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Abstract

Numerous bacteria have evolved different iron uptake systems with the ability to make use of their own and heterologous
siderophores. However, there is growing evidence attributing alternative roles for siderophores that might explain the
potential adaptive advantages of microorganisms having multiple siderophore systems. In this work, we show the
requirement of the siderophore enterobactin for Escherichia coli colony development in minimal media. We observed that a
strain impaired in enterobactin production (entE mutant) was unable to form colonies on M9 agar medium meanwhile its
growth was normal on LB agar medium. Given that, neither iron nor citrate supplementation restored colony growth, the
role of enterobactin as an iron uptake-facilitator would not explain its requirement for colony development. The absence of
colony development was reverted either by addition of enterobactin, the reducing agent ascorbic acid or by incubating in
anaerobic culture conditions with no additives. Then, we associated the enterobactin requirement for colony development
with its ability to reduce oxidative stress, which we found to be higher in media where the colony development was
impaired (M9) compared with media where the strain was able to form colonies (LB). Since oxyR and soxS mutants (two
major stress response regulators) formed colonies in M9 agar medium, we hypothesize that enterobactin could be an
important piece in the oxidative stress response repertoire, particularly required in the context of colony formation. In
addition, we show that enterobactin has to be hydrolyzed after reaching the cell cytoplasm in order to enable colony
development. By favoring iron release, hydrolysis of the enterobactin-iron complex, not only would assure covering iron
needs, but would also provide the cell with a molecule with exposed hydroxyl groups (hydrolyzed enterobactin). This
molecule would be able to scavenge radicals and therefore reduce oxidative stress.

Citation: Adler C, Corbalan NS, Peralta DR, Pomares MF, de Cristóbal RE, et al. (2014) The Alternative Role of Enterobactin as an Oxidative Stress Protector Allows
Escherichia coli Colony Development. PLoS ONE 9(1): e84734. doi:10.1371/journal.pone.0084734

Editor: Martin G. Marinus, University of Massachusetts Medical School, United States of America

Received August 19, 2013; Accepted November 18, 2013; Published January 2, 2014

Copyright: � 2014 Adler et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by grants PICT 2107 and 1939 from the Agencia Nacional de Promoción Cientı́fica y Tecnológica, PIP 112 from the Consejo
Nacional de Investigaciones Cientı́ficas y Técnicas, CIUNT 26/D439 from the Consejo de Investigaciones de la U.N.T. Conrado Adler, Daiana R. Peralta and Natalia S.
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Introduction

Iron is essential for every organism, and bacteria are not an

exception. Iron is present in bacterial proteins as [Fe S] clusters,

and in heme groups [1]. Under aerobic conditions and at

physiological pH, iron is present in the Fe+3 state and forms

insoluble hydroxides and oxyhydroxide precipitates [2]. To

acquire iron, bacteria have developed sophisticated strategies

involving the production of iron chelators termed siderophores.

Once secreted to the environment, siderophores bind iron with

high affinity and import it into the bacterial cytoplasm via specific

membrane receptors [1–3]. In nature, there is a myriad of

siderophores and they all belong to a few structural classes,

including catecholate, carboxylate, hydroxamate, and mixed

ligand siderophores [4]. While it is considered that all siderophores

play an equivalent role, in terms of iron uptake, their structural

variety suggests functional differences.

Escherichia coli synthesizes the catechol siderophore, enterobac-

tin, along with a specific transport system [5] (Fig. S1).

Enterobactin is synthesized in the cytoplasm and exported by

the inner and outer membrane transporters EntS and TolC,

respectively [6]. Once in the extracellular space, enterobactin

chelates iron and forms a complex that interacts with the outer

membrane receptor FepA. Transport through FepA towards the

periplasm, requires the energy provided by the TonB-ExbB-ExbD

system anchored at the inner membrane. Subsequently, the

enterobactin-iron complex binds the FepB protein and then

interacts with the cytoplasmic pore constituted by FepD and

FepG. Next, the ATPase, FepC, facilitates the ferric-enterobactin

complex import into the cytoplasm [7]. There, the complex is

hydrolyzed by the esterase Fes allowing iron to be released from its

coordination with enterobactin hydroxyl groups [8]. Enterobactin

is the most avid microbial iron chelator (Ka=1052) [8]. Neverthe-
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less, it has been reported that E. coli might have up to nine iron

transport systems [9–17], most of them involving siderophore-iron

complexes. In addition, E. coli mutants in iron transporters are

capable of internalizing iron through the zinc transporter ZupT

[18]. Bacteria endowed with multiple iron uptake systems are

commonplace in nature [19]. In fact, some bacteria may produce

more than one siderophore and also might have the machinery to

make use of siderophores produced by other bacteria [19]. This

seemingly redundant scenario in terms of iron internalization

could indicate that siderophores might have additional and specific

functions (i.e. in adaptation to different environments). However,

until now there is limited experimental evidence enclosing

siderophores in alternative physiological roles beyond its known

function in iron uptake.

