
A
rticle

Modeling Gene Expression Evolution with an Extended
Ornstein–Uhlenbeck Process Accounting for
Within-Species Variation
Rori V. Rohlfs,*,1 Patrick Harrigan,2 and Rasmus Nielsen1

1Department of Integrative Biology, University of California, Berkeley
2Division of Bioinformatics, University of California, San Francisco

*Corresponding author: E-mail: rrohlfs@berkeley.edu.

Associate editor: Katja Nowick

Abstract

Much of the phenotypic variation observed between even closely related species may be driven by differences in gene
expression levels. The current availability of reliable techniques like RNA-Seq, which can quantify expression levels across
species, has enabled comparative studies. Ornstein–Uhlenbeck (OU) processes have been proposed to model gene
expression evolution as they model both random drift and stabilizing selection and can be extended to model changes
in selection regimes. The OU models provide a statistical framework that allows comparisons of specific hypotheses
of selective regimes, including random drift, constrained drift, and expression level shifts. In this way, inferences may
be made about the mode of selection acting on the expression level of a gene. We augment this model to include within-
species expression variance, allowing for modeling of nonevolutionary expression variance that could be caused by
individual genetic, environmental, or technical variation. Through simulations, we explore the reliability of parameter
estimates and the extent to which different selective regimes can be distinguished using phylogenies of varying size
using both the typical OU model and our extended model. We find that if individual variation is not accounted for,
nonevolutionary expression variation is often mistaken for strong stabilizing selection. The methods presented in
this article are increasingly relevant as comparative expression data becomes more available and researchers turn to
expression as a primary evolving phenotype.
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Introduction
It has long been posited that gene expression differences ex-
plain the bulk of phenotypic diversity across species (King and
Wilson 1975). Initial comparative expression analyses based
on microarray technology across primates have produced
interesting patterns of expression conservation and adapta-
tion and a number of controversial results. For example,
studies by Khaitovich et al. (2004a, 2004b) and Gilad et al.
(2006) lead to quite different conclusions regarding the
importance of natural selection in determining expression
level differences and similarities among species. The degree
to which selection is acting to modify expression levels is a
standing question, especially on the human lineage.

With the advent of reliable technology to quantify gene
transcription, the field is now better positioned to explore
gene expression evolution and conservation (Gilad, Oshlack,
Rifkin 2006; Khaitovich et al. 2006; Whitehead and Crawford
2006; Wang et al. 2009). Specifically, accurate comparative
gene expression data is attainable with the developments of
both RNA-Seq as a reliable method to quantify expression,
and bioinformatical methods to appropriately normalize
expression, accounting for species differences (Wang et al.
2009; Trapnell et al. 2010). Several statistical methods have
been proposed to investigate the role of natural selection in

expression evolution across divergent species by considering
expression divergence between species and diversity within
species (Hsieh et al. 2003; Rifkin et al. 2003; Nuzhdin et al.
2004; Gilad, Oshlack, Rifkin 2006; Khaitovich et al. 2006;
Whitehead and Crawford 2006) or by modeling the expres-
sion evolution process (Butler and King 2004; Gu 2004; Oakley
et al. 2005; Bedford and Hartl 2008; Blekhman et al. 2008;
Chaix et al. 2008; Albert et al. 2012). However, a unified
framework has yet to be established, which accounts
for the complex variation of gene expression across species,
individuals, tissues, environments, and technical replicates.
Such sophisticated methods will enable rigorous investigation
of the conservation of gene expression, the first step in
exploring long-standing hypotheses about the contribution
of expression to phenotype (Egger et al. 2004; Kleinjan
and van Heyningen 2005; Esteller 2007; Johnstone and
Baylin 2010).

A variety of approaches have been used to model gene
expression evolution. A number of methods have been
implemented considering the ratio of expression divergence
to diversity to distinguish expression drift, stabilizing selection,
and directional selection (Hsieh et al. 2003; Rifkin et al. 2003;
Nuzhdin et al. 2004; Gilad, Oshlack, Rifkin 2006; Khaitovich
et al. 2006; Whitehead and Crawford 2006). These nonpara-
metric test statistic approaches are useful to quantify
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divergence and diversity empirically and may provide evi-
dence of different modes of expression evolution but are
limited by their inability to formulate complex evolutionary
hypotheses or to compare specific models of evolution
(Butler and King 2004). A variety of models have been imple-
mented for regression and analysis of variance (ANOVA)
analysis, including effect terms for gene, species, individual,
microarray probe, interactions between those factors, residual
error, and other factors, to explore cases of diverged and
conserved expression levels (Rifkin et al. 2003; Gilad,
Oshlack, Smyth, et al. 2006; Blekhman et al. 2008; Somel
et al. 2009; Blekhman et al. 2010; Warnefors and Eyre-
Walker 2012). However, these models typically implicitly
assume independence between species and disregard phylo-
genetic relationships between species, inflating false-positive
rates and making them less applicable to complex phyloge-
nies (Felsenstein 1985). In multispecies phylogenies, differing
shared evolutionary histories lead to a complex trait covari-
ance structure that can add information and power to evo-
lutionary analyses (Felsenstein 1985).

