez

denotes the Moore-Penrose inverse of the co-expression matrix

E [24]. Here the Moore-Penrose inverse is used as a substitute of

E{1 since the invertibility of E is not guaranteed when p&n,

which is the typical scenario in genomics. We now assume there is

an approximate HO GSVD Gh&UhShVT (h~1,2, . . . ,H) where

Uh[Rnh|d is composed of orthonormal left basis vectors and

dƒ min
h

(nh). In this case, for all h we have

Eh~GT
h Gh&VS2

hVT ð4Þ

and its Moore-Penrose inverse is given by

Ez
h ~(GT

h Gh)z&(VT )z(S2
h)zVz: ð5Þ

Therefore Vh,r we have

EhEz
r & VS2

hVT
� �

(VT )z(S2
r )zVz

� �
~VS2

h VT (VT )z
� �

(S2
r )zVz

~VS2
h(S2

r )zVz

ð6Þ

since VT is full row rank. Hence we can rewrite W as follows

W~
1

H(H{1)

XH
h~1

XH
rwh

(EhEz
r zErE

z
h )

&
1

H(H{1)
V

XH
h~1

XH
rwh

S2
h(S2

r )zzS2
r (S2

h)z

 !
Vz:

ð7Þ

When there exists a common subspace of dimension dƒminh(nh),
with basis vectors V , for which the decomposition of the co-

expression matrices Eh (4) is exact, equation (7) becomes an

equality and the eigenvectors of W will lead to the exact basis V of

the common subspace. In HO GSVD applications to genomics

data, d can be as large as the total number of observations (i.e.,

dƒ

P
h nh), and an exact common decomposition of the co-

expression matrices Eh might not be possible. In this case the

eigenvectors of W do not provide an exact decomposition of the

subspace. Moreover, W is not guaranteed to be non-defective and

have a full set of real eigenvalues and eigenvectors. However, even

in the absence of an exact common decomposition, the real part of

the complex eigenvectors can be used to derive a low rank

approximation of the common subspace and extract common and

differential covariance structures from the data. To test the ability

of our HO GSVD based algorithm to capture these covariance

structures in the data in the presence of a ‘‘noisy’’ HO GSVD

decomposition we performed an empirical simulation study (see

Text S1 for details). Our simulations suggest that if a common

subspace of dimension dƒminh(nh) with basis vectors

vi (i~1, . . . ,d) explains a significant fraction of the variance in

the original datasets Gh, the approximation (4) holds and the first

eigenvectors of the matrix W (corresponding to the largest

eigenvalues of W ) will provide a good approximation of the basis

vectors vi of the HO GSVD subspace (Figure S4).

Multi-tissue Analysis of Co-expression Networks

PLOS Genetics | www.plosgenetics.org 13 January 2014 | Volume 10 | Issue 1 | e1004006



Cluster nodes selection and cluster validation
Cluster nodes selection. After we identified V using our

approximate HO GSVD, the input datasets can be reordered by

using the informative vectors of V , so that nodes that share similar

characteristics tend to cluster into the same diagonal block of the co-

expression matrix Eh[Rp|p or in the same block formed by

reordered rows of the expression matrix Gh[Rn|p. For each selected

v� (v�[fv1,v2, . . . ,vdg), the identification of a sub-set of nodes that

have significantly large similarity with each other as compared with

the rest of the nodes is obtained using a Gaussian Mixture Model

(GMM). Similarly to [64], here we assume that each informative v�

can be decomposed into two components since we are interested in

learning how likely the distribution of v� is unimodal (v� cannot be

used for data clustering) or bimodal. Moreover, we assume that the

two components (groups) are not treated symmetrically since the

component with smaller weight identifies the cluster of nodes with

high similarity. Conditionally on v�, the posterior probability that the

jth node belongs to gth component, pgj(v
�) (g~1,2, j~1, . . . ,n) is

calculated using the function fdrtool in the R package fdrtool [65] with

the normal mixture distribution option. Nodes are classified into the

two components depending upon the (local) misclassification error

rate (MER)

1{pg(j)(v
�)~1{

pgfg(v�(j))P
~gg

p~ggf~gg(v�(j))
vt,

where v�(j) is the jth ordered element of v�, pg and fg(:) are the weight

and the gth component with smaller weight, respectively. In contrast

with alternative commonly used methods [13,16,17], our approach

does not use arbitrary parameters external to the data (apart from

the MER level), such as the size of the cluster or the cluster density, to

select the significant nodes.

