
A
rticle

Why Time Matters: Codon Evolution and the Temporal
Dynamics of dN/dS

Carina F. Mugal,1 Jochen B.W. Wolf,1 and Ingemar Kaj*,2

1Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
2Department of Mathematics, Uppsala University, Uppsala, Sweden

*Corresponding author: E-mail: ikaj@math.uu.se.

Associate editor: John H. McDonald

Abstract

The ratio of divergence at nonsynonymous and synonymous sites, dN/dS, is a widely used measure in evolutionary genetic
studies to investigate the extent to which selection modulates gene sequence evolution. Originally tailored to codon
sequences of distantly related lineages, dN/dS represents the ratio of fixed nonsynonymous to synonymous differences.
The impact of ancestral and lineage-specific polymorphisms on dN/dS, which we here show to be substantial for closely
related lineages, is generally neglected in estimation techniques of dN/dS. To address this issue, we formulate a codon
model that is firmly anchored in population genetic theory, derive analytical expressions for the dN/dS measure by
Poisson random field approximation in a Markovian framework and validate the derivations by simulations. In good
agreement, simulations and analytical derivations demonstrate that dN/dS is biased by polymorphisms at short time
scales and that it can take substantial time for the expected value to settle at its time limit where only fixed differences
are considered. We further show that in any attempt to estimate the dN/dS ratio from empirical data the effect of the
intrinsic fluctuations of a ratio of stochastic variables, can even under neutrality yield extreme values of dN/dS at short
time scales or in regions of low mutation rate. Taken together, our results have significant implications for the inter-
pretation of dN/dS estimates, the McDonald–Kreitman test and other related statistics, in particular for closely related
lineages.

Key words: population genetics of dN/dS, codon evolution, genomic signatures of natural selection, Poisson random field
approximation.

Introduction
The extent to which selection promotes evolutionary change
has long been a key question in the evolutionary sciences.
Although at the phenotypic level the importance of selection
is widely recognized, its role in modulating evolution at the
molecular level remains debated (Nei et al. 2010). One pop-
ular indicator of selection acting on protein-coding DNA
sequences is the dN/dS ratio. Because of its alleged simplicity
and intuitive appeal, this measure has a strong tradition in
evolutionary research, notably for the identification of genes
with a history of positive selection (Nielsen 2005). In short, the
dN/dS ratio quantifies the mode and strength of selection by
comparing synonymous substitution rates (dS)—assumed to
be neutral—with nonsynonymous substitution rates (dN),
which are exposed to selection as they change the amino
acid composition of a protein. Unity of the ratio is generally
taken to indicate neutrality, values exceeding unity are
interpreted as selection promoting change (positive
selection), and values less than one are usually taken as an
indication for selection suppressing protein change (purifying
selection).

Originally the dN/dS ratio was developed in a phyloge-
netics context, and its estimation was based on codon
sequences of distantly related lineages, where it is reasonable
to assume that dN/dS represents the ratio of fixed

nonsynonymous to synonymous differences between lineages
(Miyata et al. 1980; Li et al. 1985; Nei and Gojobori 1986;
Goldman and Yang 1994; Muse and Gaut 1994). The dN/dS
ratio can then be approximated as a deterministic function
of population size N and the selection coefficient s (Nielsen
and Yang 2003; Kryazhimskiy and Plotkin 2008). However,
recent empirical (Wolf et al. 2009) and theoretical work
(Kryazhimskiy and Plotkin 2008; Peterson and Masel 2009)
has challenged whether dN/dS appropriately reflects the out-
come of selection across all relevant evolutionary time scales.
As soon as we leave the realm of phylogenetics where single
stereotypic genomes are compared and enter the realm of
population genetics, the dN/dS ratio is no longer based on
only fixed nonsynonymous versus synonymous differences.
Segregating polymorphisms can substantially alter estimates
of divergence and consequently estimates of dN/dS (Peterson
and Masel 2009; Charlesworth 2010). As a consequence,
both recently arisen lineage-specific variants as well as
shared ancestral polymorphisms need to be taken into
account. Kryazhimskiy and Plotkin (2008) theoretically inves-
tigated the two most extreme cases in timescale considering
1) the pure phylogenetics context, where the dN/dS ratio is
based on fixed differences between distantly related lineages
and 2) the pure population genetics context, where the
dN/dS ratio is based on segregating polymorphisms within
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one panmictic population of conspecific individuals. In a phy-
logenetics context, codon evolution is modeled as a Markov
process, which indirectly assumes that fixation of a mutation
in the population occurs instantaneously (Goldman and Yang
1994; Muse and Gaut 1994). In a population genetics context,
simulations of sequence evolution in the presence of selection
are often based on Wright–Fisher sampling (Wright 1931).
Under the assumptions that 1) codons evolve independently
of each other under free recombination, and 2) polymorphic
codon positions are not allowed to mutate further, allowing
for a maximum biallelic state, the Markov model of codon
evolution can be viewed as a time limit of a Wright–Fisher
population process. That is, the jump rates of the Markov
model of codon evolution can be interpreted in terms of the
fixation probability of a Wright–Fisher population process
with selection (Nielsen and Yang 2003). However, for closely
related lineages the assumption that divergence time is large
enough to view the Markov model of codon evolution as a
time limit of a Wright–Fisher population process will be
violated. This violation gives rise to a gap between pure
population genetics and phylogenetic modeling approaches,
neither of which can adequately capture the evolutionary
relevant, temporal dynamics of the dN/dS ratio.

To fill this gap, we anchor the dN/dS ratio firmly in
population genetics theory and develop a codon substitution
model that allows us to describe the continuous dynamics
of dN/dS across evolutionary time starting from a single
panmictic population followed by a speciation event eventu-
ally resulting in deep phylogenetic divergence (fig. 1).
We derive analytical expressions for the dN/dS measure in a
Poisson Random Field framework integrating the relative

contributions of ancestral polymorphisms, lineage-specific
polymorphisms, and fixed differences through time. Our anal-
ysis shows under which evolutionary conditions, namely
population size, selection coefficient, and mutation rate, poly-
morphisms influence the expectation for dN/dS at any given
time point after speciation. The comprehensive mathematical
description of dN/dS based on a ratio of stochastic variables
further allows to estimate the associated variation and reveals
that for recently diverged lineages stochastic forces acting on
dN/dS are not negligible. In that, we provide a null model
making apparent the inherent biases in the estimation of
dN/dS generating false positive inference in the study of adap-
tive evolution. The results do not merely affect estimation of
the dN/dS ratio itself, but are of likewise importance for
related statistics such as the McDonald–Kreitman test
(McDonald and Kreitman 1991) or the a-estimate (Smith
and Eyre-Walker 2002). We finally advocate that a combina-
tion of divergence and polymorphism data be used to esti-
mate true dN/dS ratios and associated confidence intervals for
closely related lineages, something that appears to be feasible
in light of the current progress in sequencing technology.

Results

Review of the Classical Definition of dN/dS

Over long time scales, selection is generally inferred from
evolutionary change between divergent lineages that arose
after a distant population split or speciation event. Each
lineage is then represented by one stereotypic genome
sequence, where sequence comparison allows quantifying
evolutionary change at orthologous positions. Here,
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FIG. 1. Scheme of the evolutionary model—Speciation occurs instantaneously at time 0 and the two populations evolve separately and do not
interbreed until present time t. Mutations are depicted by black dots in the right part of the graph, where the arrows from right to left point to the
population in which the mutation happened. The right part of the graph shows the path to absorption (fixation or extinction) of these mutations. The
blue lines show paths of mutations that occurred before speciation, where paths evolve separately after speciation (ancestral polymorphism). At time 0,
these mutations constitute shared polymorphisms. The red lines show paths to absorption of lineage-specific mutations that occurred and got
absorbed in one of the two populations between 0, t½ � (fixed differences). The green lines show paths of lineage-specific mutations, which at present
time t are still segregating in the respective population (lineage-specific polymorphism).
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protein-coding sequences offer the great possibility that they
allow to contrast nonsynonymous and synonymous changes,
which yields intuitive insight into the mode and strength of
selection. The problem of estimating the strength of selection
then essentially becomes a problem of estimating substitu-
tion rates for two classes of changes. This has been addressed
by two sets of methods, heuristic counting methods (Miyata
et al. 1980; Nei and Gojobori 1986) and maximum likelihood
based approaches (Goldman and Yang 1994; Muse and Gaut
1994), the latter modeling the substitution process as a
continuous-time Markov process with 61 possible states
corresponding to the 61 sense codons. Under an infinite
sites model and under the assumptions of free recombination
and instantaneous fixation of novel mutations, dN/dS can be
recaptured based on Kimura’s expression for the probability
of fixation of newly arising variants of frequency 1=N (Sawyer
and Hartl 1992). To apply Kimura’s expression for the prob-
ability of fixation under a finite sites model, we have to make
the additional assumption that polymorphic codon positions
are not allowed to mutate further, such that there are never
more than two alleles segregating at the same codon position
(Nielsen and Yang 2003). It is then considered that synony-
mous mutations evolve in the population under neutral
reproduction. Nonsynonymous mutations are influenced
by selective forces in such a way that the fitness of the
ancestral to the derived alleles are 1 to 1 + s, where all nonsyn-
onymous mutations have the same selection coefficient.
Each time a derived allele becomes fixed fitness is reassigned
such that the derived allele is considered as the new ancestral
state and fitness is set to 1. The fitness of any potential
new mutation (including back mutation) is set to 1 + s.
Under this model, selection acts as a mechanism which
promotes (s > 0) or prevents (s < 0) changes of codons
involving amino acid replacements, and does not represent
a preference for or against specific codon types (for discussion
see Nielsen and Yang [2003]). If the chance of an immediate
back mutation is small enough to be neglected, then for
nonsynonymous mutations the fixation probability is given
by (Kimura 1962),

q� ¼
1� e�2s

1� e�2Ns
¼

1� e�2�=N

1� e�2�
�

1

N

2�

1� e�2�
, ð1Þ

where N is the (effective) population size, s is the selection
coefficient, and � ¼ Ns is the population-scaled selection
coefficient. By taking � ! 0, we recover the neutral case of
a synonymous mutation, for which the probability that a
novel mutation gets fixed in the population is q0 ¼ 1=N.
Note that derivations of the probability of fixation are
based on a haploid population of size N. Under the assump-
tion of additive fitness effects in a diploid organism, these
derivations are equivalent to a diploid population of size
N=2. The expected numbers of nonsynonymous and synon-
ymous substitutions per generation scale with q� and q0, and
hence dN/dS is interpreted as the ratio of these given by

!� ¼
q�
q0
�

2�

1� e�2�
, � 6¼ 0, !0 ¼ 1: ð2Þ

Here, !� corresponds to the ! typically estimated from data
using software packages such as PAML (Yang 2007). One
objection to bear in mind is that fixation effects were assumed
to be instantaneous, where sequence divergence is equal to
the number of mutations that occurred and got fixed
between two populations after population split. In practice,
however, the sequence divergence of two populations is mea-
sured based on the number of differences observed at diver-
gence time t between two sequences each sampled from one
of the two distinct populations. Thus, in addition to muta-
tions that occurred and got fixed after population split also
shared ancestral and newly arisen lineage-specific polymor-
phisms will contribute to the total divergence (fig. 1).