Phylogenetic structure is taken into account in models of
expression evolution based on drift (Brownian motion) pro-
cesses, allowing for both analysis considering dependencies
induced by shared history and more specific formulation and
comparison of selective hypotheses (Felsenstein 1985; Butler
and King 2004; Gu 2004). Brownian motion processes can
effectively model neutral drift (Khaitovich et al. 2005) but
are less suitable to model stabilizing selection or conservation,
which is expected in the case of gene expression, given simple
cellular constraints on expression (Lynch and Hill 1986;
Felsenstein 1988).

Ornstein–Uhlenbeck (OU) processes, which model
random walks with some pull toward a particular state,
have been proposed to model the evolution of quantitative
traits subject to both drift and stabilizing selection (Hansen
1997; Butler and King 2004; Bedford and Hartl 2008; Hansen
et al. 2008; Kalinka et al. 2010). OU processes include param-
eters for the degree of drift (�2), strength of pull (�), and the
particular target value toward which the pull is aimed (�). In a
trait evolution framework, these parameters can be inter-
preted as phenotype change due to genetic drift, selective
force, and optimally fit trait value, respectively, making OU
processes a convenient framework in which to investigate
selective hypotheses. OU processes have been shown to
effectively model gene expression level evolution on divergent
phylogenies elucidating the degrees of directional selection at
play (Bedford and Hartl 2008; Kalinka et al. 2010; Perry et al.
2012). However, these methods may be limited by their
assumption of phylogeny-based variation that does not
allow for other sources of variation, for example, environmen-
tal, technical, or individual genetic variation (Oakley et al.
2005).

Here, we build upon this work to develop an appropriate
statistical model to investigate evolutionary questions using
comparative gene expression data with variation across indi-
viduals in each species. Gu (2004) alluded to a possible exten-
sion of his model that might accomplish this by accounting
for “experimental errors” in trait evolution. Ives et al. (2007)

proposed a model accounting for “measurement error” across
quantitative observations of individuals in a phylogeny.
Felsenstein (2008) outlined a model similar to ours based
on the work of Lynch (1991), who considered sampling
error in trait observations. More recently Hansen and
Bartoszek (2012) have formulated an alternate model to
account for trait observational and biological variation in evo-
lutionary models. We present an OU model likelihood frame-
work and outline specific hypothesis tests while accounting
for phylogenetic relationships between species and variation
over individuals within species. This model can be used for
cases of nonevolutionary variation, neutral expression drift,
stabilizing selection on expression, and lineage-specific shifts
in expression level. Our framework builds directly upon that
proposed by Bedford and Hartl (2008), which has been used
effectively in the literature (Kalinka et al. 2010; Perry et al.
2012), but our model includes a new parameter for within-
species variation (�2). By modeling within-species variation,
we allow the possibility of nonevolutionary expression varia-
tion, which is thought to be important in expression
(Idaghdour et al. 2010; Pickrell et al. 2010; Price et al. 2011),
and improve rigor of distinguishing different regimes of gene
expression evolution.

Using the likelihood ratio test presented in this article,
Brawand et al. (2011) considered selection on expression in
a RNA-Seq data set of ten species, with two to six individuals
per species, across six tissues. The analysis accounted for
expression variation within species, and tests for shifts in
expression levels in each species and branch were performed
across the six tissues. This analysis showed that the testis had
the largest number of expression shifts, while the brain
showed few expression shifts. These results closely mimic
those previously found at the DNA level, which suggest
that testis-specific genes often are targeted by positive selec-
tion, while genes with primary expression in the brain tend to
be highly conserved (Nielsen et al. 2005). An exception was
the primate lineage, in which the largest number of expres-
sion optimum shifts was found in the brain. This could be
caused by biological factors such as the evolution of more
complex function, or perhaps, alternatively, reflect differences
in sampling and treatment of tissues between primates and
nonprimates.

