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Autophagy is a major intracellular degradative process that delivers cytoplasmic materials to the lysosome for 
degradation. Since the discovery of autophagy-related (Atg) genes in the 1990s, there has been a proliferation of stud-
ies on the physiological and pathological roles of autophagy in a variety of autophagy knockout models. However, di-
rect evidence of the connections between ATG gene dysfunction and human diseases has emerged only recently. There 
are an increasing number of reports showing that mutations in the ATG genes were identified in various human 
diseases such as neurodegenerative diseases, infectious diseases, and cancers. Here, we review the major advances in 
identification of mutations or polymorphisms of the ATG genes in human diseases. Current autophagy-modulating 
compounds in clinical trials are also summarized.
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Introduction

 Half a century ago, Christian de Duve coined the term 
“autophagy” (literally, “self-eating” in Greek) to describe 
a process where the cell digests its cytoplasmic materi-
als within lysosomes [1]. At least three major types of 
autophagy have been identified: macroautophagy, char-
acterized by the formation of a unique double-membrane 
organelle called the autophagosome; microautophagy, 
where lysosomes engulf cytoplasmic materials by inward 
invagination of the lysosomal membrane; and chaperone-
mediated autophagy, mediated by the chaperone hsc70, 
co-chaperones, and the lysosomal-associated membrane 
protein type 2A [2, 3]. This review focuses on the role of 
macroautophagy (hereafter referred to as autophagy) in 
human diseases.

 In recent years, genetic deletion of the autophagy-
related (Atg) genes in various model organisms, includ-
ing mammals, has revealed that autophagy plays critical 
roles in adaptive responses to starvation and other forms 
of stress, homeostasis, and cellular differentiation and 
development [2, 4-7]. In addition, analysis of mice with 
systemic or tissue-specific deletion of Atg genes has re-

vealed the connection between dysregulated autophagy 
and various kinds of disease-like phenotypes including 
cancer, neurodegenerative diseases, infectious diseases, 
and metabolic diseases [2, 6-11]. However, these experi-
mental results do not directly demonstrate that defects in 
autophagy contribute to pathogenesis of human diseases. 
Thus, it has become particularly important to understand 
the genetic basis of putative human autophagy-related 
diseases.

 With the completion of the Human Genome Project 
in 2003 and the International HapMap Project in 2005, 
researchers now have a powerful set of research tools, in-
cluding the high-speed DNA sequencing technology that 
make it possible to identify the genetic contributions to 
specific diseases, even if they are rare. Indeed, genome-
wide studies have identified disease-associated loci and 
genes in many human diseases. Table 1 summarizes the 
association between genetic variants of autophagy-relat-
ed genes and selected human diseases.

Static encephalopathy of childhood with neurode-
generation in adulthood (SENDA)

Recently, two groups identified de novo mutations in 
WDR45, an autophagy-related gene located at Xp11.23, 
in individuals with SENDA by whole-exome sequencing 
using next-generation sequencing technologies [12, 13]. 
SENDA is a recently established subtype of neurode-
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generation with brain iron accumulation [14] that begins 
with early-onset spastic paraplegia and mental retarda-
tion, which remain static until adulthood. Patients subse-
quently develop sudden-onset parkinsonism and dystonia 
during their late 20s to early 30s. Additional features 
include eye movement abnormalities, frontal release 
signs, sleep disorders, and dysautonomia. Brain magnetic 
resonance imaging has revealed iron accumulation in the 
globus pallidus and hypointensity in the substantia nigra, 
as well as white matter changes [14, 15].

The hit gene WDR45 (also known as WIPI4) is one of 
the four mammalian homologues of yeast Atg18, which 
plays an important role in autophagosome formation 
[16-19]. Atg18/WIPIs belong to the PROPPIN family of 
proteins. They contain seven-bladed β-propellers formed 
by seven WD40 repeats and bind to phosphatidylinositol 
3-phosphate and the lysosomal/vacuolar lipid phospha-
tidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) [17, 20]. 