Definition of dN/dS in a Population Genetics-
Phylogenetics Framework

We will now drop the assumption of instantaneous fixation
and formulate an explicit codon substitution model that
allows to describe the expectation of nonsynonymous and
synonymous divergence at any point in time. Following the
standard approach, dN/dS is derived from amino acid
sequence divergence between two divergent lineages (or
populations). We make the simplifying assumption that
speciation follows an isolation-without-migration model as
illustrated in figure 1. We thus consider two independent
populations both of size N where each element is a sequence
of L codons or 3L nucleotide sites. Let t denote the popula-
tion-scaled evolutionary divergence time between the two
populations at present time, where Nt generations have
passed since population divergence time at t = 0. Mutation
events occur at a rate � > 0 per individual (nucleotide) site
and generation. Whenever a nucleotide is hit by mutation, a
target nucleotide is chosen according to a 4� 4 Markov
chain transition probability matrix H. Note that H can be
viewed as any commonly used nucleotide substitution
model, such as the Jukes–Cantor model. The fate in the pop-
ulation of this newly introduced derived type nucleotide over
subsequent generations is extinction or fixation, determined
by a standard Wright–Fisher reproduction mechanism, which
furthermore distinguishes between nonsynonymous and
synonymous changes. We assume that codons evolve inde-
pendently (free recombination) and that � is sufficiently
small to allow for a scenario where each new mutation will
only affect monomorphic codon sites. Hence, in this model,
codon sites will be at most biallelic.

In each polymorphic site, the pair of ancestral and derived
codon will be either synonymous or nonsynonymous.
Mutations leading to synonymous changes evolve in the pop-
ulation under neutral reproduction, whereas mutations lead-
ing to nonsynonymous changes are influenced by selection
such that the fitness of the ancestral to the derived alleles are
1 to 1 + s. Following practice in much of the population ge-
netics literature including theoretical studies of dN/dS
(Sawyer and Hartl 1992), we consider the diffusion approxi-
mation scaling regime of large N and small s, where the pop-
ulation-scaled selection coefficient � ¼ Ns reflects the total
(signed) selection pressure per site and generation. Similarly,
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the constant � ¼ 3�LN measures total mutation pressure
per codon sequence and generation. In the Materials and
Methods, we show that based on the fundamental parame-
ters H, � , and � together with the knowledge of the genetic
code, it is possible in the framework of our model to derive
the proportions of mutation events leading to synonymous
and nonsynonymous codon pairs. Hence, we can write

� ¼ �syn + �non + �stop,

to distinguish synonymous and nonsynonymous changes, as
well as sorting out an intensity �stop for events that lead to
stop codons.

Now, to obtain dN/dS, we consider the sequence diver-
gence between two sequences sampled from two distinct
populations or lineages. Sequence divergence can be split
into the two contributions of nonsynonymous and synony-
mous divergence and their ratio can be used to quantify the
impact of selection acting on the entire coding sequence. To
this end, we let DnonðtÞ denote nonsynonymous divergence
and DsynðtÞ synonymous divergence at time t, and write
DðtÞ ¼ DnonðtÞ+ DsynðtÞ for the total divergence. Sequence
divergence should naturally be proportional to sequence
length and increase over time essentially with the same rate
as that of substitutions occurring in either population from
the time of population split and onward. This is indeed a
property of our model, in which DnonðtÞ and DsynðtÞ are in-
dependent and have approximate Poisson distributions with
expected values

EDnonðtÞ ¼ 2�non dnonðtÞ and EDsynðtÞ ¼ 2�syn dsynðtÞ,

where dnon and dsyn are functions of � and t. The factor 2
arises from the fact that we consider divergence between two
populations.

As a first measure of dN/dS we take the ratio of expected
values

dN=dS ¼
EDnonðtÞ=�non

EDsynðtÞ=�syn
¼

dnonðtÞ

dsynðtÞ
, ð3Þ

where the normalization by �non and �syn accounts for the
difference in mutation pressure for nonsynonymous and syn-
onymous changes, respectively. The ratio in equation (3) rep-
resents a measure of the average rates of nonsynonymous to
synonymous divergence. Similar to previous work (Rocha
et al. 2006; Kryazhimskiy and Plotkin 2008; Peterson and
Masel 2009), our aim is to understand the relation between
dN/dS and natural selection as a function of evolutionary
time. Our contribution here is to provide more detailed
expressions than reported earlier for dnonðtÞ and dsynðtÞ
across all relevant evolutionary timescales with special atten-
tion to small t. At the same time, we are cautious about the
use of equation (3) as a single dN/dS measure. After all, upon
accepting the underlying model assumption that divergence
is the result of random sampling from random populations of
random sequences, it is restrictive in the end to only compare
two expected values. To initiate a discussion of alternative
measures of dN/dS, perhaps more suitable to reflect the
various fluctuations involved, we will compare in the next

subsection the ratio of the expected values EDnonðtÞ and
EDsynðtÞ in equation (3) with the expected value of the
ratio of the independent random variables DnonðtÞ and
DsynðtÞ, see equation (7) later.

To incorporate the contribution of polymorphism and
thus expand the classical definition of dN/dS we consider
three levels of mathematical modeling which are described
in detail in the Materials and Methods. In short, we begin
with a full codon substitution model (the phylogenetics
component) embedded in a population genetics framework
represented by a discrete Markov chain. Because of the
complexity of the model, analytical insight is limited. In a
second step, we therefore resort to an analytically more
tractable continuous time approximation. This allows us to
find the codon equilibrium distribution and to extract the
typical rates of synonymous and nonsynonymous mutations.
For standard mutation models, the latter can be derived
explicitly. Finally, in a third step, we argue that key properties
including the rate of divergence over time are captured well
by approximate Poisson distributions. This approach is rem-
iniscent of the Poisson’s random fields model, which has been
used for similar purposes earlier (Sawyer and Hartl 1992). The
main assumptions for the model parameters are that N and L
are both large while the ratio 2� logðNÞ=L, which represents
the fraction of polymorphic sites in the sequence, is kept
sufficiently small. From this, we derive detailed results for
the dN/dS ratio, in particular with regards to dependence
on the selection parameter g and divergence time t.

As a consequence of the Poisson approximation, we can
treat nonsynonymous as well as synonymous divergence
as the sum of three independent Poisson distributed
components, arising from divergence due to fixation of new
mutations since population divergence, lineage-specific poly-
morphisms, and shared ancestral polymorphisms. This basi-
cally corresponds to sampling two sequences, one sequence
from each population, aligning them and counting the
number of synonymous and nonsynonymous differences.
We then distinguish three cases how these differences
could have arrived. First, we distinguish mutations which oc-
curred before or after population split. Second, for mutations
that occurred after population split we make the further dis-
tinction whether the mutant is already fixed in its population
or still segregating. The first case of mutations, which occurred
before population split, are referred to as ancestral divergence
(blue lines in fig. 1). Fixed differences due to mutations that
occurred after population split are referred to as fixed diver-
gence (red lines in fig. 1). Finally, mutations, which occurred
after population split and are still segregating, are referred to
as polymorphic divergence (green lines in fig. 1). Accordingly,
the mean divergence splits into three types of contributions,
and we can write

dnonðtÞ ¼ dnon
fix ðtÞ+ dnon

pol ðtÞ+ dnon
anc ðtÞ,

dsynðtÞ ¼ dsyn
fix ðtÞ+ dsyn

polðtÞ+ dsyn
ancðtÞ,

ð4Þ

where dnon
fix ðtÞ, dsyn

fix ðtÞ represent divergence due to fixation of

new mutations since population divergence, dnon
pol ðtÞ, dsyn

polðtÞ
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are contributions from sampling of lineage-specific polymor-
phic sites, and dnon

anc ðtÞ, dsyn
ancðtÞ take into account the effect

of ancestral polymorphisms which existed at t = 0. In the
Materials and Methods, we present in detail approximation
formulas for all of these, using three auxiliary functions which
we denote by G�ðtÞ, H�ðtÞ, and J�ðtÞ, Briefly, t� G�ðtÞ scales
with the average number of fixations up to time t and H�ðtÞ
scales with the average number of lineage-specific polymor-
phisms that get sampled for its derived allele at time t, in both
cases referring to mutations that occurred after population
split. The function J�ðtÞ scales with the average number of
sampled differences at t, which originate from mutations in
the ancestral population.

With time-explicit derivations of all terms in equation (4)
established, we may sum up the expected divergence from
each contribution, be it ancestral, polymorphic, or fixed, and
compare nonsynonymous and synonymous terms, writing

dN=dS j total ¼
dnonðtÞ

dsynðtÞ
¼ !�

t� G�ðtÞ+ H�ðtÞ+ J�ðtÞ

t� G0ðtÞ+ minðt,2Þ+ 1
:

ð5Þ

The asymptotic limits are given by !� as t!1 and
by ð!� � 1Þ=� as t! 0.