Here, we expand upon the applied analysis, describing the
method in detail and estimate power and false-positive rates
of the tests performed under a variety of circumstances.
Specifically, we compare the performance of the model pro-
posed by Bedford and Hartl (2008) (species mean method) to
our extended model accounting for variance within species
(species variance method). Using simulations, we compare
parameter estimation accuracy and ability to distinguish
between various selective hypotheses between these two
methods. Our results show that a nonevolutionary expression
variance model may not be distinguishable from a model of
severe stabilizing selection. When using the species mean
method that does not allow for a nonevolutionary model,
genes that are subject to nonevolutionary environmental var-
iation will often be mistaken as being under intense stabilizing
selection. However, we show that the addition of parameter
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describing within-species variation facilitates statistically valid
investigation of nonevolutionary expression variance hypoth-
eses and circumvents the problem of false inferences of strong
stabilizing selection when within-species expression variation
is large compared with between-species variation. We explore
the power of these methods to detect expression shifts in
phylogenies, finding the methods to have similar power. In
addition to describing the extended species variance model
and its power, our results further describe the behavior of
the previously published and applied species mean model,
which is necessary for rigorous interpretation of results
from previous and current studies.

New Approaches

Expression Levels over Individuals within a Species

We implement two methods for modeling expression evolu-
tion: the species mean method (as described by Bedford and
Hartl [2008]) and the species variance method. In the species
mean method, the mean expression level is taken for each
species and used as the value of the OU process at that node.
In the species variance method, the gene expression levels are
assumed to be normally distributed across individuals within
a species, with mean given by the underlying OU process
value for that species node and variance parameterized by
�2. This additional parameter models biological and technical
variance within species and allows formulation of an addi-
tional variance model, the nonevolutionary environmental
variance model, as discussed further later.

Investigating Evolutionary Questions

This OU framework can model various specific hypotheses
about the nature of gene expression evolution by placing
constraint on what values parameters may take at different
branches in the phylogeny. The likelihood function for the
parameters of the process can be calculated using observed
gene expression data for different models so that likelihood
ratios can be used to test these models. We propose a series of
models and likelihood ratios as a natural starting point to
investigate basic questions in comparative analyses of gene
expression evolution. We consider models for expression
nonevolution, drift, stabilization, and lineage-specific shift.
An overview of the nested hypothesis tests based on these
models can be seen in table 1.

Models

Four models were used to simulate data: 1) the nonevolu-
tionary model where expression does not evolve over time
but variation is due to technical, environmental, and individ-
ual genetic variation, 2) the neutral drift model where gene
expression levels are subject to unconstrained neutral drift
over the phylogeny, 3) the stabilizing selection model where
gene expression levels drift randomly but are constrained
by stabilizing selection, and 4) the selective shift model
where expression level experiences stabilizing selection
toward different optimally fit expression levels on different
branches in the phylogeny, approximating directional (posi-
tive) selection in favor of change in expression levels on some
lineages of a phylogeny.

If expression levels are not evolving, the observed variance
in the data is explained by within-species variation (�2) alone.
That is, the comparative expression levels can be described by
a star phylogeny with zero branch lengths. To construct this
model, we eliminate evolutionary drift (set �2 ¼ 0) and
stabilizing selection (set � ¼ 0) on every branch of the
phylogeny. Under this model without phylogenetic signal,
gene expression levels are normally distributed across species
and individuals as Xik ~ Nð�root,�

2Þ. Without stabilizing
selection, the optimal gene expression value � is undefined,
and we instead estimate the ancestral gene expression value
at the root, �root.

We modeled the case of neutral drift of expression levels by
allowing evolutionary drift (�2 > 0) and disallowing stabiliz-
ing selection (� ¼ 0), which enables covariance of gene
expression values between species due to shared evolutionary
history. Note that this OU process with � ¼ 0 is equivalent
to a Brownian motion process of random unconstrained drift.

In the stabilizing selection model, expression levels are
subject to drift with a pull toward an optimal (most fit)
value. This is modeled by an OU process with � � 0, where
expression evolution is driven toward an optimum expression
level �. Because under the stabilization model, � is defined,
we have some choice in how to model the expression value
at the root. As an OU process has the stationary distribution
Nð�, �

2

2�Þ, we can chose whether to proceed as in the
nonevolving and drift models, including an additional param-
eter �root, or to instead use the stationary distribution on
this branch. Estimating �root is equivalent to requiring
�2 ¼ 0 on this branch. In this analysis, we use the stationary
distribution to describe expression at the root node.

A shift in expression levels can be modeled by allowing � to
vary across the phylogeny. In the shifted expression model,
each node i, the expression optimum �i 2 f�1,�2, . . . ,�ng

where n specifies the number of optima hypothesized to
act on the phylogeny. Expression at the root node is assumed
to follow the OU process stationary distribution [Nð�, �

2

2�Þ] as
in the stabilization model.

Simulating Expression Data

Using the models listed earlier, for a variety of parameter
values, we determined the expression level distributions and
simulated comparative expression data sets. For the

Table 1. Nested Hypothesis Tests for Evolutionary Models.