Table 1 Human diseases associated with defective autophagy
        Genes   Functions in autophagy                                       Associated human diseases
ATG5 Autophagosome formation Genetic polymorphisms are associated with asthma [132, 133] and enhanced   
  risk of systemic lupus erythematosus [134, 135]
ATG16L1 Autophagosome formation T300A mutation is associated with increased risk of Crohn’s disease [90, 91, 136]
BECN1 Autophagosome formation Monoallelic deletion is associated with risk and prognosis of human breast,   
  ovarian, prostate, and colorectal cancers [70-73, 75]
EI24/PIG8 Autophagosome formation  Mutations and deletions are associated with human early onset breast   
 and/or degradation cancers [32, 84,137]
EPG5 Autophagosome maturation  Recessive mutations are associated with Vici syndrome [27]
 and degradation
IRGM Phagosome degradation Single-nucleotide polymorphisms (SNPs) and deletion mutation are    
  associated with enhanced risk of Crohn’s disease [101-103, 136]
NOD2/CARD15 Xenophagy induction SNPs and mutational variants are associated with enhanced risk of Crohn’s   
  disease [104-106, 136]
PARK2/Parkin Mitophagy induction Mutations are associated with autosomal recessive or sporadic early-onset  
   Parkinson’s disease [51, 52]
PARK6/PINK1 Mitophagy induction Mutations are associated with autosomal recessive or sporadic early-onset  
   Parkinson’s disease [51, 53, 54]
SMURF1 Selective autophagy SNP is associated with enhanced risk of ulcerative colitis [138]
SQSTM1/p62 A selective substrate Mutations are associated with Paget disease of bone [139] and amyotrophic 
 An adaptor protein for  lateral sclerosis [140, 141] 
 selective autophagy
TECPR2 Autophagosome formation A frameshift mutation is associated with an autosomal-recessive form of   
   hereditary spastic paraparesis [35]
UVRAG Autophagosome degradation Deletion mutation is associated with human colorectal cancer [88]
WDR45/WIPI4 Autophagosome formation Heterozygous mutations are associated with static encephalopathy of    
  childhood with neurodegeneration in adulthood (SENDA) [12, 13]
ZFYVE26/SPG15 Autophagosome maturation Mutations are associated with hereditary spastic paraparesis type 15 [44, 45]

Atg18/WIPIs also interact with Atg2 [20-22]. The crystal 
structure of Hsv2, a yeast Atg18 paralogue, shows two 
phosphoinositide-binding sites at blades five and six, 
and an Atg2-binding region at blade 2 [23-25]. Atg18/
WIPIs are recruited to the autophagosome formation site 
through binding to phosphatidylinositol 3-phosphate, 
which is synthesized by the class III PtdIns 3-kinase 
complex [18, 21]. Caenorhabditis elegans has two Atg18 
homologues, ATG-18 and EPG-6 [19]. Interestingly, C. 
elegans requires both ATG-18 and EPG-6 for autophagy 
because the two molecules function sequentially, not 
redundantly. Human WDR45/WIPI4 shows a higher 
similarity to EPG-6 than to ATG-18, and loss of epg-6/
WIPI4 causes the accumulation of premature autopha-
gic structures in both C. elegans and mammalian cells 
[19]. In fact, by using lymphoblastoid cell lines derived 
from SENDA patients, Saitsu et al. confirmed that the 
protein expression of WIPI4 was severely reduced in 
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affected individuals. Specifically, blocked autophagic 
flux and accumulation of abnormal ATG9A- and LC3-
double-positive structures, which may represent aberrant 
early autophagic structures, were observed in the lym-
phoblastoid cell lines of affected individuals [13]. Since 
WDR45/WIPI4 is encoded by the X chromosome and 
one of the X chromosomes is subjected to X inactivation, 
female patients should possess mosaic loss of function 
of WDR45/WIPI4. It is unclear, however, whether hemi-
zygous mutations in male patients are lethal. Hayflick’s 
group reported three male SENDA patients with similar 
phenotypes [12, 26]; all three may have had somatic mo-
saicism.

