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Hedgehog Signaling Requires Motile Cilia in the Sea Urchin
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Abstract

A relatively small number of signaling pathways govern the early patterning processes of metazoan development. The
architectural changes over time to these signaling pathways offer unique insights into their evolution. In the case of
Hedgehog (Hh) signaling, two very divergent mechanisms of pathway transduction have evolved. In vertebrates, signaling
relies on trafficking of Hh pathway components to nonmotile specialized primary cilia. In contrast, protostomes do not
use cilia of any kind for Hh signal transduction. How these divergent lineages adapted such dramatically different ways of
activating the signaling pathway is an unanswered question. Here, we present evidence that in the sea urchin, a basal
deuterostome, motile cilia are required for embryonic Hh signal transduction, and the Hh receptor Smoothened (Smo)
localizes to cilia during active Hh signaling. This is the first evidence that Hh signaling requires motile cilia and the first

case of an organism requiring cilia outside of the vertebrate lineage.
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The field of Hh signaling was revolutionized in 2003 with the
discovery that effective signal transduction relies on the pre-
sence of primary cilia in vertebrates (Huangfu et al. 2003). This
differs sharply from the mode of transduction in protostomes
such as fruit flies and worms in which cilia are dispensable. In
mice (Corbit et al. 2005; May et al. 2005; Rohatgi et al. 2007)
and zebrafish (Aanstad et al. 2009; Huang and Schier 2009),
Hh pathway members, including Smo and Patched (Ptc), are
trafficked into and out of sensory cilia during the transduction
process. Intraflagellar transport (IFT) proteins and motor pro-
teins such as Kif3a, a vertebrate homolog of Kinesin-2, are
required for this movement (Liu 2005; Rohatgi et al. 2007). In
contrast, this trafficking is not necessary in protostomes
(Avidor-Reiss et al. 2004; Rink et al. 2009; Glazer et al. 2010).
How two divergent mechanisms of transduction arose is
unclear. Examining the sea urchin, a more basal deuterso-
tome, provides a crucial missing link to the evolution of
this pathway. In the sea urchin genome, single Hh, Ptc,
Smo, and Gli homologs exist (Walton et al. 2006). Our lab
reported the role of Hh signaling in sea urchins where it acts
to pattern embryonic musculature (Walton et al. 2009).
Although most of the ciliary trafficking genes have been iden-
tified in the sea urchin genome (Morris et al. 2006), it has
remained unclear whether Hh signaling depended on cilia for
signal transduction.

Results and Discussion

To begin investigating the role of cilia in Hh signaling in urchin,
we examined the Hh-receiving cells for the presence of cilia. In
the sea urchin, the Hh ligand is expressed in and secreted from
endoderm cells in the primitive gut of gastrula stage embryos
and diffuses to a subset of adjacent mesodermal cells that
express Ptc and Smo (fig. 1A-D). These latter cells will form

specialized structures termed the coelomic pouches and con-
tribute to the musculature of the embryo (Burke and Alvarez
1988). To assess the presence of cilia, we labeled the presump-
tive muscle cells with a myosin heavy chain (aMHC) antibody
and co-stained with an acetylated tubulin (¢AcTub) antibody
that labels the cilia axonemes. We observed that the presump-
tive muscle cells, which are known to receive Hh signal, have
short monocilia on their apical surface (fig. 1E and F). This
finding demonstrated that the Hh-receiving cells of the sea
urchin embryo are indeed ciliated.

We were next interested in determining whether or not
the cilia present on Hh-receiving cells are more like primary
cilia or motile cilia, because in vertebrates, Hh signal trans-
duction occurs via specialized nonmotile primary cilia
(Davenport and Yoder 2005). In contrast, motile or beating
cilia have yet to be linked to the reception and transduction
of any developmental signaling pathway. To determine the
type of cilia present on sea urchin Hh-receiving cells, we
examined their ciliary microtubule arrangement by transmis-
sion electron microscopy. The axoneme of a primary cilium
consists of nine doublets of microtubules (9 + 0), whereas
motile cilia typically include a central pair of microtubules in
addition to the nine outer doublets (9 + 2) (Satir and Chris-
tensen 2007). To our surprise, we found that the cilia present
on Hh-receiving cells exhibited a 9 + 2 microtubule arrange-
ment identical to the microtubule arrangement of ectoder-
mal motile cilia used for locomotion (fig. 1G-I). To assess the
motility of these cilia, we performed timelapse microscopy
and observed that they were indeed motile (supplementary
movie S1, Supplementary Material online). Thus, the cilia pre-
sent on Hh-receiving cells in the sea urchin are not immotile
primary cilia like those associated with Hh signaling in verte-
brates but are motile cilia.
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Fic. 1. Hh-receiving cells exhibit motile cilia. (A) Model of Hh signaling
in the sea urchin. Hh is secreted from the gut endoderm (yellow) and
diffuses to the adjacent mesoderm where Ptc and Smo are expressed
(red). (B-D) In situ mRNA hybridization of Hh (B), Ptc (C), and Smo (D).
(E and F) Presumptive muscle cells display monocilia. (E) Hh-receiving
cells are labeled by the muscle-specific MHC antibody (red), and cilia are
labeled with an acetylated tubulin antibody (green). Scale bars = 10 um.
(F) Enlargement. (G—I) Transmission electron micrographs of cilia ultra-
structure. (G) Cartoon representing the lateral region of the cilium
scanned. (H) Cross-section of cilium from ectoderm showing 9 + 2
microtubule arrangement. Scale bar=100nm. (I) Cross-section of
cilium on Hh-receiving cells of coelomic pouch also with a 9 + 2
arrangement.