Null
Hypothesis

Alternative
Hypothesis

Nonevolutionary
versus drift

r2 ¼ 0, a ¼ 0 r2 > 0, a ¼ 0

Drift versus
stabilization

r2 > 0, a ¼ 0 r2 > 0, a � 0

Stabilization
versus shift

r2 > 0, a � 0, h0 ¼ h1 r2 > 0, a � 0, h0 6¼ h1
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phylogenetic structure, we used a ten-leaf phylogeny with
two to six individuals per species, equivalent to that consid-
ered by Brawand et al. (2011), which we refer to here as “small
tree.” To explore the effect of phylogeny size and sample size
per species on power, we consider two additional phyloge-
netic structures: a “deep tree,” which is constructed with four
copies of the small tree st as ½ðst,stÞ,ðst,stÞ� with all connect-
ing branches the length of st itself, and a “wide tree,” which is
the same phylogenetic structure as the small tree, but with
four times the individuals in each species (supplementary fig.
S1, Supplementary Material online). For each method, power
and false positive rate data points are shown based on 1,000
simulated replicates. The specific parameter values used for
each simulation vary across models and are indicated on all
figures.

Results

The Effect of Ignoring Individual Variation

The commonly used OU-based model for expression evolu-
tion does not directly account for measurement of expression
levels in multiple individuals of the same species. Typically,
when these models are used to calculate the probability of
observed data, the sample means are used as species expres-
sion levels, a technique we refer to as the species mean
method. As an alternative, we propose the species variance
method, where within-species variation is taken into account
with an additional parameter, �2. Note that the species mean
method approximates the species variance method as the
number of individuals per species increases. Using both
the species mean and variance methods, where possible, we
compute likelihood ratios to distinguish expression subject
to nonevolutionary variance, drift, stabilization, and lineage-
specific shifts (table 1).

Test 1: Testing for Phylogenetic Signal

Because the mean species method does not allow for within-
species variation, in the absence of selection, any variation in
mean expression levels between species must be explained by
drift. In this way, under the species mean model, data simu-
lated with any kind of variation between species is always
more likely under the drift model (�2 > 0) than the nonevo-
lution model (�2 ¼ 0). As an illustration, data were simulated
with the species variance method under the nonevolutionary
model and its likelihood computed for various values of �2.
Figure 1 shows this likelihood surface with the species mean
method to have a peak at �2 > 0, indicating that, even for
data simulated without evolutionary information, the species
mean method will assign some phylogenetic signal. Any at-
tempt to perform the test for phylogenetic signal under the
species mean model will result in rejection of the null hypoth-
esis, meaning both power and false-positive rate are 1.0.

Because the species variance method considers individual
variation, it allows for species mean expression levels to vary
even in the absence of evolutionary drift. In other words, the
species variance method enables a nonevolutionary model for
gene expression variance. So, with the species variance
method, the probabilities of the observed individual

expression levels can be compared under a model of nonevo-
lutionary variation and a model of evolutionary drift (table 1).
Distinguishing evolutionary and nonevolutionary variation is
particularly relevant because the expression of many genes is
thought to be subject to intense environmental variation
(Idaghdour et al. 2010).

Gene expression levels were simulated over the three phy-
logenetic structures under the nonevolutionary model with
varying values of �2 and under the drift model with varying
values of both �2 and �2. Using the species variance method,
the likelihood ratio for nonevolution versus drift was com-
puted for all these data, enabling simulation-based estimates
of power and false-positive rates, as shown in figure 2. The
critical value for hypothesis rejection was determined using
the simulations under the null hypothesis to attain a nominal
false-positive rate of 0.05. Because the nonevolution and drift
models are simply nested and differ by one parameter,
bounded at zero, the expected asymptotic distribution of
the likelihood ratio test statistic is a 50:50 mixture of chi-
square with one degree of freedom and a point mass at
zero. As expected, power increases with drift (parameterized
by �2), decreases with within-species variation (parameter-
ized by �2), and is greater for larger phylogenies.

Test 2: Testing for Stabilizing Selection

The likelihood function under both the drift and stabilizing
selection models is fully computable using either the species
mean or variance method. The resulting likelihood ratio can
be used to distinguish data simulated under each model. This
likelihood ratio was computed for data simulated under the
nonevolutionary, drift, and stabilization models using a variety
of parameter values. Figure 3 shows the positive identification
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FIG. 1. The species mean model log likelihood function for data simu-
lated under the nonevolutionary species variance model with �2 ¼ 5
(within-species variation) is computed with �̂2 (estimated drift) fixed
and other parameters optimized (�root [estimated expression at root]
and �̂2 [estimated within-species variation]).
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rates of data simulated under drift (false-positive rate) and
stabilization (power) using the species mean, species variance,
and conditioned species variance methods. In the condi-
tioned species variance method, rejection of the null hypoth-
esis is conditioned on rejection of the nonevolutionary model
as well. That is, a gene must be shown to be undergoing
expression evolution according to the known phylogeny
before further tests about the mode of expression evolution
are performed. In this case, the nonevolutionary model must
be rejected in favor of the drift model before the test for
stabilizing selection is performed. So stabilizing selection is
identified when both the nonevolutionary versus drift and
the drift versus stabilization tests reject the null. Power is
higher for larger phylogenies and using the species mean
method, as opposed to the species variation models.