These studies provided the first direct evidence that 
the deficiency of a core autophagy factor is indeed a 
contributing factor to human neurodegenerative diseases. 
However, the exact mechanism of brain iron accumula-
tion due to an autophagy defect and why only the brain 
is affected remain to be clarified. Further investigation of 
these aspects is needed.

Vici syndrome

A recent study by Cullup et al. showed that recessive 
mutations in EPG5, a key factor implicated in the matu-
ration of autolysosomes, play a causative role in Vici 
syndrome [27]. Vici syndrome is a recessively inherited 
multisystem disorder characterized by callosal agenesis, 
cataracts, hypopigmentation, cardiomyopathy, psycho-
motor retardation, and immunodeficiency with cleft lip 
and palate [28-31].

EPG5 is a metazoan-specific autophagy gene first 
identified by genetically screening C. elegans for mu-
tants with defective degradation of autophagy substrates. 
C. elegans epg-5 mutant and knockdown of mEPG5 in 
mammalian cells show accumulation of non-degradative 
autolysosomes, indicating the role of EPG-5/mEPG5 in 
autolysosome maturation [32]. It was later shown that 
knockdown of EPG5 in HeLa cells results in another de-
fect in the endocytic pathway [33]. By using fibroblasts 
derived from patients with Vici syndrome, Cullup et 
al. showed that autophagic flux is blocked and the au-
tophagy adapters NBR1 and SQSTM1/p62 accumulate, 
confirming the decreased autophagic activity in Vici syn-
drome [27]. However, as EPG5 is also involved in the 
endocytic pathway, it is important to examine whether 
dysregulated endocytic trafficking also contributes to the 
pathogenesis of Vici syndrome. Furthermore, the Epg5-
deficient mice display only some features of Vici syn-
drome [33, 34]. For example, although patients with Vici 
syndrome demonstrate facial dysmorphism and cataracts, 
these features are not marked in the Epg5-deficient 

mice. In addition, psychomotor abnormalities appear to 
be milder in mice than in humans. Further studies are 
needed to elucidate the reason for phenotypic differences 
between mice and humans as well as the exact molecular 
role of EPG5 in the autophagy and endocytic pathways.

Hereditary spastic paraparesis

Oz-Levi et al. reported a recessive mutation in TECPR2, 
an autophagy-related WD repeat-containing protein, in 
five individuals with SPG49, a novel form of recessive 
hereditary spastic paraparesis (HSP) [35]. HSP is a di-
verse group of neurodegenerative disorders characterized 
by axonal degeneration of the corticospinal or pyramidal 
motor and sensory tracts that control the lower extremi-
ties. It leads to progressive spasticity and hyperreflexia 
of the lower limbs [36-38]. The newly characterized HSP 
subtype, accompanied by lower-limb spasticity and other 
neurological symptoms, appears to be an autosomal-
recessive form of complicated HSP that is caused by a 
single base deletion in the TECPR2 gene, resulting in a 
premature stop codon accompanied by full degradation 
of its protein product [35].

TECPR2, an uncharacterized protein belonging to the 
tectonin β-propeller repeat-containing protein family, 
was previously found to interact with ATG8 orthologues, 
suggesting a possible role in the autophagy pathway [39]. 
Skin fibroblasts from an HSP patient showed decreased 
autophagic flux, but no accumulation of the autophagic 
substrate SQSTM1/p62, implying that some autopha-
gic activity could be maintained in affected individu-
als. Knockdown of TECPR2 in HeLa cells also reduced 
autophagic activity, suggesting that TECPR2 is a bona 
fide autophagy factor [35]. However, the exact role of 
TECPR2 in the autophagy pathway warrants further 
examination. The fact that TECPR2 shows some similar-
ity to two autophagy-involved proteins — TECPR1 and 
HPS5 [35, 40-43] — is expected to shed new light on this 
issue.