It has been reported that siderophores may be involved in the

metabolism of other metals and, specifically, to have a role in

heavy metal tolerance [20–22]. Furthermore, it was reported that

binding of iron-siderophore complexes to specific receptors can

trigger signal transduction mechanisms, that affect the expression

of genes involved not only in iron uptake [23]. In addition, a

number of hydroxamate siderophores including desferrioxamine E

were shown to have inhibitory growth activity or to reduce biofilm

development in some species [24–27]. In line with the alternative

role of siderophores, it was demonstrated that desferrioxamine E

promotes antibiotic production and has a modulatory effect on the

colony development within the genus Streptomyces [28]. Additional

evidence connecting siderophores and bacterial growth was found

through experiments in which ‘‘non-cultured’’ microorganisms

became ‘‘cultured’’ in the presence of heterologous siderophores

[19]. While some of the mentioned mechanisms might involve iron

metabolism, it is likely the participation of other cellular

Figure 1. Growth of E. coli wild-type (wt) and entE strains in liquid and solid media. A) Liquid aerated minimal M9 medium cultures of wild-
type strain (blue squares), entE strain (green circles) and entE strain in the same media but supplemented with 100 mM FeCl3 (red triangles). Growth
(OD600) was determined at the indicated times. B) Lawn growth of wt and entE E. coli strains on M9A. A stationary phase culture of entE E. coli strain
was serially diluted (1021 to 1024) and an aliquot of these dilutions was applied on M9A or M9A supplemented with 100 mM FeCl3. As control, the
same dilutions of a wt strain overnight culture were applied on M9A medium. Lawn growth was compared at 8 hours of incubation. C) Colony
growth of wt and entE E. coli on LBA. A stationary phase culture of entE E. coli strain was serially diluted and an aliquot of dilutions 1026 to 1028 were
applied on LBA or LBA supplemented with 100 mM FeCl3. As control, the same dilutions of an overnight culture of the wt strain were applied on LBA
medium. After overnight incubation, colonies sizes were compared. D) Activity of the rhyB promoter estimated by b-galactosidase activity as an
indirect measure of the intracellular iron content (The higher the promoter expression, the lower the iron content [48]). Both wild-type strain and entE
mutant respond to iron addition. The plasmid pALM23 carries the ryhB- lacZ fusion.
doi:10.1371/journal.pone.0084734.g001

Alternative Role for the Siderophore Enterobactin
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components aside from those committed to covering iron

requirements.

In previous work [29] we showed that the Pseudomonad

siderophore pyochelin has antibiotic activity against some bacteria.

We observed a differential sensitivity to pyochelin in a panel of

bacteria tested where catecholate siderophore-producing strains

were resistant to pyochelin, while strains producing other type of

siderophores were sensitive. Further analysis allowed us to

correlate the antibiotic activity of pyochelin with the generation

of reactive oxygen species (ROS) and the catechol mediated

protection with the ability to reduce ROS [29]. Although E. coli

has many defense mechanisms against oxidative stress, our results

showed that the absence of enterobactin resulted in decreased

growth in the presence of a compound that generates ROS [29].

Considering the putative role of enterobactin as an oxidative stress

protector, and the association of defective growth phenotypes with

oxidative stress (e.g. viable but not culturable state) [30,31], we

decided to analyze the impact of enterobactin absence on E. coli

growth.

In the present work, we demonstrate that enterobactin plays a

critical role in E. coli colony development in a minimal medium.

We show that instead of the iron uptake impairment, it is the

oxidative stress associated with the absence of enterobactin a key

element in preventing cells lacking the siderophore from develop-

ing colonies. Therefore, we suggest that this siderophore has an

oxidative stress protection effect that would be primarily required

for colony development.

Results and Discussion

The Lack of Enterobactin Affects E. coli Growth
We previously showed that a strain impaired in enterobactin

biosynthesis had significantly higher levels of reactive oxygen

species compared with the wild-type strain when grown in M9

medium [29]. Thus, we assigned a putative physiological role for

enterobactin in reducing cell oxidative stress. Then, we wondered

if the lack of enterobactin would affect cells growth as a

consequence of an imbalanced response to oxidative stress. To

analyze this hypothesis, we cultured entE E. coli and wild-type E.

Figure 2. Observed type of growth of entE and wild-type strains in M9A after plating and overnight incubation of serial dilutions
obtained from stationary phase cultures. Representative pictures show the characteristic leap from lawn growth (1024 dilution) to absence of
colonies (1025 dilution) for the entE strain in M9A.
doi:10.1371/journal.pone.0084734.g002

Table 1. Type of growth of entE mutant in solid medium.

Type of growth for each dilution plated

Strain Aerated liquid culture
Solid medium where
dilutions were plated 1023 1024 1025 1026 1027 1028

wt M9 M9A L L C C C C

entE M9 M9A L L NG NG NG NG

entE M9 LBA L L C C C C

entE M9+ Fea M9A L L NG NG NG NG

entE M9 M9A+ Fe L L NG NG NG NG

entE M9+ Fe M9A+ Fe L L NG NG NG NG

entE M9 M9A+ ASCb L L C C C C

entE M9 M9A+ CASc L L C C C C

One hundred mL of serial dilutions (from 1023 to 1028) from a stationary phase culture were plated in the specified solid medium (M9 agar, M9A or LB agar, LBA) and
incubated overnight. The type of growth was observed: L, lawn; C, colony, NG, no growth.
a+ Fe, indicate medium supplementation with 100 mM FeCl3.
b+ ASC indicate medium supplementation with 1 mM ascorbic acid.
c+CAS indicate medium supplementation with 1% casamino acid.
doi:10.1371/journal.pone.0084734.t001