However, data simulated under the nonevolutionary
model is often misidentified as under stabilizing selection
using the species mean method, as shown in table 2 and
figure 3. This can be explained by a lack of identifiability
when distinguishing between the nonevolutionary and stabi-
lization models. In the limit of strong selection, all species
expression levels will take the same (optimal) value. This is
equivalent to the nonevolutionary model used here, where
variation is not phylogenetic but individual. In the species
mean method, within-species or sampling variation is not
modeled, and similar expression mean values across species
are better explained by intense stabilizing selection than by
drift or nonevolution. As a result of using the species mean
method, genes with no phylogenetic signal often appear to be
under stabilizing selection, yielding high false-positive rates
(table 2).

Because the critical values for these tests are chosen to
attain a null hypothesis false-positive rate of 0.05, critical
values vary over phylogenetic structures and methods (sup-
plementary table S1, Supplementary Material online).
Specifically, because the deep tree contains more information
that can be exploited with the species variance method, this
configuration has more power to distinguish expression
under drift and stabilization. In this case, data simulated
under drift have very low likelihood ratio values, so the critical
threshold is remarkably low to attain a false-positive rate
as high as 0.05. When considering truly nonevolutionary
expression in the drift versus stabilization test, this results in
an elevated false-positive rate.

Using the species mean method, power increases with
strength of stabilizing selection (�), while using the species
variation method, power decreases with �. Again, consider
the limit of expression under the intense stabilizing selection
that erases information about ancestral expression levels in
observations of extant species so that there is little to no
variation in expression level between species. When using
the species variation method, as � increases, the data may
be better explained by parameter values resembling the
nonevolutionary model than the stabilization model. So the
test for stabilizing selection may actually lose power under
intense stabilizing selection, because in our construction, it
entertains a lack of phylogenetic signal as one of the possible
alternatives.

Test 3: Testing for Expression Level Shifts

Likelihood ratios comparing the stabilization and shift models
were computed for data simulated under the stabilization
and shift model with varying distances between the two
optima (��). Again, critical values were chosen to achieve
a nominal false-positive rate of 0.05. Figure 4 shows the power
of this test for different phylogenies, values of ��, and meth-
ods. Power increases with phylogeny size and ��. In these
simulations, the species variance method has higher power
than the species mean method, but the power is reduced
with the conditioned species variance method. Because
data simulated under selective shift depart from the phylo-
genetic structure, according to the magnitude of shift,
the conditioned species variance method loses some power
(supplementary table S2, Supplementary Material online).

The expression shift model produces patterns of expression
levels that depart from those under the nonevolving, drift, and
stabilizing models. Data simulated under both the nonevolv-
ing and drift models are rarely misidentified as a product of
the expression shift model, as seen in tables 3 and 4.

Estimating Model Parameters

For each of the four expression evolution models and the
two individual variation methods the likelihood function is
optimized to provide joint maximum likelihood estimates of
all the parameters. The nonevolutionary model is parameter-
ized in terms of the ancestral expression level (�root) and the
within-species variance (�2); the drift model by �root, �

2, and
strength of drift (�2); the stabilizing selection model by the
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FIG. 2. No evolution versus drift test (test 1) false-positive rate (lower
curves) and power (upper curves) using the species variance model for
various simulated values of �2 (within-species variation) and �2 (drift)
using critical values for a nominal false-positive rate of 0.05, run with
different phylogenetic structures (solid: small tree, dashed: wide tree,
dotted: deep tree).
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optimal expression level (�), �2, �2, and the strength of sta-
bilizing selection (�); and the selective shift model by the
different optimal expression levels defined on specific
branches (�1, �2 for two optima) �2, �2, and �. Note that
the within-species variation parameter �2 is undefined in the
species mean method.