To help interpret the various contributions in equation (5),
we proceed to look at the separate dN/dS ratios for each type,
which we denote by dN=dS j fixation, dN=dS j polymorphic, and
dN=dS j ancestral. The ratio dnon

fix ðtÞ=dsyn
fix ðtÞ is insensitive to t

and quickly converges to !� with increasing t. Hence, in
agreement with equation (3), the contribution to dN/dS
due to fixations of lineage-specific mutations is

dN=dS j fixation ¼ dnon
fix ðtÞ=d

syn
fix ðtÞ

¼
!�ðt� G�ðtÞÞ

t� G0ðtÞ
! !� ¼

2�

1� e�2�
:

The slight deviation of dnon
fix ðtÞ=dsyn

fix ðtÞ from !� is essentially
due to our definition of fixed differences, which are based on
lineage-specific mutations only. In fact, fixed differences could
arise due to lineage-specific mutations as well as due to
shared ancestral polymorphisms. However, once the sum of
the various distributions to divergence estimates is computed
(as in dN=dS j total), both kinds of fixed differences are
considered. For divergence attributed to lineage-specific
polymorphisms, we find that dnon

pol ðtÞ=dsyn
polðtÞ, which equals 1

at t = 0, quickly approaches a limiting value �� , such that

dN=dS j polymorphic ¼ dnon
pol ðtÞ=d

syn
polðtÞ

¼
!�H�ðtÞ

minðt,2Þ
! �� �

e�2� � 1 + 2� + 2�2

2�ð1� e�2�Þ
, t!1:

Finally, the ancestral contribution as time evolves has a
limiting ratio �� such that

dN=dS j ancestral ¼ dnon
anc ðtÞ=dsyn

ancðtÞ

¼ !� J�ðtÞ ! �� � !�ð1�
�

3
�
�2

18
Þ � 1 +

2�

3
�
�2

18
:

At t = 0, the ancestral ratio takes into account the effect of
selection when we sample two individuals from the single
population, which forms the common ancestry at population
split. In equation (26) of the Materials and Methods, we
show that J�ð0Þ ¼ ð!� � 1Þ=�!� , so that we have the initial
ratio

dnon
anc ð0Þ=dsyn

ancð0Þ ¼
!� � 1

�
� 1 +

�

3
�
�3

45
: ð6Þ

The time dependence of the various ratios is illustrated in the
top panel of figure 2 for � ¼ �1. The three separate ratios
dN=dS j fixation, dN=dS j polymorphic, dN=dS j ancestral are plotted
together with the ratio of total expectations dN=dS j total,
as well as the limiting value !� . In the bottom panel of
figure 2, the limiting long time ratios !� , �� , and �� as
well as the initial ancestral contribution ð!� � 1Þ=� are plot-
ted together as functions of g.

The interesting observation is that when combining the
effects of all three contributions by forming dN=dS j total, the
ancestral and polymorphic divergence influence the total di-
vergence ratio over a substantial time period before settling
down at !� . With an increasing number of fixation events
and hence actual lineage-specific nucleotide substitutions
building up differences between the two populations over
a considerable time span, it is of course the rate of linear
increase in dnon

fix ðtÞ in comparison with that of dsyn
fix ðtÞ, which

will ultimately decide the asymptotic dN/dS ratio. But as
evident in figure 2, ancestral and lineage-specific polymor-
phisms which also generate differences between the observed
sequences seek out their own preferred balance of nonsyn-
onymous to synonymous change. As long as ancestral and
polymorphic differences measure up on the scale of fixations,
the limiting numbers �� and �� influence the total ratio.
The ancestral initial value, which is manifestly different from
!� , ensures that the transition to fixation asymptotics is
clearly visible on the evolutionary time scale. In summary,
this clearly indicates that, indeed, dN/dS is naturally a function
of time. For the case � < 0 of negative selection, dN/dS
decreases from its initial ratio ð!� � 1Þ=� < 1 to !� < 1.
If � > 0, then dN/dS increases from its initial ratio
ð!� � 1Þ=� > 1 to !� > 1. Figure 3 illustrates the time
dependence of dN=dS j total for five values of � .

We conclude this section with additional remarks on the
relation of our results to previous results in the literature. The
work of Kryazhimskiy and Plotkin (2008) is concerned with
the relationship between selection and dN/dS values mea-
sured from two sequences sampled from a single population.
In this situation, differences between the sequences reflect
segregating polymorphisms and not fixed differences. The
authors offer a theoretical foundation of the dN/dS ratio for
single population data and demonstrate that the frequent use
of equation (2) in the context of intraspecific sequence data
lacks proper justification and is inappropriate. The desired
dN/dS ratio addressed in (Kryazhimskiy and Plotkin 2008) is
closely related to dN=dS j ancestral at t = 0 in our model, that is,
the dN/dS ratio based on two sequences sampled from a
single (ancestral) population existing prior to speciation.
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In fact, the initial ratio found to be ð!� � 1Þ=� in equation
(6) is a stationary dN/dS ratio for sequences sampled in a
single population. However, the corresponding quantity
!popð�,�Þ obtained in (Kryazhimskiy and Plotkin 2008), equa-
tion (5), depends not only on � but also on �. This fact can be
traced back to the derivation of !ð�,�Þpop, which is based on
a Wright–Fisher approximation that allows for back and forth

mutations during the segregating phase, further assuming
that � is sufficiently small. It is then natural to interpret the
�! 0 limit of !ð�,�Þpop as a generic dN/dS ratio within
populations, and straightforward to check that !ð�,0Þpop ¼

ð!� � 1Þ=� in complete agreement with equation (6).
The work by Sawyer and Hartl (1992) form the theoretical

basis for the McDonald–Kreitman test (McDonald and

wg

wg (wg −1)/grg fg

FIG. 2. (Top) dN/dS ratios for fixation (red), polymorphic (green), ancestral (blue), and total (gold line) divergence for � ¼ �1 as a function of
divergence time t; (bottom) the limiting values !� for dN=dS j fixation (red), �� for dN=dS j polymorphic (green), �� for dN=dS j ancestral (solid blue), and the
initial ancestral contribution ð!� � 1Þ=� (dashed blue) as a function of � .
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Kreitman 1991). These authors provide sampling formulas for
fixed nonsynonymous and synonymous differences and for
nonsynonymous and synonymous polymorphisms in a
model setting, which is rather close to the model advocated
in the present work. Regarding mutations, our rates �syn, �non,
which are derived from the codon substitution model, can be
considered equivalent to the mutation rate parameters �s

and �r used by Sawyer and Hartl. Turning to the expected
number of fixed differences Sawyer and Hartl assume linearity
in time, whereas we get refined expressions for the number of
fixed differences as we distinguish between fixed differences
originated from shared ancestral polymorphisms and fixed
differences originated from lineage-specific mutations.
Our expressions are dsyn

fix ðtÞ+ dsyn
ancðtÞ ¼ t� G0ðtÞ+ 1 and

dnon
fix ðtÞ+ dnon

anc ðtÞ ¼ !�ðt� G�ðtÞ+ J�ðtÞÞ compared with t
and !� t in (Sawyer and Hartl 1992), equation (13).
However, the assumption of linearity in time is well justified
for distantly related lineages and critical only for closely
related lineages, where ancestral fixed differences measure
up on the scale of lineage-specific fixed differences. Turning
to the sampling formulas for nonsynonymous and synony-
mous polymorphisms Sawyer and Hartl consider arbitrary
samples of size n and m from two species. In our settings,
m ¼ n ¼ 1 as typical in phylogenetic approaches. Their
results (Sawyer and Hartl 1992), equations (17) and (18),
with m = 1 correspond to

dsyn
polðtÞ ¼ 2, dnon

pol ðtÞ ¼ !�

Z 1

0

1� e�2�x

�x
dx

where we derive the time dependent functions minðt,2Þ
and !�H�ðtÞ, see equations (21) and (22). The differences
between our results and the results by Sawyer and Hartl
arise from the fact that Sawyer and Hartl assume that the
number of lineage-specific segregating sites has reached its
equilibrium. Although this assumption is well justified for
distantly related lineages, it is clearly violated for more closely
related lineages. Our results better capture the reality of

divergence between evolutionary young lineages, and
converge to the results by Sawyer and Hartl for t!1.

Statistical Properties of dN/dS

The previous section has treated the time dependence of the
dN/dS ratio, measured as the ratio of expected values of two
independent Poisson random variables. However, when the
ratio of nonsynonymous to synonymous divergence is esti-
mated from sequence data, we in fact do not know their
expected values but rather carry out single observations of
DnonðtÞ and DsynðtÞ and consider the ratio of these. Regardless
of the estimation procedure, for example, counting methods
or maximum likelihood approaches, an estimation based on
sequence data will always just reflect a single observation or
measurement. This is important to notice, as the ratio of
expected values is in general not equal to the expected
value of a ratio. We are therefore interested in the statistical
properties of the expected value of a ratio of two Poisson
random variables rather than in a ratio of expected values.
Proper statistical inference therefore must take into account
the natural fluctuations of such a ratio of random variables.
This leads us to studying the ratio of nonsynonymous to
synonymous divergence in a population genetics framework
as the scaled ratio of Poisson variables

DnonðtÞ=�non

DsynðtÞ=�syn
on DsynðtÞ > 0:

Thus, we define a new measure of dN/dS as the conditional
expectation

dN=dSðtÞ ¼ E
DnonðtÞ=�non

DsynðtÞ=�syn
jDsyn > 0

� �

¼
dnonðtÞ

dsynðtÞ
Cð2�syndsynðtÞÞ,

ð7Þ

which is based on a series approximation of the expected
value of a ratio of two random variables. In the Materials
and Methods, we introduce function C (eq. 28) and provide

FIG. 3. Total dN/dS-ratios for the five values � ¼ �1 (red line), � ¼ �0:5 (green line), � ¼ 0 (turquoise line), � ¼ 0:5 (purple line), and � ¼ 1 (blue
line).
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a detailed derivation of equation (7) and show that this func-
tion can be easily computed numerically. Note, however,
that unlike the ratio dN=dS j total, dN=dSðtÞ depends on the
mutation pressure �. In the limit �!1 (which could
be reached by an infinitely long codon sequence L!1),
we recover the previous ratio of expected values, as
lim�!1 dN=dSðtÞ ¼ dN=dS j total. To visualize the difference
between the two measures, the upper panel of figure 4 illus-
trates the general shape of the curve dN=dSðtÞ up to time
t = 100 after population split for the case � ¼ �1 with the
Jukes–Cantor mutation model and four different values of �.
Also shown in the same graph is dN=dS j total, that is, the ratio
of expectations dnonðtÞ=dsynðtÞ, and the limit !� � 0:313 as
t!1. The distinct change in appearance of the dN/dS
curves with varying values of � is somewhat similar to
what the effect would be of changing the time scale from t
to �t. Of course this comes natural since lowering the
overall mutation pressure in the model would cause the
system to run on a slower time scale. It is important to
note that the striking deviation in figure 4 of the expected
ratio dN=dSðtÞ from the ratio of expectations dnonðtÞ=dsynðtÞ,
is not directly an effect of the selection mechanism. On
the contrary, the lower panel of figure 4 shows the
corresponding set of curves for the neutral case � ¼ 0 for
which we have dnonðtÞ ¼ dsynðtÞ.