Recently, Vantaggiato et al. reported that ZFYVE26/
SPG15, the causative gene of another recessive com-
plicated form of HSP (HSP type 15), is also involved in 
the autophagy process [44]. ZFYVE26/SPG15 encodes 
a zinc-finger protein with a FYVE domain and a leucine 
zipper, termed spastizin [45]. Spastizin interacts with 
the Beclin 1-UVRAG-Rubicon complex and mediates 
autophagosome maturation. Both spastizin-mutated fi-
broblast cells derived from HSP patients and spastizin 
knockdown cells showed impaired autophagic flux and 
accumulation of autophagosomes due to reduced au-
tophagosome–lysosome fusion [44]. However, as this 
complex also plays an important role in the endocytic 
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pathway [46-49], and as spastizin is not present on the 
autophagic membranes [44], whether spastizin specifi-
cally regulates autophagosome-lysosome fusion needs to 
be clarified.

Parkinson’s disease

Parkinson’s disease is the most common form of a 
group of progressive neurodegenerative disorders charac-
terized clinically by bradykinesia (paucity and slowness 
of movement), rest tremor, muscular rigidity, shuffling 
gait, and flexed posture. It can also be accompanied by 
various non-motor symptoms, including sleep, autonom-
ic, sensory, cognitive, and psychiatric disturbances. Near-
ly all forms of Parkinson’s disease result from reduced 
dopaminergic transmission in the basal ganglia [50, 51]. 
Many genes, mutations, and polymorphisms have been 
implicated in the pathogenesis of the disease. Among 
them, mutations in the PARK2/Parkin and PARK6/PINK1 
have been shown to lead to autosomal recessive or spo-
radic juvenile-onset Parkinson’s disease [52-54].

PTEN-induced putative kinase protein 1 (PINK1, en-
coded by PARK6/PINK1) is a mitochondria-associated 
protein kinase that acts upstream of Parkin (encoded by 
PARK2/Parkin), an E3 ubiquitin ligase implicated in the 
selective degradation of damaged mitochondria by au-
tophagy, a process termed “mitophagy” [55-57]. When 
mitochondria are damaged and lose their membrane 
potential, mitochondrial PINK1 is stabilized and recruits 
Parkin, which ubiquitinates a number of mitochondrial 
membrane proteins, resulting in selective mitophagy. 
Consistent with this finding, excessive mitochondrial 
damage has been linked to Parkinson’s disease [58]. 
Thus, this type of Parkinson’s disease can be caused by 
the accumulation of mitochondrial damage. However, 
Parkin is also reported to mediate other biological pro-
cesses, including translocation of some mitochondrial 
outer membrane proteins to the endoplasmic reticulum to 
escape autophagic degradation [59]. Furthermore, other 
studies have shown that Parkin also mediates protea-
some-dependent degradation of outer membrane proteins 
of depolarized mitochondria, although it is controversial 
whether this process is required for mitophagy [60-62], 
these findings suggest that an autophagic defect may not 
be the only factor contributing to the pathogenesis of 
PINK1/Parkin-related Parkinson’s disease. It would also 
be important to know whether PINK1/Parkin-mediated 
mitophagy occurs under physiological conditions, be-
cause most previous studies were performed in cells 
overexpressing Parkin, and PINK1/Parkin knockout mice 
failed to faithfully recapitulate Parkinson’s disease in hu-
mans [63-65].

