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Abstract
Elastic properties of materials can be measured by observing shear wave propagation following
localized, impulsive excitations and relating the propagation velocity to a model of the material.
However, characterization of anisotropic materials is difficult because of the number of elasticity
constants in the material model and the complex dependence of propagation velocity relative to
the excitation axis, material symmetries, and propagation directions. In this study, we develop a
model of wave propagation following impulsive excitation in an incompressible, transversely
isotropic (TI) material such as muscle. Wave motion is described in terms of three propagation
modes identified by their polarization relative to the material symmetry axis and propagation
direction. Phase velocities for these propagation modes are expressed in terms of five elasticity
constants needed to describe a general TI material, and also in terms of three constants after the
application of two constraints that hold in the limit of an incompressible material. Group
propagation velocities are derived from the phase velocities to describe the propagation of wave
packets away from the excitation region following localized excitation. The theoretical model is
compared to the results of finite element (FE) simulations performed using a nearly
incompressible material model with the five elasticity constants chosen to preserve the essential
properties of the material in the incompressible limit. Propagation velocities calculated from the
FE displacement data show complex structure that agrees quantitatively with the theoretical model
and demonstrates the possibility of measuring all three elasticity constants needed to characterize
an incompressible, TI material.

Keywords
Finite element modeling; Impulsive excitation; Acoustic Radiation Force Impulse (ARFI);
Transversely isotropic material

© 2013 Elsevier Ltd. All rights reserved.
*Corresponding author. ned.rouze@duke.edu (Ned C. Rouze).

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Conflict of Interest Statement
Authors M. L. Palmeri and K. R. Nightingale are intellectual property owners of ARFI imaging.

NIH Public Access
Author Manuscript
J Biomech. Author manuscript; available in PMC 2014 November 15.

Published in final edited form as:
J Biomech. 2013 November 15; 46(16): . doi:10.1016/j.jbiomech.2013.09.008.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



1. Introduction
Physicians use manual palpation as part of the diagnostic process because diseased tissue is
often stiffer than surrounding healthy tissue. Recently, a number of imaging methods have
been developed for characterizing tissue stiffness in vivo by exciting shear waves in the
tissue and measuring the shear wave propagation speed (Sarvazyan, et al., 1998; Sandrin, et
al., 2003). These systems generate shear waves in tissue using either external mechanical
excitation coupled to the body wall (Yin, et al., 2007; Huwart, et al., 2006) or acoustic
radiation force impulse (ARFI) excitations to remotely palpate tissue at the focal region of
an acoustic beam (Bercoff, et al., 2004; Chen, et al., 2004; Nightingale, et al., 2003). Wave
propagation is monitored in space and time by a real-time imaging modality such as
magnetic resonance imaging or ultrasound tracking, and the tissue stiffness is determined
quantitatively by measuring the shear wave propagation speed.

Two elasticity constants are required to characterize a linear, elastic, isotropic material (Lai,
et al., 1999). For example, the Lamé constants λ and μ could be specified and used to
calculate related constants such as the Young’s modulus, bulk modulus, and Poisson’s ratio.
For nearly incompressible materials such as many biological tissues, λ and μ often differ by
a factor on the order of 106, with a corresponding difference in longitudinal and shear wave
speeds of 103. Finite element (FE) models of these materials use a Poisson ratio nearly equal
to the limiting value of 0.5 which characterizes an incompressible material (Palmeri, et al.,
2005). Typically, ultrasonic or magnetic resonance imaging methods used to track wave
propagation in these material only attempt to measure the shear modulus.

The characterization of anisotropic materials requires more elasticity constants in the
material model. For example, in a linear, elastic, transversely isotropic (TI) material, a
symmetry axis exists and the material can be characterized by five elasticity constants (Lai,
et al., 1999). Muscle is an example of a TI material with the symmetry axis defined by the
orientation of the muscle fibers. Measurements of shear wave speed for propagation along
and across the muscle fibers has been reported (Gennisson, et al., 2003; Papazoglou, et al.,
2006; Gennisson, et al., 2010; Royer, et al., 2011). Recently,Wang, et al. (2013a) have
measured the angular dependence of phase and group velocities for shear wave propagation
in muscle using 3D volumetric measurements performed using a 2D matrix array (Wang, et
al., 2013b).

Wave propagation in anisotropic materials has been studied in several diverse areas. One
example of wave propagation in TI materials occurs in layered media in seismology where
the symmetry axis is perpendicular to the layers (Carcione, 2001; Tsvankin, 2001). Another
example occurs in crystallography (Auld, 1990; Musgrave, 1970), where the hexagonal
crystal structure has TI symmetry.

In this study, we consider FE modeling of impulsive excitation and wave propagation in an
incompressible, TI medium. The focus of the study centers around three primary
components as follows. First, the elasticity constants needed to describe an incompressible,
TI material are identified, and FE models are constructed using a nearly incompressible
material model which preserves the essential properties of the incompressible model.
Second, the geometrical configuration for the excitation, material symmetry axis, and wave
propagation are chosen to simulate the experimental setup commonly used in ARFI
excitation and ultrasonic tracking experiments. Finally, the angular dependence of measured
wave velocities are compared with theoretical predictions to demonstrate how the elasticity
constants can be determined from experimental measurements. The results of the study
demonstrate that with an appropriate experimental configuration, it is possible to measure all
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of the elasticity constants required to characterize an incompressible, TI material such as
muscle.