Alternative Role for the Siderophore Enterobactin
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coli in liquid aerated minimal M9 medium. Interestingly, despite of

not synthesizing enterobactin, the entE strain was able to grow in

minimal media, at a comparable rate to that of the wild-type strain

(Fig. 1A). The observed growth differences between both strains

(Fig. 1A), were not as remarkable as it could be expected,

considering the relatively low iron content of M9 medium

(1.8 mM) [32] and that enterobactin is the most important iron

uptake facilitator that E. coli has [7,33]. In addition, when medium

was supplemented with iron (100 mM), growth of the mutant strain

increased and reached OD values close to those of the wild-type

strain (Fig. 1A). Thus, the differential growth rate observed for the

entE mutant in liquid aerated culture could be mostly attributed to

the iron scavenging property of enterobactin. Nevertheless, when

entE cells in stationary phase were plated in M9 agar medium

(M9A) and incubated overnight for colony count, there was no

growth at dilutions where colony formation was expected (Fig. 2).

Unlike E. coli entE, wild-type E. coli formed colonies in the

conditions used. Figure 2 shows the type of growth observed for

the entE mutant and the wild-type strain after respective culture

dilutions were plated on M9A and incubated overnight. The

inability of entE mutant to form colonies in M9A is an interesting

growth phenotype since this strain grows normally on LB agar

medium (LBA) (Table 1). Table 1 describes the type of growth

(lawn or isolated colonies) for the dilutions plated on different

media and conditions. For entE and wild-type cultures in all

conditions used we obtained lawns with 1024 dilutions and below

(Table 1). For the wild-type, colonies were observed for 1025

dilutions and above. In contrast, the entE mutant showed no

growth at these dilutions (Fig. 2 and Table 1). This meant an

abrupt growth interruption for entE strain at higher dilutions and

led us to inquire about the lawn thickness of both wild-type and

entE strains. To address this question, we estimated the cellular

densities of spots obtained after overnight incubation of 1024

dilutions for both strains. This was done by scraping cells off each

spot and subsequently counting CFU (both strains had approx-

imately 26109 cells, Table S1) (see material and methods section).

Then, the absence of colony formation in the 1025 dilution plates

could not be attributed to the dilution effect and pointed out a

defect in colony growth for the entE mutant in the culture

conditions used. Similar results were observed for dilutions of

exponentially growing cultures (data not shown). This indicated

that this phenotype is independent from the physiological state of

the plated cells. However the abrupt growth arrest at higher

dilutions in the case of the entE mutant, reveals the necessity of

enterobactin particularly at cellular densities that lead to colony

formation. The normal growth of entE cells on LBA (Table 1)

implies that the observed atypical growth on M9A depends on the

culture medium composition. Given that iron addition enhanced

entE growth in aerated M9 liquid cultures (Fig. 1A) and that LB

iron content is significantly higher than in M9 medium (LB:

17 mM/M9: 1.8 mM) [32], we hypothesized that iron availability

could be the most likely reason for the differential growth. Then,

we supplemented M9A medium with an excess of iron (100 mM)

and evaluated its effect on the absence of colony formation.

Curiously, we observed that iron addition in either, the initial

liquid M9 culture, the solid media M9A (where dilutions were

plated) or both, had no effect on the colony development arrest

(Table 1). In order to assess if the entE mutant strain was able to

respond to iron supplementation (100 mM FeCl3) when growing in

agar media, we followed its growth as a lawn on M9A and as

colonies on LBA (Fig. 1B and 1C, respectively). We found that, as

with the entE liquid cultures (Fig. 1A), iron supplementation in

M9A made entE lawn growth similar to that of the wild-type strain

growing without iron addition (Fig. 1B). The observation was

made at 8 h of incubation, a time point where lawn growth

differences were clearly observed. Therefore, despite that entE cells

cannot form colonies in M9A, they are able to grow as a lawn and

increase this type of growth upon iron addition. Furthermore, in

LBA where entE is able to form colonies, iron addition increased

colony size making it similar to that of the wild-type strain

(Fig. 1C). Results indicate that in all culture conditions assayed,

iron is available for entE cells even though they cannot synthesize

enterobactin. Additional evidence of the entE strain ability to

internalize iron is the repression of the fur regulated promoter rhyB

(in an entE context) to levels comparable to the wild-type strain,

upon medium supplementation with 100 mM FeCl3, (Fig. 1D).

Taken together, these results suggest that in the absence of

enterobactin, other iron uptake systems compensate for the iron

requirements. Therefore, enterobactin would play in the condi-

tions used, a critical role in colony development, a process that

would not be associated with iron shortage.

Oxidative Stress in entE Cells Leads to the Inability to
Form Colonies
Since we previously reported a putative role for enterobactin in

reducing reactive oxygen species [29], we wondered if entE

mutants’ impairment in colony formation would be connected to

oxidative stress. In fact, media supplementation with the reducing

agent ascorbic acid allowed entE cells to form colonies in M9A

(Table 1). Consistent with the observed lawn growth at high

cellular densities and no growth at low cellular densities in M9A

count plates (Fig. 2), when entE strain was streaked in M9A and

incubated in aerobic conditions, only lawn growth was observed

(Fig. 3B). On the contrary, when it was incubated under anaerobic

conditions it was able to form colonies (Fig. 3C) similar to those of

the wild-type strain grown aerobically (Fig. 3A). In concordance

with these results, we observed that strains able to produce

enterobactin but impaired in its internalization into the cytoplasm

(fepD and fepG mutants) displayed the same phenotype in aerobic

culture conditions (Fig. 4A). Similarly as reported previously for

Figure 3. Growth of E. coli wild-type and entE mutant streaked in M9A. Wild-type strain growth in aerobic conditions (A) and entE mutant
growth in aerobic (B) or anaerobic conditions (C).
doi:10.1371/journal.pone.0084734.g003