To provide insight into the shape of the dN/dS curves and
their intrinsic random variations, we further estimate upper

and lower confidence bands I + ð�Þ and I�ð�Þ for dN/dS de-
fined as a ratio of two Poisson random variables, such that

P I�ð�=2Þ �
DnonðtÞ=�non

DsynðtÞ=�syn
� I + ð�=2Þ

� �
� 1� �:

In the Materials and Methods, we obtain

I�ð�=2Þ ¼ p + z�=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n̂

r !�1

�1

 !
�syn

�non
,

I + ð�=2Þ ¼ p� z�=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n̂

r !�1

�1

 !
�syn

�non
,

ð8Þ

where z� is the a-quantile of the standard normal distribu-
tion, �non and �syn represent the proportion of nonsynony-
mous and synonymous changes, respectively, and

p ¼
�syndsynðtÞ

n̂
, n̂ ¼ �syndsynðtÞ+�nondnonðtÞ:

To cross-validate these derivations, we next explore the
variation in dN/dS by 100 independent simulation runs
with parameter settings N ¼ 500, L ¼ 2000, � ¼ �1, and
� ¼ 1. We keep track of the precise numbers of nonsynon-
ymous and synonymous differences between two popula-
tions from population split at t = 0 up to evolutionary time
t = 100, and then plot the ratio of these differences at a

FIG. 4. dN=dSðtÞ for � equal to 0.1 (red), 0.2 (green), 0.4 (blue), 1 (cyan) compared with the ratio dN=dS j total (gold). (Top) dN=dSðtÞ for � ¼ �1 and
(bottom) dN=dSðtÞ for � ¼ 0. The limiting value !� is indicated by the dashed black line, which in the lower panel is identical to unity and hidden by
the golden line.
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resolution of every 5N generations. The distribution and
stochastic fluctuations in DnonðtÞ=DsynðtÞ are visualized in
figure 5. Also shown in figure 5 are dN=dS j total, the dN/dS-
ratio in equation (7) as well as the shape of the confidence
bands (eq. 8). The confidence bands represent a 5% chance of
seeing larger fluctuations at a specific point in time and do
not provide joint confidence for the entire function over time.
For the present simulation of 100 runs, 14.3% of the data
points fell outside of the region between upper and lower
bands, where 9.7% fell above the upper band and 4.6% below
the lower band. Moreover, note that during initial divergence
extremely high dN/dS values that would be commonly taken
as evidence for positive selection are frequently obtained even
under negative selection pressure.

Discussion

Value and Limitations of the Model

The standard phylogenetic model of codon evolution and the
estimation of dN/dS was introduced in a pure phylogenetics
context in 1994 by two independent publications (Goldman
and Yang 1994; Muse and Gaut 1994). The observations that
dN/dS can be influenced by mutation rate (Wyckoff et al.
2005), branch length (Wolf et al. 2009), and polymorphisms
motivated theoretical studies on the temporal dynamics of
the measure. We here pick three previous studies of relevance
and briefly discuss them in relation to our current approach.
The first study by Rocha et al. (2006) describes the time
dependence of dN/dS for closely related taxa, starting with
a clonal population which over time becomes more diverse.
As in our modeling approach their simulation study applies
Wright–Fisher sampling in a population of fixed size where
each generation is subject to mutation. However, instead of
incorporating a full codon model each mutation is simply set
to be synonymous with probability 1=4 and nonsynonymous
with probability 3=4. The number of synonymous mutations
is assumed to increase linearly in time, while nonsynonymous
mutations are sampled with a selective weight. Importantly,
the number of accumulated nonsynonymous mutations is
assumed to reach a limiting value over time which means
that possible fixations are not taken into account. Although
this may not be critical for short time periods, for long time-
scales this leads to the inappropriate property that
dN=dS! 0 as t!1. Another model developed for similar
purposes by Peterson and Masel (2009), is refined in several
ways. As in our study, Peterson and Masel consider divergence
between two populations after population split from a
common ancestor and derive estimates of the expected di-
vergence as function of divergence time. They include the
effects of recent fixations and shared ancestral polymor-
phisms, but neglect the effect of lineage-specific polymor-
phisms. Their study was motivated by earlier studies on the
effect of ancestral polymorphisms on estimates of mutation
rate for closely related lineages, related to the apparent mu-
tation rate acceleration (Ho and Larson 2006; Balbi and Feil
2007). A third study closely related to ours is the study by
Kryazhimskiy and Plotkin (2008). Their emphasis is on the
comparison of two extreme cases, where dN/dS is estimated

from sequences of 1) conspecific individuals and 2) distantly
related lineages. We expand on their approach as we study
the continuous transition between these two cases. Ideally,
our description of dN/dS would show the same initial value as
the one described by Kryazhimskiy and Plotkin for conspecific
individuals. At first glance, this is not the case. Kryazhimskiy
and Plotkin use a mutation model that allows for back and
forth mutation between the ancestral and the derived allele
during the time of segregation, which in the setting of codon
evolution seems to be inappropriate and yields different
results. However, if we no longer allow for back and forth
mutation by letting �! 0 in Kryazhimskiy and Plotkin,
their dN/dS measure converges to our measure based on a
single population prior to speciation. Hence our analysis of
dN/dS with regards to the single population prior to specia-
tion is consistent with that of Kryazhimskiy and Plotkin
for conspecific individuals not allowing for back and forth
mutations. The second extreme case investigated by
Kryazhimskiy and Plotkin also reflecting the classical defini-
tion of dN/dS as introduced in the pure phylogenetics context
(Goldman and Yang 1994; Muse and Gaut 1994) is in full
agreement with our description of the limiting value of
dN/dS for t!1.

A further novelty of our work in comparison with Rocha
et al. (2006), Peterson and Masel (2009), Kryazhimskiy and
Plotkin (2008), or any other study investigating the temporal
dynamics of dN/dS, is that we incorporate a full codon sub-
stitution matrix into our model, and consider selection for or
against changes in the codon sequence. This is in contrast to
the other works where estimates of dN/dS are based on a
comparison of sites evolving under selective pressure versus
neutrally evolving sites. The slightly more complicated, pop-
ulation genetic Markov model of codon sequence evolution
seems a natural choice as it closely mimics biological reality.
Moreover, our model allows to capture the dynamics of dN/
dS at any point in time and expands its inferential value
beyond mere phylogenetic considerations. In addition, the
incorporation of a nucleotide substitution matrix and the
resulting codon substitution matrix in a Markovian frame-
work, should make it possible to specifically consider pro-
cesses such as GC-biased gene conversion that are known
to mimic the signature of selection (Berglund et al. 2009).
Several other expansions of our model are conceivable. For
its basic formulation, we restricted our model to instanta-
neous speciation not allowing for the occurrence of gene
flow during the onset of divergence. We expect that under
such an isolation-with-migration scenario the bias introduced
by polymorphisms will extend for even longer times and
would certainly be worth exploring. Besides, other less strin-
gent model assumptions such as site-specific variation in
selection strength or selection on synonymous changes via
codon usage bias might be relevant to consider.

Implications for Empirical Evolutionary Genetics
Studies

The dN/dS measure is commonly used to 1) disclose evolu-
tionary processes across species (Wright and Andolfatto 2008;
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Ellegren 2009) or 2) to identify genes under positive selection
for an evolutionary lineage of interest (Clark et al. 2003;
Bustamante et al. 2005). We here demonstrated that dN/dS
is biased for the comparison of evolutionary young lineages
when using the standard (phylogenetic) model. Is this time
dependence of dN/dS at all relevant for the paramater space
empirical work is generally dealing with? Let us first consider
the former case, where genome-wide mean dN/dS is used as a
proxy for average selection pressure in specific lineages that
are then related to life history traits of remnant species
(Nikolaev et al. 2007; Wright and Andolfatto 2008).
According to our model, we expect a clear upward bias of
dN/dS estimates for short branches, as has been indicated by
empirical evidence (Wolf et al. 2009). As branch length and
life history traits such as body size or generation time are
known to covary (Gillooly et al. 2005; Bromham 2009), this
artifact may lead to erroneous conclusions. But how closely
do lineages need to be related for this to be of concern? Let us
consider the case of human–chimp divergence as an example.
For a realistic value of � ¼ �1 and considering a large
enough sequence length L that dN/dS can be approximated
by the ratio of expected values, our results suggest that dN/dS
is on average upward biased by approximately 46% 2 Ne gen-
erations after speciation, and still by approximately 14% 10 Ne

generations after the split. Assuming 5 million years for the
split time between human and chimp from a common
ancestor, an overall generation time of 20 years for the
human lineage and a minimum effective population size of
14,000, we obtain an estimated time to the most common
recent ancestor of approximately 18 Ne generations. At first
sight, this suggests only a mild contribution of polymorphisms
to dN/dS of the human lineage. Eighteen Ne generations,
however, are an overestimate for two reasons. First, ancestral
population sizes have been larger than current human effec-
tive population size. Assuming an average effective popula-
tion size of 45,000 (Prüfer et al. 2012) split time would be 5 Ne

rather than 18 Ne generations, which falls squarely within the
critical range of an upward biased dN/dS. Second, our model
does not allow for migration after speciation, which will
extend the influence of polymorphisms over longer time
frames. These considerations are qualitatively consistent
with evidence from Prüfer et al. (2012) suggesting that
approximately 3% of genetic variation in the human
genome are cases of incomplete lineage sorting with respect
to bonobo or chimp. We thus conclude that for human–
chimp and lineages with similar or even shorter divergence
histories, polymorphisms are an issue and need to be consid-
ered for correct inference of selection pressure. With some
knowledge on divergence time and effective population sizes,
our model can in principle be used to rescale dN/dS accord-
ingly and correct for the bias.

The second, more prominent application of dN/dS is
the quest for genes under positive selection in specific line-
ages. Naturally, much effort has been devoted to isolate
the genes (or gene classes) under adaptive selection in the
human lineage (Clark et al. 2003; Bustamante et al. 2005).
Within the context of our model, we can only discuss
potential implications for approaches inferring selection for

genes, and do not consider possible time dependencies of
models inferring selection for single codon sites. Positive
selection on genes or functional subsets of genes is generally
inferred by comparing the likelihood of dN/dS being larger
than in a neutral or nearly neutral scenario (Nielsen and Yang
1998) making use of software applications such as PAML that
are based on the continuous Markov process with instanta-
neous fixation described earlier. These likelihood-based
approaches used for inference on selection do not incorpo-
rate the contribution of ancestral or lineage-specific polymor-
phism and we may expect increased false positive detection
for evolutionary young lineages, and, in particular, for genes
where polymorphic sites substantially contribute to diver-
gence. Judging from our results, we may predict which
genes will be most severely affected. Looking at the per-
gene level, we cannot any longer assume sequence length L
to be large enough that dN/dS can be approximated by the
ratio of expected values. Instead, we have to look at the
statistical properties of the ratio of two Poisson random var-
iables. Here, our results suggest that estimates of dN/dS will in
particular be biased by polymorphisms if 1) the mutation
pressure is low or 2) sequence length is short. Moreover,
not only the expected value of dN/dS tends to be biased
for such genes but also the random error or the intrinsic
fluctuations in the estimate are particularly strong for the
same set of genes, as indicated by wide confidence bands at
shorter time scales. As a consequence the interpretation of
dN/dS needs caution, and likelihood ratio tests are necessary
to account for the random error. However, likelihood ratio
tests can only account for the random error, but not for the
systematic bias in the expected value caused by polymor-
phisms. This bias is expected to be strongest in genes with
low divergence, which can either be due to recent divergence
time, low mutation pressure, or short sequence length.
Hence, the systematic bias caused by polymorphisms may
at least partly explain the common observation that genes
with low divergence are preferably found to be under positive
selection, as has been indicated previously (Wolf et al. 2009).