Lysosomal storage disorders

Lysosomal storage disorders (LSDs), characterized by 
progressive accumulation of undigested macromolecules 
within the cell, are a family of disorders caused by inher-
ited gene mutations that perturb lysosomal homeostasis. 
As lysosomes also play an important role in the autopha-
gy pathway by fusing with autophagosomes and degrad-
ing autophagic cargo, lysosomal dysfunction in LSDs 
impacts the autophagy pathway. In fact, in most LSDs, 
the lysosomal dysfunction is accompanied by impaired 
autophagic flux, resulting in defective autophagosome-
lysosome fusion and secondary accumulation of autoph-
agy substrates such as SQSTM1/p62, polyubiquitinated 
proteins, and damaged mitochondria [66]. In some sense 
then, LSDs can be regarded as “autophagy disorders”. 
Some excellent reviews on the genetic basis of LSDs are 
available [11, 67, 68].

Cancer

An association between autophagy and cancer has 
long been proposed. The role of autophagy likely differs 
in different stages of cancer development; initially, au-
tophagy probably has a preventive effect against cancer, 
but once a tumor develops, the cancer cells could utilize 
autophagy for their own cytoprotection [9, 69].

Monoallelic deletion of BECN1 has been detected in 
human breast, ovarian, and prostate tumor specimens 
[70-73]. In particular, the aberrant expression of Beclin 
1 (encoded by the human BECN1 gene) in many kinds 
of tumor tissues correlates with poor prognosis [74-78]. 
Beclin 1, the mammalian orthologue of yeast Atg6/vacu-
olar protein sorting (Vps)-30, plays an essential role in 
autophagy. It interacts with the class III PtdIns 3-kinase, 
Vps34 (also known as PIK3C3 in mammals), to form 
the Beclin 1-Atg14-Vps34-Vps15 complex, which is 
important for the localization of downstream autophagic 
proteins to the autophagosome formation site to induce 
autophagy [73, 79]. Beclin 1 also has other important 
biological functions including roles in anti-apoptosis [80, 
81] and endocytic trafficking [47, 82, 83]. 

A recent study in C. elegans identified EI24/PIG8, 
whose human homolog was reported to be mutated in 
breast cancers [84], as a critical factor of autophagic deg-
radation [32]. However, it remains to be clarified whether 
EI24-mutated human breast cancer cells indeed show 
decreased autophagic activity. Furthermore, since EI24/
PIG8 is also known as the proapoptotic factor [84, 85], 
this role may contribute to tumor suppression. Besides 
Beclin 1 and EI24, altered expression of several autopha-
gy proteins such as ATG5 [86, 87], and UVRAG [88] are 
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reported to be associated with human cancers [7, 89].

Crohn’s disease

Genome-wide association studies of non-synonymous 
SNPs have linked ATG16L1 variants with susceptibility 
to Crohn’s disease [90, 91], a major type of inflamma-
tory bowel disease that can affect any part of the diges-
tive tract from the mouth to the anus. The disease causes 
a wide variety of symptoms including abdominal pain, 
diarrhea, vomiting, and weight loss, as well as complica-
tions outside the gastrointestinal tract such as fatigue, 
skin rash, inflammation of the eye, anemia, arthritis, and 
lack of concentration [92].

Atg16L1, a core component of the autophagy machin-
ery, forms a complex with Atg12-Atg5 to induce LC3 
lipidation and is essential for autophagosome formation 
[93, 94]. Recent studies have shown that the interac-
tion between Atg16L1 and FIP200 is important for the 
localization of the Atg12-Atg5-Atg16L1 complex to the 
autophagosome formation site or isolation membrane 
[95, 96]. The Atg16L1 protein possesses a C-terminal 
WD repeat domain, and the Crohn’s disease-associated 
mutation (T300A, also known as Ala197Thr) is within or 
immediately upstream of this domain. However, it was 
shown that the Atg16L1 WD repeat domain is not essen-
tial for autophagic activity [96, 97]. Thus, it is important 
to clarify how the ATG16L1 T300A mutation contributes 
to the pathogenesis of Crohn’s disease in humans.