Alternative Role for the Siderophore Enterobactin
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entE mutants, we observed increased ROS levels for fepD and fepG

mutants compared with the wild-type strain (Fig. 4B). This

suggests that in order to reduce oxidative stress, enterobactin has

to be internalized and reach the cell cytoplasm. Therefore, a

mutant defective in enterobactin export should accumulate

enterobactin, rendering it unable to use this system to internalize

iron, and should be fully functional in terms of ROS scavenging.

Thus, we evaluated the colony formation phenotype and the ROS

levels of the entS mutant. This mutant showed a normal growth

phenotype (data not shown) and as expected ROS levels were

lower than those of the entE strain and similar to levels obtained

with the wild-type strain (Fig. 4B). These observations allowed us

to assign an oxidative stress protection effect of enterobactin that

would occur in the cytoplasm and that would be primarily

required for colony development. Results with entS mutant

decouple the ability of enterobactin to reduce ROS from its

fundamental role in iron uptake. However, in physiological

conditions where enterobactin is probably exported immediately

after being synthesized, enterobactin mediated ROS scavenging

would likely require its internalization along with iron.

Since entE mutant grew normally at high cellular densities, the

ROS protection function of enterobactin would not be as critical

for lawn growth (Fig. 2 and Fig. 3B). These results are in

concordance with previous reports that link high cellular density

with tolerance of microorganisms to adverse conditions such as

antibiotics, toxic agents and oxidative stress [34,35]. In fact, Ma &

Eaton [36], demonstrated that the absence of catalase activity

rendered cells particularly sensitive to hydrogen peroxide at low

cellular densities, therefore implying a counterbalancing effect at

high cellular densities. It remains to be evaluated the mechanism

by which high cellular density of the entE mutant strain overcomes

the oxidative stress to allow growth.

Medium Composition Influence on Oxidative Stress of
entE Cells
We observed that the entE mutant was unable to form colonies

when grown in M9A, however normal colonies were obtained in

LBA. Then, we analyzed media composition in order to unravel

the cause for the differential growth in both media. Since

supplementation of LBA with phosphate (40 mM) did not arrest

colony formation and since entE strain still showed the phenotype

in a low phosphate minimum medium (MTA) (data not shown),

we ruled out the high phosphate content of M9A as a cause. LBA

is a much more complex and nutritious medium than M9A,

therefore we hypothesized that higher nutrient availability could

favor colony formation in LBA. Therefore, we evaluated the effect

of increasing casamino acids content of M9A on colony growth.

To our surprise, colony development was restored by increasing

casamino acids content from 0.2% up to 1% (Table 1). Then, we

decided to analyze whether media composition would correlate

with oxidative stress levels. For that, we measured ROS levels for

entE cells in standing cultures in the same media where colonies

developed (LB and M9 plus 1% casamino acids) and in the

medium where they did not (M9). Figure 5 shows that ROS levels

are increased for entE cells grown in M9 compared with entE cells

in LB or M9 with 1% of casamino acids. In addition, ROS levels

for the wild-type strain grown in M9 were similar to those of the

entE mutant in LB (Fig. 5). These results suggest that lowered ROS

levels could be a consequence of the higher amino acid content (in

LB and M9 with 1% casamino acids) which is probably reducing

ROS through direct radical scavenging [37]. Then, in 0.2%

casamino acids M9 medium, enterobactin would play a significant

role as an oxidative stress protector that allows colony formation.

Accordingly, we observed no colony development in other saline

minimal medium (MTA) and normal growth in other rich media

(BHI and YEM) (Data not shown).

Figure 4. A) Type of growth of E. coli fepD and fepG mutants streaked in M9A and incubated overnight in aerobic conditions. B) Levels of reactive
oxygen species in E. coli wild-type and fepD, fepG, entS and entEmutants grown in M9 medium. Quantitation of ROS levels was done using the DCFA-
DA probe. Fluorescence intensities are relative to that of the control. Control: wt grown in M9 medium. Error bars = SD, n= 3.
doi:10.1371/journal.pone.0084734.g004

Alternative Role for the Siderophore Enterobactin
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Colony Formation Resumes by Reducing Oxidative Stress
Lawn growth of entE mutant and its inability to form colonies in