Future Perspectives

We have here introduced an analytical model to illustrate
the time dependence of dN/dS and aspects of the effects of
estimating dN/dS as a ratio of two Poisson random variables.
Our approach expands existing models on codon evolution
and integrates the contribution of polymorphisms to amino
acid sequence divergence. Although not explicitly formulated
for this purpose, we hope that our model may provide
the basis for a refinement of the underlying theory of the
widely used McDonald–Kreitman test and might improve
the inference on the mode and strength of selection for
closely related lineages by jointly using polymorphism and
divergence data. The 1000 human genome project (1000
Genomes Project Consortium 2012) and emerging popula-
tion genomic studies in genetic nonmodel organisms
(Ellegren et al. 2012) demonstrate that the necessary popula-
tion genomic data sets will soon be readily available for a
growing number of species.
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Materials and Methods

A Stochastic Model of Codon Evolution

In this section, we introduce a detailed population genetics
Markov model of codon sequence evolution and use it for
two main purposes. First, we find natural equilibrium rates of
synonymous and nonsynonymous mutations and show how
to obtain them from standard assumptions of nucleotide
mutation. These rates provide a reference for the volume
fractions of the two types of mutations among the polymor-
phic sites and represent in the model an estimate of the
number of synonymous and nonsynonymous sites found in
data. Our second main purpose of introducing the model is to
keep a sufficiently detailed record of all polymorphic sites over
time to later help analyzing the rate of divergence between
two populations over time. It is crucial to distinguish the
contributions to sequence divergence attributed to ancestral,
polymorphic, and fixed differences. This is what will enable us
to count synonymous and nonsynonymous divergence
taking into account all three of these mechanisms and in
the end to estimate dN/dS.

A single population consists of N individuals. Each individ-
ual is represented by a sequence of nucleotide sites of length
3L structured as L consecutive codon nucleotide triplets.
Random mutation based on standard assumptions acts on
each nucleotide in a triple and the genetic code allows us to
distinguish synonymous and nonsynonymous mutations. The
fate of a mutant allele is extinction or fixation determined
by Wright–Fisher reproduction acting independently on the
L sites with the 64 codon states at each site. Although new
alleles which originate from synonymous codon transitions
evolve under neutral conditions of population reproduction,
the evolution of mutant codon alleles that are nonsynony-
mous with respect to the ancestral codon are affected by
selective sampling. The chance to see two or more mutations
at the same site overlap in time will be so small that for our
purposes is justified to study the approximative biallelic
model.

In the following, we will provide a detailed account of the
assumptions for the codon mutation model and for repro-
duction with selection weights. This level of detail is necessary
to introduce the appropriate notation and prepare for the
analytical description of dN/dS through time.

A Markov Model for Codon Mutations
We begin by fixing the numbering of nucleotides A ¼ 1,
C ¼ 2, G ¼ 3, T = 4 and an ordered list S0 ¼ fu1, . . . ,
u64g ¼ f111, 112, 113, 114, 121, 122, . . . , 443, 444g, which
gives an enumeration of the 64 codon types. Here,
S0 ¼ f411, 413, 431g is the subset of stop codons. We write
S for the remaining elements, the sense codons, so that
S0 ¼ S [ S0. By applying the biological code, we associate to
each sense codon u 2 S one of the 20 existing amino acids.
The change of a nucleotide affects the first, second, or third
position of the corresponding codon and causes a transition
from the original codon to one of eight or nine possible target
codons. If codon u changes to codon v in this manner the
mutation is said to be synonymous if u and v are coding for

the same amino acid and nonsynonymous if the amino acids
are different. To record this information, we introduce for
each pair of sense codons u,v 2 S, u 6¼ v, the indicator
variables

Jðu,vÞ ¼
0 if u and v are synonymous,
1 if u and v are nonsynonymous:

�

Mutations involving stop codons will happen with positive
probability but will be regarded immediately extinct.

We assume that mutation occurs uniformly and indepen-
dently over nucleotide sites with mutation rate � > 0 per
site and per generation. Writing � for the total mutation rate
per generation, we have � ¼ 3LN�. A codon site is said to be
clonal when all individuals share the same nucleotide triplet
and is said to be polymorphic if not. For the type of model
studied here, typically the number of polymorphic sites will be
small in comparison with the length L and hence the number
of polymorphic sites with more than two alleles will be even
smaller. Applying the criteria that N is not too large in relation
to L, see supplementary text equation (14) (Supplementary
Material online), mutation is assumed to be suppressed
in already polymorphic sites. Hence, all polymorphic
sites are biallelic in the sense that one ancestral and one
derived codon coexist with frequencies summing to one.
Mutation is reactivated at extinction or fixation of the derived
codon.

To find the rates of synonymous and nonsynonymous
mutation events, we introduce a Markov chain of codon
mutations. At the level of nucleotides, given that a mutation
occurs at a site in one sequence of the population the nucle-
otide changes from i to j, i, j 2 f1,2,3,4g ¼ fA,C,G,Tg,
according to a transition probability matrix H ¼ ðhijÞ with
zero diagonal elements, strictly positive nondiagonal elements
and row sums equal to one. With probability one-third
the affected site is the first, second, or third position of a
codon. Thus, taking into account only one-site mutations,
the nucleotide transitions in H generate a corresponding
Markov chain of codon mutations on the state space S0

given by a 64� 64 transition probability matrix M0. Then
to account for stop codons, we replace M0 ¼ ðm0uvÞ with
the modified 64� 64 mutation probability matrix
M ¼ ðmuvÞ obtained by retaining all jumps to the states S0.
More precisely, if m0uv > 0 for some v 2 S0, we put muv ¼ 0
and muu ¼

P
v2S0

m0uv.
Now, we are in position to mark each mutation event

synonymous, nonsynonymous, or stopped by decomposing
the mutation matrix M as

M ¼ Msyn + Mnon + Mstop,

where Msyn collects all nondiagonal elements muv for which
the pair u, v is synonymous (Jðu,vÞ ¼ 0), the elements of
Mnon represent nonsynonymous changes (Jðu,vÞ ¼ 1) and
Mstop stores the diagonal elements muv, u ¼ v, of M. Let 1
be a 64-column vector of only ones and let a and b denote the
64-column vectors

a ¼ Msyn1, b ¼ Mnon1: ð9Þ
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In these vectors, the kth elements ak and bk are the
conditional probabilities to obtain synonymous and nonsyn-
onymous derived codons, given that a mutation occurs
in codon uk.

If we focus on a single codon site at a given generation,
the chance to see a mutation is proportional to 3�N (which
we may assume is much less than one). Hence, mutation
events occur over time according to the transition probability
matrix M� ¼ ð1� 3�NÞI + 3�NM. Adding up the L sites of
a sequence, it follows by independence of the mutation
mechanism that the number of mutation events in a given
generation is approximately Poisson distributed with mean �.
But only a small fraction of these events result in actual
nucleotide substitutions, as we will see next by adding repro-
duction and selection to the model.

Discrete Time Wright–Fisher Model with Selection
For the reproductive dynamics of the model, we make the
simplifying assumption that there is free recombination,
that is, no linkage, between sites of a sequence. Each new
generation is obtained from the previous generation by
Wright–Fisher sampling acting on codons such that all
codon sites develop independently of each other. Hence, a
clonal site remains clonal until a newly mutated codon allele
enters in one individual of the population. At this instance,
the site becomes polymorphic and remains so over a period
of time during which the frequency of the derived codon
evolves according to a Wright–Fisher Markov chain until
absorption. If the underlying mutation event is synonymous,
then reproduction is neutral whereas if the mutation
is nonsynonymous then the derived and ancestral co-
dons are sampled with the selective weights 1 + s and 1,
respectively. Typically, we consider selection to act deleteri-
ously, prohibiting nonsynonymous changes by letting the
selection parameter s be negative, �1 < s < 0. This is,
however, no restriction as the model covers positive selection,
s > 0, as well. At the time of absorption, the site becomes
clonal.

To summarize the dynamics of codon evolution in the
population, we keep track of L triplets Wi

n ¼ ðA
i
n, Bi

n, Xi
nÞ 2

S� S� ½0,N�, i ¼ 1, . . . ,L. In each generation n, Ai
n 2 S is

the type of the ancestral codon at site i, Bi
n is the type of

the derived codon if i is polymorphic and equal to Ai
n if i is

clonal, and Xi
n is the number of individuals with the derived

codon allele at site i. By construction, the components
ðWi

nÞn�0, i ¼ 1, . . . ,L are independent and identically
distributed discrete time Markov chains with state space
S� S� f0, . . . ,Ng. The one-step transitions of the single
codon site chain are as follows. For mutation, jumps
ðu,u,0Þ ! ðu,v,1Þ are governed by the transition matrix
M� and occur with probability 3�Nmuv, v 6¼ u. For repro-
duction, we let Y denote a random variable with the binomial
distribution Bin ðN,pÞ, where p ¼ pðu,v,xÞ is the sampling
probability

p ¼
xð1 + sJðu,vÞÞ

N + sxJðu,vÞ
:

Then, the jumps and corresponding transition probabilities of
Wright–Fisher sampling are given by

ðu,v,xÞ !
ðu,v,yÞ with prob: PðY ¼ yÞ, 1� y� N� 1
ðu,u,0Þ �;;� PðY ¼ 0Þ
ðv,v,0Þ �;;� PðY ¼ NÞ:

8<
:

Continuous Time Approximation of the Full Model
Next, we consider large population size N and apply to each
discrete time single site Markov chain ðWi

nÞ, 1 � i � L, the

standard scheme of approximation ðAi
½Nt�,B

i
½Nt�,N

�1Xi
½Nt�Þ

under the change of time and scale given by

n � Nt, s � �=N: ð10Þ

For the third component, it is well known that the derived
allele frequency in the Wright–Fisher model with selection
and no mutation converges as N!1 to a diffusion process
with absorbing boundaries in 0 and 1 given by the solution of
the stochastic differential equation

d	t ¼ �	tð1� 	tÞ dt +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	tð1� 	tÞ

p
dBt,

where ðBtÞ is Brownian motion. Here, 	0 is the initial fraction
of derived alleles. In our case 	0 ¼ 1=N! 0, which suggests
that derived alleles would go extinct immediately. In our
approach, however, the large population size scaling
(eq. 10) is balanced against a total mutation intensity of
order �N=L per codon site. Thus, we replace the frequency

N�1Xi
½Nt� by a process ðX i

tÞ where each nonzero excursion

follows a path of ð	tÞ, with 	0 ¼ 1=N > 0 (the same approx-
imation is used in Evans et al. [2007]). Then during the

clonal periods, for which X i
t ¼ 0, the first two components

in ðAi
½Nt�, Bi

½Nt�, 0Þ are continuous time Markov chains

ðA
i
t,B

i
t,0Þ (forced to have Ai

t ¼ B
i
t) in holding until the

next jump of Bi. As the jump probability per generation is
3�N, it follows that the jump rate per N generations is

3�N2 ¼ �N=L. Hence, the generator matrix of Bi equals

MN� � I. Each jump ofBi
t leaves ðAi

tÞ unaffected but initiates

a diffusion path ð	tÞ embedded in X i
t. If the faith of ð	tÞ is

extinction thenBi
t returns to its previous value stored in ðAi

tÞ.