Cluster validation. The C3D method integrates an auto-

matic permutation-based approach to assess the significance of

clusters across multiple conditions (H§2). This allows to (i)

identify the specific conditions where each cluster is detected and

(ii) assess an empirical measure of significance for each cluster.

This cluster ‘‘validation’’ approach can be divided into 2 steps.

The first step is implemented to identify the subset of the input

data Gin~ Gin
a [G : a~1,2, . . . ,Hin

� �
with 0ƒHin

ƒH, which

represents the conditions where the clusters are present. Likewise,

the subset Gex~ Gex
b [G : b~1,2, . . . ,Hex

� �
with Hex~H{Hin

indicates the conditions where the cluster is not present. We used

an estimate of the cluster ‘‘quality’’ ch (see below) to calculate an

individual P-value (Ph) indicating the significance of one candidate

cluster in each dataset Gh. For each dataset Gh separately, Ph is

computed as the proportion of the cluster quality calculated from

random samples that exceed ch, where ch indicates the individual

cluster quality in Gh. In the second step, we evaluate the overall

significance (overall P-value or P) of the cluster present in conditions

Gin but not in Gex. The overall P-value for the target cluster is

computed as the proportion of cluster quality of the random

samples that exceed q, where q represents the overall cluster quality in

all input datasets. In both steps, we used incremental permutations

to generate random samples in a computationally efficient way

and regard a P-value (Ph and P) below 0.05 as significant.

The cluster ‘‘quality’’ measurements (ch and q) are defined as

follows:

ch~
the density within the cluster in Gh

the density outside the cluster in Gh

, ð8Þ

q~
P

Hin

a~1
cin

a

P
Hex

b~1
cex

b

, ð9Þ

where cin
a represents the cluster quality ch calculated in the

condition Gin
a whereas cex

b denotes ch calculated in Gex
b . The cluster

density for the weighted graphs was calculated as previously shown

[14]. More details are provided and discussed in Text S1.

Experimental data description
We selected two large gene expression datasets from rats and

humans, where genome-wide expression profiles were assessed in

the same subject/animal across multiple tissues. The rat datasets

consisted of microarray-based expression profiles for p~15,000
probe sets that were measured in adrenal, aorta, fat, kidney, left

ventricle, liver and skeletal muscle tissues in a panel of n~29
recombinant inbred rat strains [29]. Microarray expression data

were retrieved from ArrayExpress, http://www.ebi.ac.uk/

arrayexpress/, (skeletal muscle, E-TABM-458; aorta, E-MTAB-

322; liver, E-MTAB-323, fat and kidney, E-AFMX-7; heart,

MIMR-222; adrenal, E-TABM-457); gene expression summaries

were derived using robust multichip average (RMA) algorithm

[66] and normalized using Z-score transformation before analysis

with C3D. The human data were retrieved from the Gene

Expression Omnibus (GEO) database (www.ncbi.nlm.nih.gov/

geo) under accession number GSE38805. Briefly, total RNA from

the VZ, ISVZ, OSVZ, and CP of six 13–16 wk postconception

human fetuses was isolated from laser-capture microdissected

Nissl-stained cryosections of dorsolateral telencephalon (see [32]

for additional details on experimental procedures). RNA-seq data

were expressed as fragments per kilobase of exon per million

fragments mapped (FPKM) values and normalized on log2 scale,

yielding an expression matrix of p~18,289|n~6 in H~4
neocortex regions, which were analyzed by C3D.