In each case, we simulate data under the true model to
assess best-case parameter estimation accuracy. The param-
eters for ancestral expression (�root) and within-species

variance (�2) enter into the likelihood linearly as the mean
and variance of expression under the nonevolutionary model,
enabling accurate estimation with the species variance
method (supplementary figs. S2 and S3, Supplementary
Material online). Using the species mean model, likelihoods,
and therefore parameter estimates, are not computable
under a nonevolutionary model. Even in the more complex
shift model, the expression level optima parameter esti-
mates (�̂1 and �̂2) are easily computed as the means of
multivariate normal distributions (supplementary fig. S7,
Supplementary Material online). In the case of expression
shifts on shorter branches, the expression levels may not
have had time to reach the optima, leading to reasonable
underestimates of these values.

In the models where the parameters for drift (�2) and
stabilizing selection (�) are defined (drift, stabilization, shift),
these parameters enter in a more complex way, making them
more difficult to estimate with high accuracy (supplementary
figs. S4–S6, Supplementary Material online). Nonetheless, it is
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FIG. 3. Drift versus stabilization test (test 2) false-positive rate (lower curves) and power (upper curves) using the species mean, species variance, and
conditioned species variance models for various simulated values of � (strength of pull) using critical values for a nominal false-positive rate of 0.05, run
with different phylogenetic structures (solid: small tree, dashed: wide tree, dotted: deep tree). Rates for data simulated under the nonevolutionary model
and misidentified as under stabilizing selection are shown as points on the left of each plot (square: small tree, cross: wide tree, circle: deep tree).

Table 2. False-Positive Rate of Truly Nonevolutionary Data in Drift
versus Stabilization Test.

Typical
Tree

Deep
Tree

Wide
Tree

Species mean 0.56 0.99 0.78

Species variance 0.01 0.35 0.01

Conditioned species variance 0.01 0.02 0.00
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interesting to consider how these estimates differ under the
species variance and mean methods. Because the species
mean method attributes all variation between species expres-
sion levels to drift, this method often overestimatesb�2 when
compared with estimates under the species variance method
(supplementary figs. S4 and S5, Supplementary Material
online). In part to compensate for this overestimation,
under the stabilization model, the species mean method

has a tendency to overestimate � as well, when compared
with the species variation method which is more likely to
underestimate � (supplementary fig. S6, Supplementary
Material online).

Discussion
We have extended previous methods (Butler and King 2004;
Bedford and Hartl 2008) to model gene expression evolution,
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FIG. 4. Stabilization versus expression shift test (test 3) false-positive rate (lower curves) and power (upper curves) using the species mean, species
variance, and conditioned species variation model for various simulated values of �� (change in expression optimum) using critical values for a nominal
false-positive rate of 0.05, run with different phylogenetic structures (solid: small tree, dashed: wide tree, dotted: deep tree).

Table 3. False-Positive Rate of Truly Nonevolutionary Data in
Stabilization versus Shift Test.

Typical
Tree

Deep
Tree

Wide
Tree

Species mean 0.02 0.01 0.02

Species variance 0.01 0.00 0.00

Conditioned species variance 0.01 0.00 0.00

Table 4. False-Positive Rate of Truly Drifting Data in Test of
Stabilization versus Expression Shift.

Typical
Tree

Deep
Tree

Wide
Tree

Species mean 0.07 0.03 0.05

Species variance 0.07 0.02 0.06

Conditioned species variance 0.07 0.02 0.06
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including a term to account for within-species variation over
individuals caused by biological, technical, and environmental
inputs. Other studies have shown that RNA-Seq can accu-
rately quantify gene expression levels, but that there can be
substantial technical (Marioni et al. 2008; Mortazavi et al.
2008) and biological (Idaghdour et al. 2010; Pickrell et al.
2010; Price et al. 2011) variance. Through simulations, we
have shown that this extended model can be used to more
accurately infer underlying evolutionary mechanisms.

The parameters of this gene expression evolution model
can be estimated using maximum likelihood procedures. In
simulations, when considering the correct evolutionary
model, some the species expression levels (�) and within-
species variation (�2) can be estimated with some accuracy
(supplementary figs. S2, S3, and S7, Supplementary Material
online). However, the parameter values for the strength of
drift (�2) and stabilization (�) are dependent on each other,
so their individual estimates are less reliable (supplementary
figs. S4–S6, Supplementary Material online). Although we do
not recommend interpreting the parameter estimates
strongly in and of themselves, comparison of likelihood
values between models can be used for model choice.

The first test for phylogenetic signal is only possible using
the species variance method. In the species mean method,
any difference between species expression levels is explained
by drift, so the likelihood for realistic (nonpoint mass) data
peaks at �̂2 > 0 (fig. 1) and the null hypothesis of nonevo-
lutionary variation is always rejected, except if all individuals
have the exact same expression level. The ability to perform
this test is important because the expression of many genes
appears to be subject to much environmental or individual
variation, obscuring phylogenetic signal (Idaghdour et al.
2010; Pickrell et al. 2010; Price et al. 2011). Distinguishing
these genes before investigating other hypotheses of selec-
tion provides a basic filter for nonevolutionary variation.
Using the species variance method, power to detect phylo-
genetic signal increases with phylogeny size and strength of
drift (�2) and decreases with within-species variation (�2) and
can easily be controlled for a desired nominal false-positive
rate (fig. 2).

