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Abstract
Interleukin-10 (IL-10), a cytokine with anti-inflammato-
ry and immunomodulatory functions, regulates the biol-
ogy of B and T cells. The present review describes the 
role of IL-10 in normal renal physiology, during acute 
kidney injury and in the development of chronic renal 
failure. We further discuss IL-10-induced cellular and 
molecular pathways and their link to the progression of 
kidney injury.  
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Core tip: Interleukin-10 (IL-10 ) gene expression and IL-
10-induced signaling pathways have an important role 
in the regulation and maintenance of normal renal func-
tion. Accumulating evidence further demonstrates that 
abnormal IL-10 expression whether transient or pro-

longed, as well as interactions with other growth factors 
as a response to diverse stimuli is linked to the appear-
ance and progression of a variety of kidney disorders. 
It has been thus suggested that selective targeting of 
IL-10 expression and IL-10-related pathways may pro-
vide the therapeutic features to many kidney diseases.
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IMMUNOLOGICAL PROPERTIES OF 
INTERLEUKIN-10
The anti-inflammatory Th2 cytokine interleukin-10 
(IL-10) was discovered by Fiorentino and colleagues in 
1989 for its ability to inhibit the synthesis of  IL-2 and 
interferon-γ (IFN-γ) by Th1 cells[1]. To date, the IL-10 
cytokine family includes nine members produced by cells, 
IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28A, IL-28B 
and IL-29, and four viral homologs. IL-10 is produced 
by several T-cell subpopulations, such as Th2 and T-reg-
ulatory cells (Tregs), NK cells, and a variety of  cell types, 
including macrophages, dendritic cells and B cells. In the 
kidneys, IL-10 is secreted primarily by the mesangial and 
endothelial cells. The viral homologs of  IL-10 can be 
produced by Epstein-Barr virus, cytomegalovirus, ORF 
virus and Herpes type 2 viruses[2-4].  

The gene encoding human IL-10 (5.1 kb pairs) is lo-
cated on chromosome 1 and comprises five exons. The 
IL-10 promoter region contains several single nucleotide 
polymorphisms (SNPs) that influence IL-10 expres-
sion and function[5,6] and are associated with a number 
of  diseases. Indeed, the -1082G/A SNP of  the IL-10 
gene is more frequent in patients with IgA nephropathy 
and focal segmental glomerulosclerosis and is associated 
with a worse prognosis of  the disease[7]. The -1082G/A, 
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-819C/T, and -592C/A SNPs of  the IL-10 promoter 
are consistently associated with type 2 diabetes[8], while 
the -1087G/A, -824C/T, -597C/A SNPs influence the 
prevalence of  vascular-related damage in patients suffer-
ing from type 2 diabetes[9] and end-stage renal disease[10]. 
The -1082 SNP of  the IL-10 gene affects the tumor 
development of  renal cell carcinoma and shows a signifi-
cant correlation with negative prognostic markers, such 
as tumor size, advanced disease stage and the presence of  
adenopathy[11,12].

Human IL-10 protein is a 35 kDa homodimer that is 
assembled from two non-covalently bound monomers. 
IL-10 acts through a specific receptor complex that con-
sists of  two subunits: IL-10R1 and IL-10R2. Binding of  
IL-10 to its receptor is a multistep process in which IL-10 
initially binds to IL-10R1; the IL-10/IL-10R1 complex 
then binds to IL-10R2. Formation of  the IL-10/IL-10R1 
complex leads to modification of  the cytokine’s confor-
mation, enabling presentation of  the binding site to IL-
10R2[13]. While the IL-10R1 subunit is highly specific for 
initiating IL-10 effectors functions, the IL-10R2 subunit 
might bind other ligands, such as TNF-α and IFN-γ. 
Moreover, IL-10R2 is widely present in cells that do not 
express IL-10R1 and are thus unresponsive to IL-10[14-17]. 