After establishing that Hh-receiving cells in the sea urchin
embryo are ciliated, we next tested the functionality of these
cilia in the context of Hh signaling. To do this, we first per-
turbed Kinesin-2, a conserved motor protein that is necessary
for cilia assembly and trafficking (Cole et al. 1998). In the sea
urchin, the function of Kinesin-2 protein can be inhibited by
injecting a monoclonal antibody against Kinesin-2 into the
fertilized egg (Morris and Scholey 1997). Sea urchin embryos
injected with this Kinesin-2 antibody fail to assemble full-
length cilia as demonstrated with the aAcTub antibody
and by scanning electron microscopy (fig. 2A), consistent
with Kinesin-2 inhibition in mice and Chlamydomonas
(Cole et al. 1998; Marszalek et al. 1999). In contrast, inhibition
of Hh has no effect on cilia length (supplementary fig. S1,
Supplementary Material online). To assess Hh function in
Kinesin-2-deficient embryos, we compared the muscle pat-
terns and the expression of the Hh receptor and target, Ptc, in

Kinesin-2 knockdown, Hh knockdown, and control embryos
(fig. 2B). We previously reported that Hh signaling is necessary
for muscle patterning in the sea urchin embryo; inhibition of
Hh signaling results in smaller, mispatterned foregut muscles
(Walton et al. 2009). To assess the musculature of Kinesin-2
knockdown embryos, we labeled the muscle cells using the
oMHC antibody. In control embryos, the musculature is or-
ganized in distinct circumesophageal rings (fig. 2B). When we
blocked cilia assembly by injecting a Kinesin-2 antibody, the
embryos showed mispatterned musculature identical to the
phenotype seen in Hh knockdown embryos (fig. 2B). Then,
we examined the expression of Ptc in Kinesin-2 knockdown
and Hh knockdown embryos. Ptc is the receptor of Hh sig-
naling, but it is also a highly conserved transcriptional target
of active signaling (Hidalgo and Ingham 1990; Concordet et al.
1996; Marigo and Tabin 1996; Marigo et al. 1996; Rink et al.
2009). When the Hh ligand was knocked down with a mor-
pholino, the expression of Ptc was greatly reduced compared
with controls when assessed by in situ mRNA hybridization
(fig. 2B). Likewise, when we prevented cilia assembly by
knocking down Kinesin-2, Ptc expression was reduced, con-
sistent with a loss of Hh signaling. Thus, from the knockdown
phenotypes and Ptc expression, we conclude that Hh signal
transduction depends on the presence of cilia.

In vertebrates, for Hh to signal via cilia, Smo must be ac-
tively trafficked into and out of the cilium by motor and IFT
proteins (Corbit et al. 2005). In the absence of the Hh ligand,
Smo is excluded from the cilium until Hh binds the receptor
Ptc (Rohatgi et al. 2007). Upon binding, Smo is transported
into the cilium. In order to test whether Smo can be trafficked
into cilia in sea urchin embryos, we expressed a Smo C-ter-
minal eGFP fusion construct (Smo:eGFP) in sea urchin em-
bryos. We then double labeled these embryos with aAcTub
to visualize cilia and an oGFP antibody to detect the
Smo:eGFP protein. Close examination of the mesodermal
cells showed Smo::eGFP being localized to the cilia (fig. 2D).
Both vertebrate Smo and sea urchin Smo protein sequences
contain a conserved ciliary localization motif consisting of a
hydrophobic and basic amino acid (fig. 2C). These residues
can be mutated to create a ciliary localization defective form
of Smo (CLDSmo) (Corbit et al. 2005). When we expressed an
eGFP tagged form of this mutant construct (CLDSmo::eGFP)
in the embryo, we observed no localization of Smo to the
cilia (fig. 2D). These results demonstrate that sea urchin
Smo is actively trafficked into the motile cilia of Hh-receiving
cells using the same ciliary localization motif found in
vertebrates.