The test for stabilizing selection versus neutral drift is pos-
sible using both the species mean and variation methods. The
species mean method shows higher power than the species
variance method (fig. 3) with critical values chosen to achieve
false-positive rates of 0.05 under the null hypothesis of neutral
drift. However, the species mean method also suffers from
false-positive rates as high as 0.99 for expression levels that are
truly nonevolving (table 2). This dramatically elevated false-
positive rate renders the species mean method ineffective for
distinguishing stabilizing selection. The species variance
method has lower false-positive rates for truly nonevolving
gene expression levels, though some false-positive rates are
still uncontrolled. The false-positive rate can be controlled
using the conditioned species variance method, but substan-
tial power is lost as well. This problem of identifiability is
explained by the fact that expression levels may not vary
much among species under both extreme stabilizing selection
and the nonevolving model. This presents an identifiability

problem that results in lower power to identify stabilizing
selection, even using the species variance method, especially
for phylogenies the size of those currently available.

With this reduced power, the experimental results of the
species variance method test for stabilizing selection, like
those published by Brawand et al. (2011), are not easily inter-
pretable. Robust analysis of stabilizing selection awaits larger
data sets. Interestingly, the similarity of expression profiles of
genes with nonevolutionary variance and genes under stabi-
lizing selection may partially explain the results of a previous
study where a nonevolutionary model was not rejected in
favor of a drift model (Oakley et al. 2005).

A number of studies have been published claiming to
show widespread conservation and stabilizing selection of
gene expression levels. These studies generally either per-
form an ANOVA-style analysis where expression diversity
within species is compared with divergence between spe-
cies without regard to phylogeny (Lemos et al. 2005; Gilad,
Oshlack, Smyth, et al. 2006; Staubach et al. 2010; Schroder
et al. 2012; Warnefors and Eyre-Walker 2012) or the studies
use an OU model like the species mean method without
regard to within-species expression diversity (Bedford and
Hartl 2008; Kalinka et al. 2010). Specifically, the species
mean method that has been used to support claims of
80% of genes in a set of six Drosophila species across de-
velopmental time points are under stabilizing selection
(Kalinka et al. 2010). For comparison, in our simulations
for a ten-species phylogeny using the species mean
method, we see 56% of genes with nonevolutionary expres-
sion variance are misidentified as being under stabilizing
selection. Further, our power to identify stabilizing selection
ranges from 22% to 55%. The specific false-positive rates
and power depend on parameter values like within-species
variance, strength of drift, and the strength of stabilization.
We do not contest that stabilizing selection is crucial to
functional expression level. However, because nonevolu-
tionary variation is often mistaken as stabilizing selection
and the power to identify stabilizing selection may be low,
the precise degree to which stabilizing selection versus
nonevolutionary variation cannot be distinguished using
the species mean method. This results in a potential over-
statement of the importance of stabilizing selection in ex-
pression evolution. As an increasing number of studies
seem to reject neutral expression evolution in favor of
stabilizing expression, it will be important to consider the
possibility of nonevolutionary inputs to expression level.

The test for expression level shift, which was most prom-
inently featured by Brawand et al. (2011), shows similar high
power under both the species mean and species variance
models, which is consistent with their strong interpretation
of those results.

It is worth noting the interplay between statistical model-
ing and experimental design. Small organisms are commonly
pooled before they are typed for expression level. Typing
pooled samples effectively performs an “experimental
mean” on expression level, which may reduce individual bio-
logical variance when compared with single individual sam-
ples. However, pooling samples may not reduce technical
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variance between typing runs, so modeling this variance is still
important. Additionally, the implicit experimental mean may
be more robust to biological variance, but it is subject to error
and the true species mean is still unknown. As the species
variance method allows for error in estimated species mean
expression level and therefore allows for nonevolutionary
expression differences, the species variance method is still
preferable with pooled samples.

Although OU models provide a simple model of gene
expression evolution with easily tested hypotheses about
selective regimes, much remains to be explored about the
mechanism and nature of gene expression evolution. The
null hypothesis of nonevolution considered here allows
expression levels for all individuals across species to be
drawn from the same underlying normal distribution.
Other possible models of nonevolution could allow species
expression levels to vary in a nonphylogenetic manner, for
example, according to different environmental conditions,
which may more accurately represent the expression of
genes highly influenced by environmental factors. In addition,
the OU model implicitly assumes that the effect size of ex-
pression mutations follow a normal distribution (parameter-
ized by �2). We have much to learn about the mechanisms of
expression evolution. Mutation effect sizes may follow a
Poisson distribution (Khaitovich et al. 2005) or some mixed
model with common small effect sizes and rare large effect
mutations (Chaix et al. 2008; Gruber et al. 2012).