Activation of  the IL-10 receptor complex initiates a 
cascade of  intracellular events. The first step involves ac-
tivation of  members of  the Janus kinase family, Jak1 and 
Tyk2. Activation of  Jak1 is related to IL-10R1, whereas 
Tyk2 binds to the IL-10R2 subunit. This step is followed 
by activation of  members of  the signal transducer and 
activator of  transcription (STAT) family. STAT1, STAT3, 
and STAT5 molecules in their homo- or hetero-dimeric 
forms enter the nucleus and bind to STAT-binding ele-
ments (SBE) in the promoters of  various IL-10-respon-
sive genes. These events enhance the transcription of  
anti-apoptotic genes and genes associated with cell cycle-
progression, such as Bcl, Cyclin D1, Cyclin D2, Cyclin 
D3, Cyclin A, c-Myc, p19Ink and others[18-20]. IL-10 also 
induces activation of  phosphatidylinositol 3-kinase and 
its downstream targets: p70 S6-kinase and Akt/protein 
kinase B. This pathway is required for the proliferative ef-
fect of  IL-10[21,22]. In addition, the IL-10 signaling cascade 
often interacts with other intracellular pathways. 

For example, IL-10 modulates the translation of  
TNF-α mRNA via the activation of  p38MAPK, thereby 
increasing TNF-α production by mononuclear cells[23].

In human monocytes, IL-10 up-regulates the expres-
sion and activity of  the general cell protective stress pro-
tein heme oxygenase-1[24].

The complexity of  IL-10 activities defines a broad 
spectrum of  the properties of  IL-10. The principal func-
tion of  IL-10 is to control inflammation and instruct 
adaptive immune responses. IL-10 inhibits the activation 
and differentiation of  antigen-presenting cells, such as 
dendritic cells and macrophages. IL-10 down-regulates 
the expression of  major histocompatibility complex class 
Ⅱ and co-stimulatory B7-1/B7-2 molecules and decreas-
es the secretion of  pro-inflammatory cytokines, such as 
TNF-α, IL-12, IL-1β, and others. IL-10 also regulates the 

growth and/or differentiation of  B cells, NK cells, cyto-
toxic T and T helper cells, mast cells, keratinocytes, and 
endothelial and mesangial cells[2,5,25-28]. IL-10 protects the 
host from a variety of  bacterial, parasitic, viral or fungal 
pathogens. Moreover, IL-10 has clear immunomodula-
tory properties[29-31].

IL-10 IN THE KIDNEY 
IL-10 plays an important role in normal renal physiology, 
as well as during acute kidney injury, and in the progres-
sion of  chronic renal failure.

Mesangial cells are the major local source of  IL-10 
in the normal adult kidney[32]. Mesangial cells are the key 
regulators of  kidney function as they (1) provide struc-
tural support to the glomerulus by the secretion and 
maintenance of  the extracellular matrix; (2) modulate the 
size of  the glomerular capillary loops, thereby influenc-
ing the glomerular filtration rate; and (3) serve as both 
a source and target for many growth factors[33,34]. In the 
healthy adult kidney, mesangial cell turnover is always 
under tight control. Following a variety of  initial insults, 
mesangial cells undergo activation and/or proliferation. 

Activated/proliferating mesangial cells begin to se-
crete excessive amounts of  vasoactive hormones, growth 
factors, cytokines, chemokines and extracellular matrix 
proteins. These factors in turn affect mesangial cells 
in an autocrine manner and mediate interactions with 
endothelial and epithelial tubular cells and blood-borne 
inflammatory cells[33,35,36]. IL-10 is an autocrine mesangial 
cell growth factor. In vitro, IL-10 induces dose-dependent 
proliferation of  growth-arrested mesangial cells. In vivo, 
IL-10 administration to normal rats results in an in-
creased number of  intraglomerular cells and a transient 
reduction of  creatinine clearance[28]. Several studies have 
demonstrated the association between the up-regulation 
of  IL-10 and the pathophysiology of  various kidney dis-
eases, such as mesangioproliferative glomerulonephritis, 
IgA nephropathy, and the acute phase of  microscopic 
polyangiitis, all of  which are related to mesangial cell 
proliferation[37-39]. Abnormal production of  growth fac-
tors by activated/proliferating mesangial cells contributes 
to the induction of  renal structural intraglomerular and 
tubulointerstitial changes. These changes include glo-
merular and tubular cell hypertrophy, thickening of  the 
glomerular basement membrane, and development of  
microalbuminuria, followed by accumulation of  mesan-
gial matrix and overt proteinuria. The degree of  protein-
uria correlates with the progression of  glomerulosclerosis 
and tubulointerstitial fibrosis, pathological changes that 
lead to renal failure and end-stage renal disease[40]. In ad-
dition, IL-10 can promote mesangial deposition of  im-
mune complexes, thereby contributing to the progression 
of  glomerular injury[41].