Software availability
The Matlab implementation of the C3D algorithm, detailed

instructions to run the code and an example of the simulated

datasets used in these studies can be downloaded from http://

www.csc.mrc.ac.uk/Research/Groups/IB/IntegrativeGenomics

Medicine/ contact information: enrico.petretto@csc.mrc.ac.uk or

xiaolin.xiao@csc.mrc.ac.uk

Supporting Information

Figure S1 Comparison between C3D, WGCNA and DiffCoEx

methods for analysis of simulated datasets consisting of 5,000 genes

and 10 observations in 7 conditions. SD, standard deviation

measured over 20 replicated datasets; dashed line, FPR~5%.

(TIFF)

Figure S2 Top, computational time required by C3D algorithm

to analyze 1,000 genes in 25 conditions (top left) and 10,000 genes

in 3 conditions (top right). Bottom, comparison of computational

times of C3D, WGCNA and DiffCoEx methods for analysis of

1,000 (left) and 10,000 (right) genes in 7 conditions. All

comparison were carried out using a standard desktop computer

(Mac Pro, 2|2:4 GHz Quad-core Intel Xeon with 20 Gb RAM).

(TIFF)

Figure S3 We assessed whether rat cluster 1 genes were

significantly co-expressed in human heart and liver tissues. We

Multi-tissue Analysis of Co-expression Networks

PLOS Genetics | www.plosgenetics.org 14 January 2014 | Volume 10 | Issue 1 | e1004006



carried out genome-wide co-expression network analysis by Graph-

ical Gaussian models using human gene expression datasets from the

heart (n~194 subjects, GEO: GSE5406) and liver tissue (n~427
subjects, GEO: GSE9588). We first selected the top 10,000 varying

genes in each dataset using co-variance filtering and then calculated

the partial correlation matrix. We then tested whether the human-rat

orthologous genes of rat cluster 1 (n~132 annotated genes) had

significant partial-correlations more than what expected in 10,000

randomly sampled networks. Out of 132 genes in rat cluster 1, 132 and

115 had human-rat orthologous genes in heart and liver expression

datasets, and included all Hsp and cardiomyopathy genes identified

in the rat (except for PLEC which was not present in the human liver

dataset). At 5% FDR we detected 95 genes (forming 194 significant

edges) in the heart and 108 genes (forming 439 significant edges) in

the liver tissue, respectively. We report the density of the number of

edges observed in 10,000 randomly sampled networks and number of

significant edges detected in each tissue (indicated by the red dot).

The dashed red line indicates the 95 percentile of the distribution. For

each tissue, the P-values were calculated as follows:

P{value~
(number of significant edges in random samples) w (number of significant edges in human-rat orthologous genes) z 1

(number of random samples z 1)

(TIFF)

Figure S4 Correlation between the solutions of the approximate

HO GSVD (eigenvectors of W ) and simulated cluster structures

for different noise levels (i.e., proportion of the error variance,

ranging from 20% to 80%). For each dataset, we simulated 1,000

genes and 3 independent cluster structures: one ‘‘common’’ cluster

structure is present simultaneously in 3 conditions (left panels), one

‘‘differential’’ cluster structure is present in 2 conditions (middle

panels) and another ‘‘differential’’ cluster structure is present in 1

condition (right panels). For each level of error variance (x-axes), 100

independent replicates were generated and the absolute correla-

tions between the first three eigenvectors of W and the simulated

patterns are reported as median and interquartile range (y-axes).

The quality of the pattern reconstruction decreases when the error

variance increases for all cluster structures. As expected, the drop

is higher for the cluster structure that is unique to one condition

since it explains a lower amount of the total variance across the

three conditions. Please refer to Text S1 for additional details on

the simulated data.

(TIFF)

Table S1 Co-expression clusters identified by C3D in the rat.

(XLSX)

Table S2 Functional annotation of co-expression clusters

identified in rat.

(XLSX)

Table S3 Disease Enrichment for rat cluster 1. R: Ratio of

enrichment for disease associated genes, rawP: enrichment p-value

from hypergeometric test, adjP: enrichment p-value adjusted for

the multiple testing.

(XLSX)

Table S4 Co-expression clusters identified by C3D in human

fetal neocortex.

(XLSX)

Table S5 Functional annotation of co-expression clusters

identified in human fetal neocortex.

(XLSX)

Text S1 Supporting methods.

(PDF)
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