Investigations of mice carrying two distinct muta-
tions that reduce or eliminate the expression of Atg16L1 
have suggested potential links between Atg16L1 muta-
tions and Crohn’s disease. It was shown that Atg16L1-
deficient macrophages produced more of the inflamma-
tory cytokines IL-1β and IL-18 upon stimulation with 
lipopolysaccharides [98]. On the other hand, the Atg16L1 
hypomorph mice exhibited aberrant granule formation in 
Paneth cells, which play an important role in the innate 
immune response of the intestine [99]. Recently, Marchi-
ando et al. reported that Atg16L1 possesses an immuno-
suppressive role during intestinal bacterial infection [100].

Apart from Atg16L1, other autophagy-related proteins 
such as IRGM [101-103] and NOD2 [104-106] are re-
ported to be associated with Crohn’s disease in humans 
[107]. However, since these proteins also play roles in 
biological processes other than autophagy, it remains 
unclear whether they relate to Crohn’s disease via au-
tophagy modulation.

Conclusion and future prospects

In this article, we have summarized recent findings on 

the relationship between autophagy and human diseases. 
It is expected that new efficient technologies such as 
exome sequencing will help to identify more autophagy-
related diseases over the next few years. Given that au-
tophagy is associated with a plethora of human diseases, 
there are at least two important issues to address. 

First, the development of pharmacological agents that 
modulate autophagy in these pathological conditions 
is critical; in fact, it has become a major priority in the 
field. Pharmacological approaches to activate or inhibit 
autophagy are also required because autophagy can 
play either a protective or destructive role in different 
diseases, even in different stages of the same diseases. 
Many drugs and compounds that modulate autophagy are 
currently receiving considerable attention [11, 89, 108]. 
These include, for example, autophagy inducers such as 
the mTORC1 inhibitor rapamycin [109] and its analogues 
(e.g., CCI-779 [109], RAD001 [110, 111], and AP23573 
[112]), mTOR kinase inhibitors (e.g., Torin 1 [113], and 
PP242 [114]), trehalose [115, 116], carbamazepine [117], 
and the newly identified autophagy-inducing peptide Tat–
beclin 1 [118]; autophagy inhibitors such as chloroquine 
[119, 120] and hydroxychloroquine [121], Lys05 [122], 
3-methyladenine [123] and its derivatives [124], PIK3C3 
inhibitors [125], ATG4B inhibitors [126, 127], and ATG7 
inhibitors [128, 129]. Autophagy-modulating drugs that 
are currently used in clinical trials are summarized in 
Table 2. An improved understanding of how autophagy 
defects contribute to the pathogenesis of human diseases 
and the development of other more specific and less toxic 
compounds will benefit many more patients.

Second, and perhaps a more challenging issue, is the 
monitoring of autophagic activity in humans, in tissue 
samples at the least, but preferably in blood samples. In 
particular, it is more important to measure autophagic 
flux than autophagosome number. To date, however, 
measurement of autophagic flux in paraffin-embedded 
tissue samples has been unsuccessful, and the simple de-
tection of endogenous LC3-II, a commonly used marker 
for autophagosomes, has proved problematic in tissue 
sections. The appearance of more LC3-positive puncta 
(which may represent autophagosomes) does not neces-
sarily indicate higher autophagic activity in the tissue. 
Autophagosomes can accumulate due to the induction 
of autophagy or due to blocking of a late step of the au-
tophagy pathway, including impaired autophagosome-
lysosome fusion and compromised lysosomal activity 
[130]. This is a frequent occurrence in human diseases 
and even during the normal aging process. It should also 
be remembered that LC3 can be incorporated into protein 
aggregates independently of autophagy [131]. To help 
overcome these problems, it may be beneficial to com-
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bine immunohistochemical assays of other autophagy-
related marker proteins such as ATG5 and Beclin 1 to 
detect autophagy in clinical tissue samples.
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