M9A could imply that entE cells at low cellular densities enter into

a physiological state where colony development is arrested. To

address this hypothesis we used the following strategy: in plates in

which no growth was obtained after 24 h of incubation (1025

dilutions of an overnight culture) we spotted 1 mL of pure

enterobactin (1 mM), reincubated plates and looked for colony

formation. Interestingly, we observed a size gradient of colonies

around the spot containing enterobactin (Fig. 6A). This physio-

logical complementation indicated us that the absence of colony

development is a reversible phenomenon and that enterobactin

addition is able to restore colony growth. As was expected,

ascorbic acid addition had a similar effect (Fig. 6B) and therefore

strengthened the idea that oxidative stress is a key element in

arresting colony development. Furthermore, casamino acids were

also able to rescue entE cells from the arrest state (Fig. 6C)

probably by reducing oxidative stress levels as was implied above

(Fig. 5). In contrast, neither iron (20 mM) nor citrate (1 mM)

addition restored colony formation (Fig. 6D–E). This is relevant

since by expressing its cognate membrane receptor FecA, E. coli

can use citrate as bona fide siderophore [38]. Besides, citrate-iron

complexes can further augment iron uptake through the iron

starvation sigma factor FecI, which increases the expression of

genes involved in iron metabolism [39]. Therefore, these results

support the idea that iron availability is not accountable for the

impaired colony development of entE cells. Finally, since both

citrate and enterobactin facilitate iron uptake, there must be a

structural trait of enterobactin that is responsible for lessening the

oxidative stress and therefore allows colony formation.

Enterobactin Hydrolysis would be Required for Oxidative
Stress Protection
Enterobactin structure has a central triserine macrocycle linked

to three lateral catecholate moieties which are involved in iron

complexation [7]. Due to their low radical reduction potentials,

catechols can act as hydrogen atom donors and efficiently

terminate radical chain reactions [40]. This ability requires

hydroxyl moieties to be available for radical scavenging [41].

Accordingly, we observed that a mutant unable to free iron from

Figure 5. Reactive oxygen species levels in E. coli entE mutant grown in different culture media. Quantitation of ROS levels was done
using the DCFA-DA probe. Fluorescence intensities are relative to that of the control. Control: wild-type strain grown in M9 medium; entE M9:
indicates cells grown in M9 medium, entE LB: indicates cells grown in LB medium, entEM9 1% cas: indicates cells grown in M9 medium supplemented
with 1% casamino acids. Error bars = SD, n = 3.
doi:10.1371/journal.pone.0084734.g005

Figure 6. Colonies resume growth upon enterobactin, ascorbic acid or casamino acids (cas) addition. In plates in which no growth was
obtained after overnight incubation (1025 dilutions), 1 mL of 1 mM enterobactin (A), 5 mL of 1 mM ascorbic acid (B), 5 mL of 2% casamino acids (C),
10 mL of 1 mM FeCl3 (D) or 10 mL of 1 mM sodium citrate (E) were spotted. After a second overnight incubation, a size gradient of colonies was
clearly observed around the spots containing enterobactin (A), ascorbic acid (B) and casamino acids (C). However, no growth was observed with FeCl3
(D) or citrate (E).
doi:10.1371/journal.pone.0084734.g006

Alternative Role for the Siderophore Enterobactin
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the enterobactin-iron complex (fes) did not form colonies in M9A

(Fig. 7A). Furthermore, meanwhile enterobactin addition did not

resume fes strain colony development, ascorbic acid did (Fig. 7B).

As expected, the fes mutant showed increased ROS levels

compared with the wild-type strain and enterobactin supplemen-

tation was not able to lower ROS levels, as was previously

observed for the entE strain (Fig. 7C) [29]. These results indicate

that enterobactin not only has to reach the cell cytoplasm (Fig. 4A)

but also has to be hydrolyzed in order to allow colony

development through oxidative stress protection. Since iron

availability does not seem to be involved in the colony growth

arrest, we hypothesize that freed hydroxyl groups in the

enterobactin molecule are responsible for the oxidative stress

protection. Several reports link catechol siderophores with

Figure 7. A) Type of growth of E. coli fes mutant streaked in M9A and incubated overnight in aerobic conditions. B) No colony development was
observed when a 1025 dilution of a fes mutant stationary phase culture was incubated overnight. Then, 1 mL of pure enterobactin (1 mM) or 5 mL
ascorbic acid (1 mM) were spotted on the medium surface and reincubated overnight. It can be observed that ascorbic acid restores colony growth
of fes mutant meanwhile enterobactin does not. C) Reactive oxygen species levels in E. coli fes and entE mutants grown in M9 medium. Quantitation
of ROS levels using the DCFA-DA probe. Fluorescence intensities are relative to that of the control. Control: wt strain grown in M9 medium; +ENT:
indicates addition of 1 mM enterobactin. Error bars = SD, n = 3.
doi:10.1371/journal.pone.0084734.g007

Alternative Role for the Siderophore Enterobactin

PLOS ONE | www.plosone.org 7 January 2014 | Volume 9 | Issue 1 | e84734



oxidative stress. For example, Bacillus anthracis catecholate side-

rophores, bacillbactin and petrobactin, are overproduced when

cells are exposed to oxidative stress [42]. In Azotobacter vinelandii it

was demonstrated that oxidative stress increased a catecholate

siderophore synthesis and that its production was under the

control of SoxS [43]. We previously showed that enterobactin

protects against the ROS-mediated toxic effects of pyochelin and

that impairment of enterobactin biosynthesis resulted in increased

ROS levels [29]. Recently, Achard et al [44] demonstrated that the

catecholate siderophores salmochelin and enterobactin protect S.

Typhimurium against ROS, specially at early stages of macrophage

invasion which correlate with the oxidative burst. Authors also

showed that non-catecholate siderophores do not exert this

protection and also that catechols need to be internalized in order

to fully protect Salmonella against the oxidative stress [44].

Therefore, it is conceivable that catechols may be employed as

protectants against oxidative stress. E. coli has many mechanisms

that help cells to cope with oxidative stress. Examples are those

coordinated through the OxyR and SoxSR regulons [45].