Elevated circulating IL-10 levels were found in diabet-
ic patients. Moreover, increased IL-10 concentrations in 
serum predict albuminuria and correlate with the severity 
of  diabetic nephropathy[42]. In vivo inhibition of  IL-10 in 
rats with Thy1-induced glomerulonephritis greatly de-
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creases glomerular mesangial cell expansion and protein 
excretion[43]. Anti-IL-10 treatment of  mice that sponta-
neously develop systemic lupus erythematosus (SLE) or 
mice injected with peripheral blood mononuclear cells 
from human SLE patients delays the appearance of  auto-
immune manifestations. These benefits include a reduc-
tion of  immune complex deposition in the glomeruli, the 
prevention of  glomerular hypercellularity and mesangial 
expansion, and decreased proteinuria[44]. However, studies 
have shown that IL-10 is protective against SLE-induced 
renal damage due to the down-regulation of  pathogenic 
Th1 responses[45]. IL-10 has a protective effect in anti-
mouse glomerular basement membrane globulin-induced 
experimental crescentic glomerulonephritis, and the inhi-
bition of  IL-10 decreases renal function and is associated 
with worsening of  histological features[46]. Experimental 
rats with chronically increased IL-10 levels after 5/6 ne-
phrectomy show suppressed infiltration of  inflammatory 
cells, decreased production of  monocyte chemoattractant 
protein-1 and RANTES, and a significant reduction in 
mRNA for collagen type I and III in the remnant kidney. 
These phenomena result in a lower degree of  proteinuria 
and a significant reduction in glomerulosclerosis and 
interstitial fibrosis[47]. Taken together, these findings dem-
onstrate that under some conditions, IL-10 has a pro-
tective effect, reducing kidney injury, but in other cases, 
IL-10 aggravates defects in renal function. We suggest 
that the interdependence of  the actions of  IL-10 with 
those of  other cytokines and growth factors is likely the 
reason for this phenomenon. 

IL-10 controls the synthesis and secretion of  Cys-
tatin C (Cyst C), a cysteine protease inhibitor of  great 
clinical importance[48]. Cyst C inhibits cathepsins and 
may thereby function as a tumor suppressor by inhibit-
ing cathepsin-mediated tumor cell invasion. In addition, 
Cyst C regulates tissue inflammation, antigen presenta-
tion, and resistance to viral and bacterial infections[49-51]. 
In humans, Cyst C is produced by all nucleated cells. The 
blood concentrations of  Cyst C are tightly correlated 
with the progression of  autoimmune disease, inflamma-
tory lung disorders and cardiovascular disease and may 
be used as a prognostic factor in cancer[51-54]. Serum Cyst 
C levels may be more accurate than the glomerular filtra-
tion rate as diagnostic value of  renal function[55,56]. Today, 
the concentrations of  Cyst C in serum and urine are used 
as reliable markers of  acute kidney injury[57,58]. Similar to 
IL-10, Cyst C induces mesangial cell proliferation in an 
autocrine manner[59]. 

Another growth factor whose functions are closely 
related to IL-10 is transforming growth factor-β (TGF-β). 
The TGF-β-induced signaling network plays an impor-
tant role in human diseases. TGF-β has an essential role 
in both normal kidney function and during the progres-
sion of  renal injury. TGF-β executes its actions through 
activation of  the Smad and mitogen-activated protein ki-
nase intracellular signaling pathways. TGF-β isoforms are 
widely present and act on virtually every cell type. TGF-β 
regulates the proliferation, differentiation, migration, hy-
pertrophy and apoptosis of  intraglomerular and tubular 

cells, controls remodeling of  the extracellular matrix, and 
promotes glomerular and interstitial fibrosis and the pro-
gression of  glomerulosclerosis[60-64]. 