As with other models of gene expression evolution, here
we have considered a single gene’s expression level across
species and individuals. The power we estimated is accurate
for each marginal single gene’s expression levels. Of course, in
typical data sets, expression levels are quantified for many
genes simultaneously. Because expression levels across genes
vary in response to each other over evolutionary time and
environmental conditions, biological expression levels are not
independent. When accounting for multiple testing across
genes, assuming independence may lead to a loss in power.
Complex correlations across genes must be considered simul-
taneously to rigorously understand the biological basis
underpinned by full genetic architecture. A rigorous multi-
gene expression evolution analysis awaits development of
methods for correlated trait evolution based on previously
described models (Lande and Arnold, 1983; Felsenstein, 1985,
1988; Lynch, 1991) that would increase information and
power.

The simulations presented here indicate that these meth-
ods may be used to distinguish some regimes of gene expres-
sion evolution, particularly expression level shifts. However,
some expression models, particularly nonevolutionary vari-
ance and stabilizing selection, result in similar patterns of
expression levels, which are not distinguishable with currently
available comparative expression data sets. As more extensive
comparative expression data becomes available and the
mechanisms of expression variation and evolution are
better understood, increasingly appropriate models can be
developed to explore hypotheses of gene expression
evolution.

Materials and Methods
We model the evolution of a gene’s expression level over time
as an OU process, which is defined by the stochastic differ-
ential equation

dXt ¼ �ð� � XtÞdt + �dWt, ð1Þ

where Xt is the process value at time t, Wt is a normally
distributed random variable with variance dt (Wt Nð0,dtÞ),
� parameterizes the strength of pull toward the optimal
value �, and � parameterizes the strength of drift. The
change in expression level (dXt) over interval dt is the
sum of stochastic and deterministic components. The sto-
chastic component (�dWt) is a normally distributed
random variate with variance �2dt, and the deterministic
component (�ð� � XtÞdt) describes pull of the process to-
ward �. In modeling gene expression evolution, the sto-
chastic component of change represents neutral drift in
expression level and the deterministic component of
change represents stabilizing selection.

The OU Process as a Model Gene Expression
Evolution

For comparative analysis, we assume a phylogeny of known
topology and branch lengths and assign an OU process to
each branch. Formally, for every node i with expression level
Xi, we assign the parameters �i, �

2
i , and �i to the branch

leading to that node. Each node expression level Xi is distrib-
uted normally with

E½Xi� ¼ E½Xp�e
��i tip + �ið1� e��i tipÞ, ð2Þ

Var½Xi� ¼
�2

i

2�i
ð1� e�2�i tipÞ+ Var½Xp�e

�2�i tip , ð3Þ

where Xp is the expression level at the parental node p and tip

is the length of the branch separating i from its parent p.
Each of these moments contains a contribution from the
ancestral gene expression level that decays at a rate given
by the strength of stabilizing selection �. For any two nodes
i and j

Cov½Xi, Xj� ¼ Var½Xa�expð�
X
k2lij

�ktk �
X
k2lji

�ktkÞ, ð4Þ

where Xa is the expression level at the most recent common
ancestor of i and j and lij denotes the set of all nodes in the
lineage of Xi not in the lineage of Xj. Similar to equations (2)
and (3), the covariance of any two nodes is determined by the
variance at the common ancestor and decays exponentially
over the time the nodes have evolved independently since
divergence, with a rate given by the strength of stabilizing
selection.

The states of the OU processes at the terminal taxa (i.e.,
species expression levels) are distributed as a multivariate
normal as described in equations (2)–(4). The likelihood
function under such a specified OU model can be easily com-
puted, enabling the use of maximum likelihood methods to
estimate parameter values. Similarly, given a phylogeny
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and parameter values, the distribution of expression levels
obtained according to the multivariate normal and data
can be simulated.

Expression Levels in Individuals

In the species variance method, �2 confounds all sources
of individual variance (e.g., technical, environmental) into
one parameter. Formally, at any species node i and individ-
ual k, Xik ~ NðXi,�

2Þ, so that E½Xik� ¼ E½Xi�, Var½Xik� ¼

Var½Xi�+ �
2, and Cov½Xik, Xjl� ¼ Cov½Xi,Xj� where i 6¼ j.

Supplementary Material
Supplementary figures S1–S7 and tables S1 and S2 are avail-
able at Molecular Biology and Evolution online (http://www.
mbe.oxfordjournals.org/).
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