However, we observed that oxyR and soxS mutants displayed a

normal colony growth in conditions where the entE mutant failed

to form colonies (M9A) (data not shown). Thus, we hypothesize

that enterobactin would be mostly relevant in reducing oxidative

stress in situations associated with low cellular densities (e.g. single

cells plated to obtain isolated colonies). It is interesting to note that

enterobactin hydroxyl moieties would require to be released from

the coordination complex with iron, in order to protect from the

oxidative stress. Then, this iron uptake system would ensure E. coli

not only iron entry into the cell, which might lead to oxidative

stress through Fenton reaction, but the simultaneous generation of

a molecule that scavenges ROS and therefore counterbalances the

potential damage that iron excess might cause.

Materials and Methods

Bacterial Strains and Growth Conditions
List of strains and plasmids used in this work are showing in

Table 2.

Strains were grown in either LB (Sigma-Aldrich) and M9

(Sigma-Aldrich) medium supplemented with 0.2% or 1%

casamino acids, 0.2% glucose, 1 mM MgSO4 and 1 mg/mL

vitamin B1. Solid media contained 1.5% agar. For growth curves,

culture aliquots were taken at different times and OD at 600 nm

was measured. For the observation of the colony arrest phenotype,

100 mL of serial dilutions (made with M9 medium) from an

overnight culture of either entE or wild-type strains were plated on

the corresponding agar medium and incubated overnight. When

indicated, ascorbic acid and FeCl3 were supplemented at a final

concentration of 1 mM and 100 mM, respectively. Anaerobic

cultures were performed in an anaerobic jar containing anaerobic-

generating salts (Anaerocult- Merck Millipore). For the colony

arrest reversion assay, 1 mL of 1 mM enterobactin (EMC micro

collections), 5 mL of 1 mM ascorbic acid (Sigma- Aldrich), 5 mL of

2% casamino acids (Sigma- Aldrich), 10 mL of 1 mM FeCl3
(Sigma- Aldrich) or 10 mL of 1 mM sodium citrate (Sigma-

Aldrich) were spotted on the surface of plates where no colonies

were obtained after overnight incubation (1025 dilution from entE

overnight culture). To compare the cell density of lawns obtained

with 1024 dilutions of entE and wild-type overnight cultures, we

used the following approach: Four 50 mL fractions of a 1024

dilution from each culture strain (entE and wild-type) were spotted

onto M9A. After 24 h of incubation each spot was scraped off and

resuspended in 1 mL of M9 medium. Serial dilutions were made

and CFU count was determined in LBA for quadrupled.

Measurement of Reactive Oxygen Species
To determine the level of reactive oxygen species (ROS), we

used the oxidation-sensitive fluorescent dye 29, 79-dichlorodihy-

drofluorescein diacetate (DCFH-DA). This fluorescent probe is

frequently used for detection of reactive oxygen species such as

hydrogen peroxide, hydroxyl radical, peroxyl radicals and

nitrogen radicals [46]. DCFH-DA is deacetylated by cellular

esterases and then converted by reactive species into dichloro-

fluorescein (DCF), which can easily be visualized by strong

fluorescence at 530 nm when excited at 485 nm. Exponentially

growing cells in M9 minimal medium, were washed and

resuspended in 50 mM sodium phosphate buffer, pH 7 at a final

OD600 nm= 0.5. Then DCFH-DA was added at a final concen-

tration of 10 mM and incubated for 30 min [28]. After

incubation, cells were washed, resuspended and sonicated in the

same buffer. Fluorescence intensity was measured using a Perkin

Elmer LS55 spectrofluorometer (excitation l, 490 nm; emission l,
519 nm). Results are expressed as relative fluorescence to that of

the control.

b-Galactosidase Assays
The b-galactosidase activity was determined following the

method described by Zhou et al (Zhou & Gottesman, 1998 [47]).

Table 2. List of strains and plasmids used in this work.

Strains Relevant genotype Source

Escherichia coli BW 25113 wild type CGSCa

Escherichia coli JW 0586-1 BW25113 DentE::kan CGSCa

Escherichia coli JW0582-2 BW25113 DfepD::kan CGSCa

Escherichia coli JW0581-3 BW25113 DfepG::kan CGSCa

Escherichia coli JW0576-2 BW25113 Dfes::kan CGSCa

Escherichia coli JW 0583 BW25113 DentS::kan Bernhardt lab

Escherichia coli JW3933-3 BW25113 DoxyR::kan CGSCa

Escherichia coli JW4023-5 BW25113 DsoxS::kan CGSCa

Plasmids

pALM23 ryhB-lacZ transcriptional fusion in pQ50 Ma L & Payne SM [48]

aCGSC, Escherichia coli Genetic Stock Center;
doi:10.1371/journal.pone.0084734.t002
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Strains carrying the ryhB-lacZ transcriptional fusion were grown in

M9 medium at 37uC up to OD600 nm= 0.1, at this point the

culture was divided in half and one sample was supplemented with

100 mM FeCl3. When cultures reached an OD600 nm=0.6, the b-
galactosidase activities were assayed. For this, 600 mL aliquots of

these cultures were permeabilized for 10 min with 0.1% SDS

(24 mL) and chloroform (48 mL). Then, 100 mL of permeabilized

cells were put onto 96 wells microtiter plate, 100 mL of a 1.32 mg/

mL solution of o-Nitrophenyl-b-D-galactopyranoside in buffer Z

were added and absorbances at 420 nm were measured for

20 min, in a SpectraMax 250 spectrophotometer. The b-
galactosidase activity was calculated by dividing the slope of the

line over time by the corresponding OD600 nm.