If instead the path ð	tÞ gets fixed thenAi
t attains the current

value ofBi
t. More explicitly, we are approximating the discrete

time Markov chain ðWi
nÞ with a continuous time Markov

process ðW i
tÞ ¼ ðA

i
t,B

i
t,X

i
tÞ with state space ðS,S,½0,1�Þ.

The state space is a mixture of two jump coordinates and
one continuous state coordinate and the process has the
specific feature of holding and jumping from the boundary.
We provide background information on diffusion processes
with holding and jumping boundary in the supplementary
text (Supplementary Material online). In our case, the bound-
ary consists of all points ðu,u,0Þ, u 2 S. If the current state

of W i
t is ðu,u,0Þ then after an exponential holding time of

rate �N=L the process ðBi
tÞ jumps to state v with probability

muv. At the instance of such a jump ðW i
tÞ begins tracing

a path of ðu,v,ð	tÞÞ, with

d	t ¼ �Jðu,vÞ	tð1� 	tÞ dt +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	tð1� 	tÞ

p
dBt, 	0 ¼ 1=N,
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until time of absorption. If the absorption event is fixation,
the process jumps to ðv,v,0Þ, if it is extinction, the jump is
to ðu,u,0Þ. Then again, the jump intensities apply until the
next ð	tÞ-excursion takes place, and so on. The summation
measure process

�t ¼
XL

i¼1


W i
t
, ð11Þ

now models the codon distribution in the entire sequence
of length L across the population and over time, and provides
a site frequency spectrum for the ensemble of clonal and
polymorphic sites in the sequence. Each term features a
record ðAi

t,B
i
tÞ of ancestral and derived codon types plus a

process ðX i
tÞ, which alternates between dormant periods

and active sessions. In each cycle, the dormant period has
exponential length with intensity �N=L and the active session
consists of a Wright–Fisher diffusion corresponding to the
absorption time of a Wright–Fisher diffusion with initial
value 1=N running until absorption in 0 or 1.

The Codon Equilibrium Distribution
The first component ðAi

tÞ of each ðW i
tÞ has its jumps

restricted to times of actual nucleotide substitution events.
Synonymous mutations get fixed with probability 1=N and
nonsynonymous mutations fix with probability!�=N, � 6¼ 0,
with!� introduced in equation (2) (the formal background is
given in eq. 2 of the supplementary text, Supplementary
Material online). So, if we single out only substitution
events then the Markov chain transition probabilities
reduce to ðMsyn +!�MnonÞ=N. Thus, we consider a continu-
ous time Markov chain with infinitesimal generator

Q� ¼ 3�N ðMsyn +!�Mnon � VdiagÞ,

ðVdiagÞkk ¼ ak +!�bk

ð12Þ

where the total jump intensities stored in the diagonal matrix
Vdiag were introduced in equation (9). Here, the stop codons
S0 are transient states. We conclude that the continuous
time approximation Ai

t behaves as the Markov chain with
generator Q� , except that each holding time is prolonged
by the fixation time of the corresponding diffusion path in
X i

t. To obtain a steady state codon distribution, however,
one should restrict to the clonal population, which is given
precisely by the Markov generator Q� . Hence, we define �
to be the unique stationary distribution which satisfies
�Q� ¼ 0 and which provides a steady state for the irreduc-
ible Markov chain restricted to S and with �k ¼ 0 for uk 2 S0.
Now for large N, we have the interpretation that substitutions
occur according to Q� and the typical codon frequencies
observed in a clonal site in equilibrium is given by �.
Furthermore, in this equilibrium, we can measure the propor-
tions of synonymous and nonsynonymous events among
all mutations. For example, whenever a mutation event occurs
according to M it is synonymous with probability given by the
scalar product h�,ai ¼ �Msyn1. Consequently, we introduce
the probability distribution � ¼ ð�syn,�non,�stopÞ, by

�syn ¼ �Msyn1, �non ¼ �Mnon1, �stop ¼ �Mstop1:

ð13Þ

In conclusion, the typical rates at which mutation events are
synonymous, nonsynonymous, or inert are obtained as the
weighted mutation rates

�syn ¼ ��syn, �non ¼ ��non, �stop ¼ ��stop,

and the conditional distribution of synonymous and nonsyn-
onymous mutations given that a nonstop codon transition
occurs is

psyn ¼
�syn

�syn +�non
, pnon ¼

�non

�syn +�non
:

As a consequence, the resulting synonymous and nonsynon-
ymous mutation intensities for the population of sequences
are given by

�syn ¼ �syn� ¼ 3LN�syn, �non ¼ �non� ¼ 3LN�non:

ð14Þ

Mutation Rates for Standard Models
The probability distributions � and ðpsyn,pnonÞ, and hence the
rates �syn,�non can be found explicitly for standard mutation
matrices H. The Kimura model with �+ 2� ¼ 1, takes into
account a mutation ratio 
 ¼ �=� of transitions versus trans-
versions. For this model, the uniform distribution on nonstop
codons given by �k ¼ 1=61, uk 2 S, is stationary for M and
hence Q� . This holds not only for the neutral case � ¼ 0 but
also in general. Indeed, Q� is doubly stochastic for any � ,
and by equation (13),

� ¼
12

61
+

26

183
�,

46

61
�

22

183
�,

3

61
�

4

183
�

� �
,

psyn ¼
36 + 26�

174 + 4�
, pnon ¼

138� 22�

174 + 4�
:

A special case of the Kimura model, which we have used for
the simulation study in this work, is � ¼ 1=2, � ¼ 1=4,

 ¼ 2. Then

� ¼
49

183
,

127

183
,

7

183

� �
, psyn ¼

49

176
¼ 0:2784,

pnon ¼
127

176
¼ 0:7216:

Our model is flexible and allows for any other nucleotide
substitution pattern, including asymmetric versions with
nonzero diagonal elements hii. In general, if � ¼
ð�1 �2 �3 �4Þ is a steady state for H, hence representing
the typical fractions of nucleotides in the population, the
corresponding steady state of codons will be

�u ¼ c � �i�j�k, u ¼ ðijkÞ, c�1 ¼
X

u

�i�j�k,

and the vector � is again found from equation (13).
Commonly used versions of the Goldman–Yang model
(Goldman and Yang 1994), fall in this category.

Poisson Random Field Approximation
In equation (11), letting the initial times and paths of all active
sessions form points of a Poisson random point measure leads
to what has been called a Poisson random fields model
(Sawyer and Hartl 1992). Although we do not pursue this
line of argument formally, our approach is similar in spirit.
The quantities of primary interest in this work, which measure
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divergence of sampled sequences between populations, are
recognized as random functionals of �t. These functionals
count specific events that occur along the site processes with
probabilities proportional to �=L. With L independent sites,
this leads to an approximate Poisson number of events over
the total length of the sequence with mean proportional to �.
To find the expected values of the divergence functionals,
we apply the site frequency spectrum, which arises by super-
posing Wright–Fisher diffusions starting in 1=N at Poisson
times with rate �N (Evans et al. 2007).

Recall from equation (12) that the typical codon frequen-
cies are given by the steady state f�u,u 2 S n S0g.
Conditional on the first component of �t in site i being
A

i
t ¼ u, then Bi

t typically makes a large number of jumps
from u to a sense codon neighbor v of u and then back to u,
before one of these excursions eventually fixes and results in a
change of state of Ai

t. Given such a u, Bi
t settles in a steady

state with probabilities muv. Summing again over u with the
stationary weight, we recover

P
u �umuv ¼ �v. Therefore, it is

reasonable to assume that mutations occur along the time
axis as an approximate Poisson process with intensity N� and
each event sparks the excursion of a Wright–Fisher diffusion
ð	sÞ with 	0 ¼ 1=N. The fractions of mutation events, which
lead to synonymous and nonsynonymous codon pairs are
obtained by the weighted summationsX

u,v2SnS0

�umsyn
uv ¼ �syn,

X
u,v2SnS0

�umnon
uv ¼ �non,

and the corresponding mutation intensities are given by
N�syn and N�non. A key feature here is that nonsynonymous
and synonymous codon mutations evolve independently
of each other.

Rate of Divergence over Time

In this section, we consider a population split where a
population of size N has been running indefinitely from the
past and is replaced at time t = 0 instantaneously by two
identical copies of the population. The new branches repre-
sent two emerging species both of population size N with
initially the same number of clonal and polymorphic sites
and with identical codon frequencies. From the splitting
time and onwards each of the two populations evolve inde-
pendently according to the same mechanisms of mutation
and selection. To follow the onset of divergence between
the species, we sample randomly one individual in each
population. Let D(t) denote the number of nucleotide
differences between these two sequences at time t � 0. We
will analyze three types of differences which contribute to
the total divergence D(t), by writing

DðtÞ ¼ DfixðtÞ+ DpolðtÞ+ DancðtÞ,

where

DfixðtÞ ¼ sequence divergence at t from mutations during
[0, t] fixed uring [0, t],

DpolðtÞ ¼ number of derived alleles sampled from
lineage-specific polymorphic sites at t and

DancðtÞ ¼ sequence divergence at t attributed to
ancestral polymorphisms existing at t = 0.

Here, DfixðtÞ and DpolðtÞ are sums of two independent
contributions, one from each population, whereas DancðtÞ
involves the joint initial state at t = 0. The dominant source
of divergence between two sequences which is visible after a
longer time span t, is the fixation of new alleles from recent
mutations in each population during ð0,tÞ. The growth in the
number of substitutions and the subsequent growth of DfixðtÞ
is essentially linear in t. This is the same mechanism, which is
responsible for the mixing of codons and the appearance of a
steady state of codon frequencies in the long run. The addi-
tional contributions to the total divergence D(t) are bounded
as functions of t but are important to understand how the
linear growth regime is attained after population split.