Furthermore, TGF-β induces the process of  epitheli-
al-to-mesenchymal transition (EMT) in normal mammary 
epithelial cells. During EMT, cells lose their epithelial 
identity, reflected in the loss of  the expression of  proteins 
associated with epithelial morphology, such as E-cad-
herin, α-, β-, and γ-catenins, and zonula occludens-1, 
and begin to synthesize de novo proteins associated with a 
mesenchymal phenotype, such as D-cadherin, fibronec-
tin, vimentin, and α-smooth muscle actin. These events 
occur in parallel with a decrease in cell-cell adhesion and 
changes in the actin cytoskeleton[65,66]. TGF-β-induced 
EMT in podocytes is responsible for the appearance and 
progression of  albuminuria and proteinuria. The severity 
of  proteinuria correlates with the progression of  glo-
merulosclerosis and tubulointerstitial fibrosis. Fibrosis is 
usually preceded by the infiltration of  mononuclear in-
flammatory cells into the interstitium. These cells secrete 
cytokines and chemokines that stimulate resident tubular 
epithelial cells to differentiate into matrix-producing fi-
broblasts[64,67-69]. IL-10 and TGF-β may act synergistically 
to regulate the production of  proinflammatory cytokines, 
chemokines and nitric oxide by mononuclear cells. More-
over, TGF-β induces IL-10 expression and vice versa in 
various cell types, including mesangial cells[7,32,70,71]. 

IL-10 acts on both TGF-β and Cyst C, and TGF-β 
and Cyst C separately influence IL-10 synthesis and activ-
ity[70,71-73]. It has also been shown that there is direct cross 
talk between TGF-β and Cyst C. TGF-β induces Cyst C 
expression[49,74], while Cyst C acts as a TGF-β antagonist 
that prevents the binding of  TGF-β to its receptor and 
thereby inhibits its activity[49,75]. Cyst C is important in the 
acute phase of  the kidney’s responses to injury, which are 
rapid and aggressive, whereas TGF-β promotes slower 
processes that lead to chronic renal failure and end-stage 
renal disease. It has been suggested that the major role of  
the dialogue between IL-10 and TGF-β, IL-10 and Cyst 
C, and Cyst C and TGF-β is to instruct and regulate the 
degree of  the renal responses to primary injury. These re-
sponses include control of  mesangial cell proliferation, ac-
cumulation of  extracellular matrix, influx of  mononuclear 
cells, glomerulosclerosis, and tubular fibrosis (Figure 1). 

IL-10 IN ALLOGRAFT SURVIVAL/
REJECTION
Transplantation has become an accepted treatment for 
end-stage renal disease. The major barrier of  transplanta-
tion from genetically disparate donors is the process of  
rejection, in which the recipient’s immune system recog-
nizes the graft as foreign tissue and attacks it. Allograft 
rejection can occur through direct (cellular) or indirect 
(humoral) pathways and is a complex process involving 
both cell-mediated immunity and circulating antibodies. 
The role of  cytokines and the particular role of  IL-10 
and the IL-10-induced signaling network in the develop-
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ment and progression of  graft survival/rejection are sub-
jects of  intensive research[76-80]. Indeed, the IL-10-TGF-β 
pathway plays an important role in the progression of  
allograft fibrosis, while TGF-β is a potential therapeutic 
target for the prevention and therapy of  fibrogenesis in 
kidney transplants[76,81]. However, whether IL-10 plays an 
overall helpful or detrimental role is not yet known. High 
intra-graft IL-10 expression was found in patients under-
going acute rejection[82]. In the case of  chronic rejection, 
poorer graft survival, which is generally associated with 
evidence of  interstitial fibrosis and tubular atrophy, is 
accompanied by the up-regulation of  IL-10 gene expres-
sion[83]. IL-10 is also a stimulator of  the immune system, 
inducing the differentiation and proliferation of  B cells, 
thus leading the immune response toward the humoral 
pathway and enhancing antibody responses against the 
graft[83,84]. In contrast, IL-10 has a clear protective effect. 
It has been shown that the up-regulation of  the IL-10 
gene in a rat model of  kidney allograft rejection improves 
renal function and prolongs allograft survival[85]. IL-10, 
when secreted by T-regulatory cells, suppresses antigen-
specific effector cell responses via inhibition of  pro-
inflammatory cytokine production[86]. Additional findings 
show that an acute immune response during graft rejec-
tion is associated with an over-expression of  pro-inflam-

matory Th1 cytokines, which appear in parallel with the 
accumulation of  IL-10. It has been suggested that in this 
situation, the rise in IL-10 levels serves to regulate and 
limit the inflammatory responses[87].  