Supporting Information

Figure S1 Scheme of enterobactin iron uptake system.

(TIF)

Table S1 Comparison of cell density of spots obtained
with 1024 dilutions.

(DOCX)

Acknowledgments

We thank Dr. Bernhardt and Dr. Payne for kindly supplying us with entS

mutant and the ryhB-lacZ plasmid, respectively.

Author Contributions

Conceived and designed the experiments: CA PAV. Performed the

experiments: CA NSC DRP MFP. Analyzed the data: CA NSC REDC

PAV. Contributed reagents/materials/analysis tools: PAV. Wrote the

paper: CA PAV.

References

1. Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron

homeostasis. FEMS Microbiol Rev 27: 215–237.

2. Guerinot ML, Yi Y (1994) Iron: Nutritious, Noxious, and Not Readily Available.
Plant Physiol 104: 815–820.

3. Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores

to hemophores. Annu Rev Microbiol 58: 611–647.

4. Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod

Rep 27: 637–657.

5. Neilands JB (1982) Microbial envelope proteins related to iron. Annu Rev
Microbiol 36: 285–309.

6. Bleuel C, Grosse C, Taudte N, Scherer J, Wesenberg D, et al. (2005) TolC is

involved in enterobactin efflux across the outer membrane of Escherichia coli.

J Bacteriol 187: 6701–6707.

7. Raymond KN, Dertz EA, Kim SS (2003) Enterobactin: an archetype for

microbial iron transport. Proc Natl Acad Sci U S A 100: 3584–3588.

8. Carrano CJ, KN R (1979) Ferric Ion Sequestering Agents. 2. Kinetics and
Mechanism of Iron Removal from Transferrin by Enterobactin and Synthetic

Tricatechols. J Am Chem Soc 101: 5401–5404.

9. Clarke TE, Tari LW, Vogel HJ (2001) Structural biology of bacterial iron uptake
systems. Curr Top Med Chem 1: 7–30.

10. Chenault SS, Earhart CF (1991) Organization of genes encoding membrane

proteins of the Escherichia coli ferrienterobactin permease. Mol Microbiol 5:
1405–1413.

11. Faraldo-Gomez JD, Sansom MS (2003) Acquisition of siderophores in gram-

negative bacteria. Nat Rev Mol Cell Biol 4: 105–116.

12. Kammler M, Schon C, Hantke K (1993) Characterization of the ferrous iron

uptake system of Escherichia coli. J Bacteriol 175: 6212–6219.

13. Negre VL, Bonacorsi S, Schubert S, Bidet P, Nassif X, et al. (2004) The
siderophore receptor IroN, but not the high-pathogenicity island or the hemin

receptor ChuA, contributes to the bacteremic step of Escherichia coli neonatal

meningitis. Infect Immun 72: 1216–1220.

14. Neilands JB (1992) Mechanism and regulation of synthesis of aerobactin in

Escherichia coli K12 (pColV-K30). Can J Microbiol 38: 728–733.

15. Ozenberger BA, Nahlik MS, McIntosh MA (1987) Genetic organization of

multiple fep genes encoding ferric enterobactin transport functions in Escherichia

coli. J Bacteriol 169: 3638–3646.

16. Sorsa LJ, Dufke S, Heesemann J, Schubert S (2003) Characterization of an

iroBCDEN gene cluster on a transmissible plasmid of uropathogenic Escherichia

coli: evidence for horizontal transfer of a chromosomal virulence factor. Infect

Immun 71: 3285–3293.

17. Torres AG, Payne SM (1997) Haem iron-transport system in enterohaemor-
rhagic Escherichia coli O157:H7. Mol Microbiol 23: 825–833.

18. Grass G, Franke S, Taudte N, Nies DH, Kucharski LM, et al. (2005) The metal

permease ZupT from Escherichia coli is a transporter with a broad substrate

spectrum. J Bacteriol 187: 1604–1611.

19. D’Onofrio A, Crawford JM, Stewart EJ, Witt K, Gavrish E, et al. (2010)

Siderophores from neighboring organisms promote the growth of uncultured

bacteria. Chem Biol 17: 254–264.

20. Braud A, Hannauer M, Mislin GL, Schalk IJ (2009) The Pseudomonas aeruginosa

pyochelin-iron uptake pathway and its metal specificity. J Bacteriol 191: 3517–

3525.

21. Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in

metal transport and tolerance. Environ Microbiol 13: 2844–2854.

22. Teitzel GM, Geddie A, De Long SK, Kirisits MJ, Whiteley M, et al. (2006)
Survival and growth in the presence of elevated copper: transcriptional profiling

of copper-stressed Pseudomonas aeruginosa. J Bacteriol 188: 7242–7256.

23. Markel E, Maciak C, Butcher BG, Myers CR, Stodghill P, et al. (2011) An
extracytoplasmic function sigma factor-mediated cell surface signaling system in

Pseudomonas syringae pv. tomato DC3000 regulates gene expression in response to

heterologous siderophores. J Bacteriol 193: 5775–5783.