We will analyze the three types of divergence by relating
the components of D(t) to suitable functionals of �t in equa-
tion (11), extended to cover a common ancestry for t � 0
and two independent species populations for t > 0. At any
given time, some of the L codons in the model are likely to be
polymorphic and hence exempt from mutation events. But as
the number of polymorphic sites is typically much smaller
than L, we will apply the approximation that the total muta-
tion intensity is � ¼ 3�NL per sequence and generation,
hence N� per sequence and time units t. It is the independent
Poisson mutation processes in our model that drive the
various contributions to D(t). In particular, nucleotide substi-
tutions count into DfixðtÞ, which therefore has a Poisson
distribution. Sampled differences, both ancestral and present
polymorphic, arise at most one in each codon site. By equa-
tions (15) and (16) of the supplementary text (Supplementary
Material online), the probability to see one of these differ-
ences at a given site after sampling sequences in two popu-
lations is proportional to the mutation intensity per codon
and time unit, namely �=L. Summing over L codons this gives
a binomial, hence approximately Poisson, number of differ-
ences with mean proportional to �. But then DpolðtÞ and
DancðtÞ, and therefore D(t) itself have approximate Poisson
distributions. Our next focus will be to find the corresponding
expected values.

Expected Divergence after Population Split
We begin with divergence based on fixed differences. Our
model associates with the Wright–Fisher diffusion ð	tÞ its
fixation time �1, extinction time �0 and absorption time
� ¼ minð�0,�1Þ. The total number of mutation events in
½0,tÞ is Poisson with mean N�t and conditional on this
number the events are uniformly distributed on ½0,tÞ. One
such mutation occurring at time s results in a fixation if
s + �1 < t. Summing over both populations and taking into
account the fractions of synonymous and nonsynonymous
events, this gives

EDfixðtÞ ¼ 2N�t �
1

t

Z t

0

P1=Nðs + �1 < tÞds

¼ 2N�syn

Z t

0

P
0
1=Nð�1 < sÞds

+ 2N�non

Z t

0

P
�
1=Nð�1 < sÞds
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Rewrite as P
�
1=Nð�1 < tÞ ¼ P	�1=Nð�1 < tÞ q�ð1=NÞ, where

P
	�
x ð�1 < tÞ is the conditional probability given fixation

(�1 <1) and q�ðxÞ ¼ P
�
x ð�1 < �0Þ denotes the fixation

probability of a mutated allele which emerges with frequency
x in the population. By equation (2), q�ð1=NÞ~!�=N.
Hence, in the large N limit,

EDfixðtÞ ¼ 2�syndsyn
fix ðtÞ+ 2�non!�dnon

fix ðtÞ

with

dsyn
fix ðtÞ ¼

Z t

0

P
	0
0 ð�1 < sÞ ds, dnon

fix ðtÞ ¼

Z t

0

P
	�
0 ð�1 < sÞ ds:

Equivalently,

dsyn
fix ðtÞ ¼ t� E

	0
0 ðminð�1,tÞÞ, dnon

fix ðtÞ ¼ t� E
	�
0 ðminð�1,tÞÞ,

which reveals the deviation from linear growth of EDfixðtÞ.
For � ¼ 0,

E
	0
0 ðminð�1,tÞÞ ¼ G0ðtÞ,

with the function G0 defined in equation (12) of the supple-
mentary text (Supplementary Material online). One option
for the general selective case � 6¼ 0 would be to apply a
spectral representation for the transition density of the
Wright–Fisher model with selection, and rely on numerical
computations of the corresponding eigenvalue/eigenvector
problem. To keep things simpler while retaining a reasonable
degree of accuracy, instead we propose at this place the
approximation

E
	�
0 ðminð�1,tÞÞ � G�ðtÞ, G�ðtÞ ¼ minðG0ðtÞ,E

	�
0 ð�1ÞÞ:

By applying a known integral expression for E
	�
x ð�1Þ, see

Karlin and Taylor (1981), Ch. 15, (9.9), and expanding the
resulting integral in � , we obtain

E
	�
0 ð�1Þ ¼

Z 1

0

ð1� e�2�yÞð1� e�2�ð1�yÞÞ

yð1� yÞ�ð1� e�2�Þ
dy

¼ 2�
1

9
�2 +

7

675
�4 + Oð�6Þ

ð15Þ

and hence

G�ðtÞ � minðG0ðtÞ,2� �
2=9Þ:

In summary,

EDfixðtÞ � 2�synðt� G0ðtÞÞ

+ 2�non!�ðt�minðG0ðtÞ,2� �
2=9ÞÞ:

ð16Þ

Next, we turn to divergence based on lineage-specific poly-
morphisms. As discussed earlier, consider a mutation at a
uniformly distributed time s in ½0,tÞ. The corresponding
derived allele exists at time t if s + � > t, in which case
0 < 	s

t < 1. In each population, we have sampled one par-
ticular individual. The probability that this individual carries
the derived allele is approximately 	s

t . Hence, the probability
that this lineage-specific polymorphism contributes to

estimates of divergence is

1

t

Z t

0

E1=Nð	
s
t ,s + � > tÞ ds ¼

1

t

Z t

0

E1=Nð	
0
r ,� > rÞ dr

¼
1

t
E1=N

h Z minðt,�Þ

0

	r dr
i
:

Now summing over all mutation events in ½0,t� in both
populations and splitting neutral synonymous ones from
selective nonsynonymous mutations, we find

EDpolðtÞ ¼ 2�syndsyn
polðtÞ+ 2�nondnon

pol ðtÞ, ð17Þ

where

dsyn
polðtÞ ¼ lim

N!1
NE

0
1=N

h Z minðt,�Þ

0

	s ds
i
,

dnon
pol ðtÞ ¼ lim

N!1
NE

�
1=N

h Z minðt,�Þ

0

	s ds
i
:

To continue estimating dsyn
polðtÞ and dnon

pol ðtÞ, it is a useful fact

that the functional E�x ½
R �

0 	s ds� has an explicit representation

as an integral over the corresponding Green’s function (for
details see supplementary text, Supplementary Material

online). Indeed, for � ¼ 0, we have NE
0
1=N½

R �
0 	s ds� ! 2

and for � 6¼ 0,

lim
N!1

NE
�
1=N

h Z �

0

	s ds
i
¼ !�

Z 1

0

1� e�2�y

�y
dy, ð18Þ

as N tends to infinity. To accommodate the behavior for
small t, we apply the approximation

E
�
x

h Z minðt,�Þ

0

	s ds
i
� min

 Z t

0

E
�
x ½	s� ds,E�x

h Z �

0

	s ds
i!
:

ð19Þ

Here E
0
x ½	s� ¼ x for � ¼ 0, so for large N

dsyn
polðtÞ � NE

0
1=N

h Z minðt,�Þ

0

	s ds
i

� min

 
N

Z t

0

E
�
1=N½	s�ds,NE

�
1=N

hZ �

0

	s ds
i!
� minðt,2Þ:

More generally, by conditioning,

E
�
x ½	t� ¼ E

�
x ½	t j �1 < �0� q�ðxÞ+ E

�
x ½	t j �0 < �1� ð1� q�ðxÞÞ:

The conditional expectations on the right hand side appear
to be well approximated by those for the neutral case � ¼ 0,
which can be derived explicitly,

E
�
x ½	t j �1 < �0� � E

0
x ½	t j �1 < �0� ¼ 1� ð1� xÞe�t,

E
�
x ½	t j �0 < �1� � E

0
x ½	t j �0 < �1� ¼ xe�t:

Thus,

E
�
x ½	t� � q�ðxÞð1� e�tÞ+ xe�t ð20Þ

and

N

Z t

0

E
�
1=N½	s� ds � !� t + ð1� !�Þð1� e�tÞ:
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and if we plug this and equation (18) into equation (19) it
follows

dnon
pol ðtÞ �NE

�
1=N

hZ minðt,�Þ

0

	s ds
i

�min !� t+ð1�!�Þð1� e�tÞ,!�

Z 1

0

1� e�2�y

�y
dy

� �
:

Thus, if we apply the integral approximationZ 1

0

1� e�2�y

�y
dy �

e�2� � 1 + 2� + 2�2

2�2
,

which should be sufficiently accurate at least in the range
j � j � 2, and put

H�ðtÞ ¼ min t +
1� !�
!�
ð1� e�tÞ,

e�2� � 1 + 2� + 2�2

2�2

� �
,

ð21Þ

then dnon
fix ðtÞ � !�H�ðtÞ and we may sum up the contribu-

tion to divergence based on polymorphic sites as

ExDpolðtÞ � 2�syn minðt,2Þ+ 2�non!�H�ðtÞ: ð22Þ

The ancestral contribution to divergence between the two
populations has its origin in the common history of mutation
events that has occurred at times s < 0. Of all polymorphic
sites which exist at the time of population split t = 0, those
for which the sampled individuals at a later time are different
in the two populations add to ancestral divergence. This
includes polymorphic and fixed or extinct states as long as
one is ancestral and the other derived. A derived allele starting
at s < 0 exists with frequency 	s

0 > 0 at time t = 0, if
s + � > 0. Hence, conditionally given 	s

0, the chance to see
such a difference is

E	s
0
½	ð1Þt ð1� 	

ð2Þ
t Þ+ 	

ð2Þ
t ð1� 	

ð1Þ
t Þ�

where each population is indicated with an additional upper
index. By independence after time t = 0 this is

2m�
t ð	

s
0Þð1�m�

t ð	
s
0ÞÞ, m�

t ðxÞ ¼ E
�
x ½	t�, m0

t ðxÞ ¼ x:

To average over all states at t = 0, we note that the number
of mutation events over a finite interval ð�K,0Þ is Poisson
with mean N�K. Hence, conditional on the number of events
the mutation times are uniformly distributed in ð�K,0Þ.
The probability that one of these events contributes to
ancestral divergence is

1

K

Z 0

�K

Ex½1fs + �>0g2m�
t ð	

s
0Þð1�m�

t ð	
s
0ÞÞ� ds

¼
1

K

Z K

0

Ex½1fr<�g2m�
t ð	

0
r Þð1�m�

t ð	
0
r ÞÞ� dr:

Letting K!1, and separating synonymous and nonsynon-
ymous events,

EDancðtÞ ¼ 2�synNE
0
1=N

Z �

0

	sð1� 	sÞ ds

+ 2�nonNE
�
1=N

Z �

0

m�
t ð	sÞð1�m�

t ð	sÞÞ ds:

ð23Þ

Again, we rely on being able to evaluate functionals of the
Wright–Fisher process of the type E