IL-10 IN COMPENSATORY RENAL 
GROWTH
The discovery of  the compensatory renal growth process 
is, without a doubt, the most important reason why the 
expansion of  kidney transplantation from live donors has 
occurred in recent years. After removal of  a single kidney, 
the remaining kidney becomes enlarged, mainly through 
the hypertrophy of  tubular cells, and compensates for the 
loss of  the contralateral organ within a short period of  
time. TGF-β has been suggested as the most important 
factor causing tubular cell hypertrophy and therefore has 
a pivotal role in compensatory renal growth[88]. Although 
the tubular cells are the main site at which compensatory 
renal growth takes place, studies from our group showed 
that mesangial cells initiate compensatory renal growth 
and control the degree of  compensatory tubular cell hy-
pertrophy by controlling IL-10 to TGF-β cross-talk[32,89].  

Immediately after unilateral nephrectomy, the remain-
ing kidney undergoes hyperfiltration. The changes in 
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Figure 1  Interleukin-10 functions in the progression of renal failure. Interleukin-10 (IL-10) induces over-proliferation of mesangial cells that through an increased 
synthesis and secretion of a variety of growth factors, cytokines and chemokines, evoke several pathologic processes, leading to progression of renal failure. An 
increased secretion of components comprising the mesangial extracellular matrix results in its accumulation and is followed by the formation of fibrotic and sclerotic 
lesions in the glomeruli. IL-10 induces the synthesis and activity of Cystatin C (Cyst C) and transforming growth factor-β (TGF-β). Cystatin C regulates tissue inflam-
mation and increases mesangial cell proliferation. Increased TGF-β levels act in parallel with IL-10 to promote fibrosis and glomerulosclerosis. In addition, the TGF-
β-induced epithelial-to-mesenchymal transition in podocytes leads to the appearance of proteinuria. The development of proteinuria aggravates the processes of 
glomerulosclerosis and interstitial fibrosis and leads to end-stage kidney disease. EMT: Epithelial-to-mesenchymal transition. 
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glomerular hemodynamics lead to a transient prolifera-
tion of  mesangial cells, reaching a maximum at 24 h 
after surgery; proliferation is then arrested within 72 h. 
Proliferating mesangial cells secrete increased amounts 
of  many growth factors, including IL-10. These growth 
factors affect mesangial cells in an autocrine manner as 
additional stimuli to over-proliferate, influence the con-
version of  TGF-β from the latent to the active form, and 
lead to increased TGF-β production. Among the resident 
renal cell types studied, only mesangial cells secrete and 
activate TGF-β[90,91]. A reduction in mesangial cell pro-
liferation occurs in parallel with the appearance of  renal 
tubular cell hypertrophy. When TGF-β accumulates to 
sufficient levels, it induces tubular cells to undergo hyper-
trophy themselves and, in parallel, acts on mesangial cells 
to inhibit their proliferation. Inhibition of  mesangial cell 
proliferation, in turn, reduces TGF-β levels and inhibits 
compensatory tubular cell hypertrophy. TGF-β secretion 
may be affected by many growth factors, including an-
giotensin II, IGF-I, HGF, bFGF, TNF-α, EGF, PDGF, 
and others, all of  which are produced by the mesangial 
cells[92-95]. The importance of  IL-10 in this process may 
be underscored by the fact that the in vivo inhibition of  
IL-10 production by mesangial cells leads to a significant 
reduction in TGF-β expression in the remaining kidney; 
this is accompanied by an approximate 25% reduction 
in remaining kidney weight and a significant decrease in 
compensatory tubular cell hypertrophy[32,89]. Compensa-
tory renal growth is regulated by a variety of  growth fac-
tors and cytokines that initiate proliferative, hypertrophic, 
and apoptotic growth responses in the remaining kidneys. 
These growth factors may act in concert, and despite 
their apparent redundancy, they all must be present in 
sufficient concentrations to support maximal growth of  
the remaining kidney. Due to the interdependence be-
tween these cytokines, manipulation of  the expression of  
one of  these may affect the entire compensatory growth 
response in the remaining kidney. 

In summary, IL-10 gene expression and IL-10-
induced signaling pathways have an important role in the 
regulation and maintenance of  normal renal function. 
Moreover, accumulating evidence further demonstrates 
that abnormal IL-10 expression, whether transient or 
prolonged, as well as interactions with other growth 
factors as a response to diverse stimuli, is linked to the 
appearance and progression of  a variety of  kidney disor-
ders. It has thus been suggested that the selective target-
ing of  IL-10 expression and IL-10-related pathways may 
provide therapeutic approaches for many kidney diseases. 
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