24. Al-Azemi A, Fielder MD, Abuknesha RA, Price RG (2011) Effects of chelating
agent and environmental stresses on microbial biofilms: relevance to clinical

microbiology. J Appl Microbiol 110: 1307–1313.

25. Chi Z, Wang XX, Ma ZC, Buzdar MA, Chi ZM (2011) The unique role of

siderophore in marine-derived Aureobasidium pullulans HN6.2. Biometals.

26. Ishida S, Arai M, Niikawa H, Kobayashi M (2011) Inhibitory effect of cyclic
trihydroxamate siderophore, desferrioxamine E, on the biofilm formation of

Mycobacterium species. Biol Pharm Bull 34: 917–920.

27. Wang WL, Chi ZM, Chi Z, Li J, Wang XH (2009) Siderophore production by

the marine-derived Aureobasidium pullulans and its antimicrobial activity.

Bioresour Technol 100: 2639–2641.

28. Yamanaka K, Oikawa H, Ogawa HO, Hosono K, Shinmachi F, et al. (2005)

Desferrioxamine E produced by Streptomyces griseus stimulates growth and
development of Streptomyces tanashiensis. Microbiology 151: 2899–2905.

29. Adler C, Corbalan NS, Seyedsayamdost MR, Pomares MF, de Cristobal RE, et

al. (2012) Catecholate siderophores protect bacteria from pyochelin toxicity.
PLoS One 7: e46754.

30. Oliver JD (2010) Recent findings on the viable but nonculturable state in
pathogenic bacteria. FEMS Microbiol Rev 34: 415–425.

31. Kong IS, Bates TC, Hulsmann A, Hassan H, Smith BE, et al. (2004) Role of

catalase and oxyR in the viable but nonculturable state of Vibrio vulnificus. FEMS
Microbiol Ecol 50: 133–142.

32. Abdul-Tehrani H, Hudson AJ, Chang YS, Timms AR, Hawkins C, et al. (1999)

Ferritin mutants of Escherichia coli are iron deficient and growth impaired, and fur
mutants are iron deficient. J Bacteriol 181: 1415–1428.

33. Albrecht-Gary AM, Crumbliss AL (1998) Coordination chemistry of side-
rophores: thermodynamics and kinetics of iron chelation and release. Met Ions

Biol Syst 35: 239–327.

34. Hogan D, Kolter R (2002) Why are bacteria refractory to antimicrobials? Curr
Opin Microbiol 5: 472–477.

35. Narten M, Rosin N, Schobert M, Tielen P (2011) Susceptibility of Pseudomonas
aeruginosa Urinary Tract Isolates and Influence of Urinary Tract Conditions on

Antibiotic Tolerance. Curr Microbiol.

36. Ma M, Eaton JW (1992) Multicellular oxidant defense in unicellular organisms.
Proc Natl Acad Sci U S A 89: 7924–7928.

37. Pazos M, Andersen ML, Skibsted LH (2006) Amino acid and protein scavenging
of radicals generated by iron/hydroperoxide system: an electron spin resonance

spin trapping study. J Agric Food Chem 54: 10215–10221.

38. Braun V, Endriss F (2007) Energy-coupled outer membrane transport proteins
and regulatory proteins. Biometals 20: 219–231.

39. Brooks BE, Buchanan SK (2008) Signaling mechanisms for activation of
extracytoplasmic function (ECF) sigma factors. Biochim Biophys Acta 1778:

1930–1945.

40. Povie G, Villa G, Ford L, Pozzi D, Schiesser CH, et al. Role of catechol in the
radical reduction of B-alkylcatecholboranes in presence of methanol. Chem

Commun (Camb) 46: 803–805.

41. Jeong JM, Choi CH, Kang SK, Lee IH, Lee JY, et al. (2007) Antioxidant and
chemosensitizing effects of flavonoids with hydroxy and/or methoxy groups and

structure-activity relationship. J Pharm Pharm Sci 10: 537–546.

42. Lee JY, Passalacqua KD, Hanna PC, Sherman DH (2011) Regulation of

petrobactin and bacillibactin biosynthesis in Bacillus anthracis under iron and

oxygen variation. PloS One 6: e20777.

43. Tindale AE, Mehrotra M, Ottem D, Page WJ (2000) Dual regulation of

catecholate siderophore biosynthesis in Azotobacter vinelandii by iron and oxidative
stress. Microbiology 146 (Pt 7): 1617–1626.

44. Achard ME, Chen KW, Sweet MJ, Watts R, Schroder K, et al. (2013) An

antioxidant role for catecholate siderophores in Salmonella. Biochem J.

Alternative Role for the Siderophore Enterobactin

PLOS ONE | www.plosone.org 9 January 2014 | Volume 9 | Issue 1 | e84734



45. Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2: 188–194.

46. Gomes A, Fernandes E, Lima JL (2005) Fluorescence probes used for detection

of reactive oxygen species. J Biochem Biophys Methods 65: 45–80.

47. Zhou Y, Gottesman S (1998) Regulation of proteolysis of the stationary-phase

sigma factor RpoS. J Bacteriol 180: 1154–1158.
48. Ma L, Payne SM (2012) AhpC is required for optimal production of

enterobactin by Escherichia coli. J Bacteriol 194: 6748–6757.

Alternative Role for the Siderophore Enterobactin

PLOS ONE | www.plosone.org 10 January 2014 | Volume 9 | Issue 1 | e84734