0
x

R �
0 gð	sÞ ds for suffi-

ciently nice functions g. First (eq. 5 of the supplementary
text, Supplementary Material online),

NE
0
1=N

Z �

0

	sð1� 	sÞ ds! 1:

For the second term in equation (23), we use again the
approximation (20) of m�

t ðxÞ. Then

NE
0
1=N

Z �

0

m�
t ð	sÞð1�m�

t ð	sÞÞ ds! !� J�ðtÞ,

J�ðtÞ ¼

Z 1

0

1� e�2�ð1�yÞ

�yð1� yÞ
m�

t ðyÞð1�m�
t ðyÞÞ dy,

with

m�
t ðyÞð1�m�

t ðyÞÞ

� ð1� e�tÞ
2q�ðyÞð1� q�ðyÞÞ+ e�2tyð1� yÞ

+ e�tð1� e�tÞq�ðyÞð1� yÞ+ e�tð1� e�tÞð1� q�ðyÞÞy:

By expanding the resulting integrals in a series up to second
order in � ,

J�ðtÞ � 1�
�

3
ð1 + e�tÞ �

�2

18
ð1� 10e�t + 3e�2tÞ: ð24Þ

Hence, we conclude from equation (23) that the expected
divergence attributed to ancestral polymorphisms in this
model is

EDancðtÞ ¼ 2�syn + 2�non!� J�ðtÞ: ð25Þ

At t = 0, as m�
0 ðxÞ ¼ x,

J�ð0Þ ¼

Z 1

0

1� e�2�ð1�yÞ

�
dy ¼

!� � 1

�!�
ð26Þ

so that

EDancð0Þ ¼ 2�syn + 2�non
!� � 1

�

and we have the initial ratio

EDnon
anc ð0Þ=�non

EDsyn
ancð0Þ=�syn

�
!� � 1

�
� 1 +

1

3
� �

1

45
�3:

Now, we are in position to study synonymous and nonsyn-
onymous divergence separately. By summing up the three
parts of divergence in equations (16), (22), and (25), that is,
fixed differences and divergence attributed to lineage-specific
and ancestral polymorphisms, we find for any fixed t that
DsynðtÞ and DnonðtÞ have approximate Poisson distributions
with expected values

EDsynðtÞ ¼ 2�syndsynðtÞ, EDnonðtÞ ¼ 2�nondnonðtÞ, ð27Þ

such that

dsynðtÞ ¼ t� G0ðtÞ+ minðt, 2Þ+ 1

and

dnonðtÞ ¼ !� t�minðG0ðtÞ,2� �
2=9Þ+ H�ðtÞ+ J�ðtÞ

� �
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with G0 defined in the supplementary text (Supplementary
Material online), H� in equation (21) and J� in equation (24).

Statistical Properties of Divergence and Poisson Ratios

The codon evolution model introduced above allows us to
study in detail the accumulation of fixed differences and the
variation of sampled differences between sequences from two
independent populations after the split from an ancestral
population. We continue in this direction by studying the
ratio of nonsynonymous to synonymous divergence dN/dS
in a population genetics framework as a ratio of Poisson
random variables.

Intrinsic Variation of Poisson Ratios
Considering the ratio of scaled Poisson variables

DnonðtÞ=�non

DsynðtÞ=�syn
on DsynðtÞ > 0,

enables us to study dN/dS as a function of divergence time
by defining

dN=dSðtÞ ¼ E
DnonðtÞ

DsynðtÞ
j DsynðtÞ > 0

� �
�syn

�non
:

To compute this conditional expectation, we note that if Y is
a Poisson random variable with mean m then

Eð1=Y j Y > 0Þ ¼
X1
k¼1

1

k
PðY ¼ k j Y > 0Þ

¼
X1
k¼1

1

k

mke�m

k!ð1� e�mÞ
:

Hence, if we introduce the function

CðmÞ ¼ m Eð1=Y j Y > 0Þ ¼
X1
k¼1

mk + 1

k � k!

e�m

1� e�m
, m > 0,

ð28Þ

it follows

dN=dSðtÞ ¼ ��1
nonEDnonðtÞ �synE½D

synðtÞ�1
jDsyn > 0�

¼
dnonðtÞ

dsynðtÞ
Cð2�syndsynðtÞÞ:

ð29Þ

Thus, we have two alternative methods to estimate dN/dS
based on computing suitable expected values. The previous
ratio of expected values dnonðtÞ=dsynðtÞ and the new expected
value of a ratio. Our main motivation for introducing equa-
tion (29) is that current practice in empirical work on dN/dS
does not per se seek to estimate the expected number of
synonymous divergence or expected number of nonsynony-
mous divergence but rather aim at determining single obser-
vations of these quantities. Then forming the ratio of these
observations leads to equation (29). It is noteworthy that
the new estimate is simply a multiplicative perturbation of
the previous ratio and that the prefactor Cð2�syndsynðtÞÞ
depends on both � and t. However, the dependence is
restricted to variations in the product 2�syndsynðtÞ. If t > 2,

this is 2�syn�ð1 + tÞ and if we take in addition the Jukes–
Cantor mutation model, then the prefactor is approximately
Cð�ð1 + tÞ=2Þ. For example, if �ð1 + tÞ � 8 then dN=dSðtÞ is
more than 30% larger than dN=dSðtÞtotal and if �ð1 + tÞ � 20
then dN=dSðtÞ is more than 10% larger than the reference
ratio. This said, one should also notice that for sufficiently
large � or t, the two estimates coincide. In fact, CðtÞ~1
as t!1 and hence dN=dSðtÞ � dnonðtÞ=dsynðtÞ as
�syndsynðtÞ ! 1. For small t,

dN=dSðtÞ ! J�ð0Þ Cð2�synÞ, t! 0:

Confidence Intervals
Suppose we have fixed � and H, and determined the vector �.
Considering � as an unknown parameter we suppose k and
n – k are observations of the independent Poisson random
variables DsynðtÞ and DnonðtÞ at some unknown time t.
Then, given the sum n, DsynðtÞ has a binomial distribution
Binðn,pðtÞÞ, where

pðtÞ ¼
2�syndsynðtÞ

2�syndsynðtÞ+ 2�nondnonðtÞ
¼ 1 +

�non

�syn

dnonðtÞ

dsynðtÞ

� ��1

:

ð30Þ

Now apply a confidence interval ½a,b� for p(t). It follows
that ½�synð1=b� 1Þ=�non, �synð1=a� 1Þ=�non� is a confi-
dence interval for dnonðtÞ=dsynðtÞ. If we apply specifically a
95% interval of the so-called Wilson type for p(t), based
on normal approximation of the binomial distribution, then
with z ¼ 1:96 the limits a and b are given by

k

n
+

z2

2n

 z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðn� kÞ

n3
+

z2

4n2

r !,
1 +

z2

n

� �
:

The lower und upper limits of the observed confidence
interval for dnonðtÞ=dsynðtÞ become

�syn

�non

1 + z2

n

k
n + z2

2n
 z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðn�kÞ

n3 + z2

4n2

q � 1

0
B@

1
CA:

For example, if the upper limit would attain a value less than
one we have evidence with a 5% degree of significance to
reject a null hypothesis of neutral evolution in favor of
negative selection.

Now we change the perspective and consider g and hence
dnonðtÞ as known. We want to estimate the variation in
DnonðtÞ=DsynðtÞ. Given that the total number of observed
differences at time t is n, then with p ¼ pðtÞ

P p� z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
�

DsynðtÞ

n
� p + z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r !

¼ P p + z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r !�1

�1 �
DnonðtÞ

DsynðtÞ

 

� p� z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r !�1

�1

!
¼ 0:95:

229

Codon Evolution and Temporal Dynamics of dN/dS . doi:10.1093/molbev/mst192 MBE

http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst192/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst192/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst192/-/DC1
-
dN
 / 
dS
.
dN
 / 
dS
dN
 / 
dS
dN
 / 
dS
-
leeds 
.
so 


Hence, we may take p as in (30) and estimate n with
n̂ ¼ 2�ð�syndsynðtÞ+�nondnonðtÞÞ to get a 95% “confidence

band” for DnonðtÞ=�non

DsynðtÞ=�syn as

p
 z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r !�1

�1

 !
�syn

�non
: ð31Þ

Simulation of Codon Evolution

The accuracy of our analytical results of course depends
on the degree to which the various approximations that
we applied during their derivation have distorted the prop-
erties of the original model. In particular, our results were
derived as large population size approximations based not
only on the rescaling of time and mutation and selection
parameters but also on Poisson approximations that ignored
some of the subtler dependency structures in the model.
Hence, one must ask if the dN/dS ratios derived here cor-
rectly capture the relation of nonsynonymous to synony-
mous changes over discrete generations as it evolves in the
initial modeling setup. Furthermore, one would like to know
whether the confidence bands in equation (31) derived with
similar approximation methods reflect the true statistical
variation in the original model, or not.

For the purpose of validating our analytical results, and
hence providing evidence that our dN/dS ratios with rea-
sonable accuracy indeed capture both the average behavior
and the variation of nonsynonymous to synonymous diver-
gence, we carried out a simulation study of the discrete
time Wright–Fisher model with selection as introduced
previously in the Materials and Methods. The code was
written in Matlab (R2012b) and simulates the Markov
chain ðW1

n, . . . ,WL
nÞn�0 with the following choice of

parameters: N ¼ 500, L ¼ 2000, � ¼ ð1=3Þ � 10�6, s ¼
�2� 10�3, and the mutation matrix H chosen to be
the Kimura matrix with � ¼ 1=2, � ¼ 1=4. As a conse-
quence, we have the scaled parameters � ¼ 1 and
� ¼ �1. The initial codon distribution was chosen to be
clonal according to arbitrary codon usage. In other words,
each independent component Wi

n in the codon sequence
is given the initial distribution Wi

0 ¼ ðu,u,0Þ with u arbi-
trarily selected. Then, a single population was generated
during a burn-in period of 10,000 generations (20 time
units) to move toward equilibrium codon usage. The par-
ticular configuration of codons and its polymorphic states
constitutes the distribution of shared ancestral polymor-
phisms. Then, two populations evolve in parallel but oth-
erwise independent over 50,000 generations (100 time
units). During the generation of these data, the code
keeps track of the accumulated number of fixations as
well as the resulting ancestral and polymorphic divergence
if one sequence had been sampled from each population at
that particular time. With the additional knowledge of the
type of each fixed or sampled difference—nonsynonymous
or synonymous—one obtains the simulated dN/dS ratio as
a function over discrete time.

Supplementary Material
Supplementary text is available at Molecular Biology and
Evolution online (http://www.mbe.oxfordjournals.org/).
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