Together, these experiments demonstrate that in sea ur-
chins, Hh signaling relies on the presence of motile cilia. Our
findings challenge the assumption that the requirement of
cilia for Hh signaling is a recent evolutionary acquisition
unique to vertebrates. They also introduce the possibility
that motile cilia have long been an important intracellular
signaling organelle. Thus, we propose an evolutionary model
in which a single-celled flagellated eukaryote, containing ho-
mologs of Hh pathway members, may have served as the
common ancestor and utilized motor proteins associated
with flagellar assembly to traffic the receptor Ptc (fig. 3A).
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Fic. 2. Hh signal transduction requires the presence of cilia, and Smo localizes to cilia. (A) Cilia assembly is prevented by Kinesin-2 knockdown (Kinesin-
2 KD) seen by immunofluorescence of the cilia-specific acetylated tubulin antibody (green) in control and Kinesin-2 KD embryos. Scale bar = 10 um.
Scanning electron micrographs of control, and Kinesin-2 KD embryos at the gastrula stage also show the absence of cilia. Scale bar =10 um. (B)
Immunofluorescence of the muscle-specific MHC antibody (red) in Kinesin-2 KD and Hh KD embryos shows mispatterning of muscle compared with
controls consistent with Hh signaling inhibition. Scale bar = 10 pm. In situ mRNA hybridization of Hh target Ptc (Ptc ISH) in Kinesin-2 KD, and Hh
knockdown (Hh KD) embryos shows reduced expression compared with controls. Scale bar = 10 utm. (C) Smo across taxa contains a conserved ciliary
localization motif of a hydrophobic and basic residue (red bar). These residues were mutated to alanines to create a ciliary localization defective Smo
(CLDSmo:eGFP). (D) Localization of the Hh receptor Smo to cilia using a GFP antibody (green) on embryos expressing a Smo:eGFP or CLDSmo:eGFP
fusion construct. Cilia are visualized with an acetylated tubulin antibody (red) on Hh-receiving cells corresponding to the area highlighted in red in
figure 1A. Smo:eGFP can be seen localizing to the cilia (arrowheads) but CLDSmo:eGFP does not. Scale bar =5 um.

The genome of the choanoflagellate Monosiga brevicollis, for
example, contains homologs of Hh, Ptc, and Fused (Haus-
mann et al. 2009). As the pathway diverged, some organisms
such as Drosophila dispensed with, or never required, the
necessity of cilia for Hh transduction (fig. 3B). Among those
that retained the requirement of cilia, additional divergence
resulted in a lineage that continues to utilize motile cilia, as is
the case with echinoderms (fig. 3C). Subsequent modifica-
tions affecting the dependence of Hh pathway function
upon cilia assembly/maintenance proteins may have wholly
or partially separated these functions. This could have lead to
a vestigial involvement of cilia through immotile primary cilia
(fig. 3D), resulting in the pathway seen in mice for example.
Further studies of pathway members such as Fused, whose
function appears to have concomitantly diverged with cilia-
dependent Hh signaling, may yield important clues regarding
the link between Hh signaling and cilia.
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The kinase, Fused, is a positive regulator of the pathway in
fruit flies and zebrafish. However, although it is required for
Hh signaling in flies, loss or reduction of Fused in zebrafish
recapitulates only some aspects of the Hh phenotype (Lum
et al. 2003; Wolff et al. 2003; Wilson et al. 2009). Interestingly,
Fused is required for cilia motility in both zebrafish and mice,
and it appears to have lost its connection to Hh signaling or is
compensated by another kinase in the latter (Wilson et al.
2009). The fact that Fused evolved dual functions in cilia
motility and in Hh signaling supports the model in which
Hh signaling and Fused evolved together in motile cilia.
Future work in sea urchins and choanoflagellates should ad-
dress the role of Fused in both Hh signaling and cilia motility
and shed light on the ancestral state of the pathway.

The role of cilia in Hh pathway signal transduction repre-
sents a curious divergence in the deuterostome and proto-
stome lineages and a unique opportunity to study the
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Fic. 3. A model of Hh pathway evolution. (A) A single-celled flagellated eukaryote, containing homologs of Hh pathway members, may have served as
the common ancestor. (B) As the pathway diverged, some organisms dispensed with the necessity of cilia for transduction. (C) Among those that
retained the requirement of cilia, additional divergence resulted in a lineage that continues to utilize motile cilia and (D) another that has lost ciliary

motility in Hh-receiving cells.

evolutionary connection between cilia and signal transduc-
tion, in general. Unlike protostomes, vertebrates and sea
urchins require cilia for effective Hh signaling (Huangfu
et al. 2003; Avidor-Reiss et al. 2004; Corbit et al. 2005; Liu
2005; Rohatgi et al. 2007; Aanstad et al. 2009; Huang and
Schier 2009; Rink et al. 2009; Glazer et al. 2010). Primary
cilia have been linked to intercellular transduction of several
developmental pathways, but the origin of these roles has
been poorly understood. Our finding that Hh signaling re-
quires motile cilia in sea urchins, along with a recent finding
that motile cilia are capable of responding to chemical signals
in the human airway (Shah et al. 2009), challenge the con-
ventional thinking that primary cilia are utilized for intercel-
lular signaling and motile cilia are only used to generate
mechanical forces. It may even be the case that motile cilia
evolutionarily predate primary cilia in terms of developmental
signal transduction. Additional studies in diverse taxa, parti-
cularly basal deuterostomes and single-celled eukaryotes with
Hh pathway homologs, should provide opportunities to test
this model and to better understand the origins of this critical
signaling pathway.

Materials and Methods

See supplementary materials and methods summary, Supple-
mentary Material online.

Supplementary Material

Supplementary text, figure S1, and movie S1 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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