2. Wave Propagation in an Incompressible, TI Medium
2.1. TI Materials

In the limit of small displacements, such as those produced in ARFI excitations, the stress-
strain relationship in an anisotropic material is linear and can be described by a generalized
Hooke’s law as

(1)

where cijkl are components of a fourth-order stiffness tensor and summation over repeated
indices is implied. Symmetries of the stress and strain tensors and the existence of a strain
energy allow the stiffness tensor to be expressed in terms of 21 independent elements (Lai,
et al., 1999). Then the stress-strain relations (1) can be written as a matrix product,

(2)

where C is a 6 × 6 symmetric stiffness matrix (Lai, et al., 1999).

Transversely isotropic (TI) materials possess an axis of symmetry Â such that reflection
symmetry exists across every plane parallel to Â and rotation symmetry exists about Â.
Muscle is an example of a TI material with the axis Â given by the direction of the muscle
fibers. These symmetries imply that five independent elastic constants are required to
specify the stiffness matrix C (Lai, et al., 1999). Relative to an x1, x2, x3 coordinate system
oriented so that x̂3 = Â, C is given by (Lai, et al., 1999)

(3)

where missing elements are zero and

(4)

For TI materials, the elements of the stiffness matrix can be expressed in terms of Young’s
moduli ET and EL, Poisson’s ratios νLT and νTT, and shear moduli μT and μL where the
longitudinal (L) and transverse (T) directions are defined relative to the material symmetry
axis. In terms of the compliance matrix S = C−1 (Lai, et al., 1999),
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(5)

where

(6)

2.2. Incompressible TI Materials
For an incompressible material, the fractional volume change, or dilatation e, of an
infinitesimal volume subjected to stresses must be zero. The dilatation is given by the trace
of the strain tensor (Lai, et al., 1999) and can be expressed in terms of the elastic constants
using (2) and (5) as

(7)

For an incompressible material, both of the terms on the right hand side of (7) must be zero,
and the Poisson ratios satisfy two conditions,

(8)

and

(9)

These results agree with those of Papazoglou, et al. (2006). Thus, three independent elastic
constants are needed to describe an incompressible TI material compared to five constants in
the general TI case. In the following, results are expressed in terms of the constants μT, μL,
and ET/EL.

2.3. Wave Dynamics
Assuming no external body forces, the acceleration of an infinitesimal volume of material
with density ρ can be expressed using Newton’s second law in terms of the displacement u⃗
and the stress gradient across the volume as (Tsvankin, 2001)

(10)

Expressing elements of the strain tensor in terms of the gradient of displacement and using
(1) gives the wave equation,

(11)
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Plane wave solutions of (11) with phase velocity ν = ω/k, propagation direction n̂, and
polarization P⃗ = (P1, P2, P3)T (i.e., the direction of the particle displacement) are given by

(12)

Inserting (12) into (11) gives an eigenequation for the phase velocities and polarization
vectors,

(13)

where elements of the matrix Γ are given by Γij = cijklnknl.

2.4. PT, QT, and QL Propagation Modes in a TI Medium
The three solutions of (13) give the polarizations and phase velocities for three plane wave
propagation modes. Explicit solutions for these modes can be obtained by choosing a
coordinate system oriented with x̂3 = Â and n̂ in the x1 − x3 plane at an angle θ relative to the
x3 axis so that n̂ = (sinθ, 0, cosθ)T. For a TI medium with stiffness matrix (3), Γ is given by

(14)

Using (14), one solution of (13) consists of particle displacements perpendicular to the x1 −
x3 plane. We refer to this solution as the pure transverse (PT) mode,

(15)

and

(16)

where C66 = μT and C55 = μL from (3) and (5).

The polarization vectors of the second and third eigensolutions of (13) lie in the x1 − x3
plane, but are not, in general, longitudinal and transverse to the propagation direction
(Carcione, 2001). We refer to these solutions as the quasi-longitudinal (QL) and quasi-
transverse (QT) propagation modes,

(17)

and

Rouze et al. Page 5

J Biomech. Author manuscript; available in PMC 2014 November 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(18)

where the QL and QT labels correspond to the upper and lower signs in (18), respectively,
and

(19)

2.5. Propagation Modes in an Incompressible TI Medium
The phase velocities and polarization vectors in an incompressible medium can be found by
expressing the elements of the stiffness matrix in terms of the elasticity constants using (5),
and evaluating (15), (16), (17), and (18) in the limit with the Poisson ratios given by (8) and
(9). For the PT propagation mode, (15) and (16) are independent of the Poisson ratios and
these relations hold for both compressible and incompressible media. For the QL and QT
propagation modes, it can be shown that νQL diverges and that νQT is given by

(20)

This result agrees with those given by Chadwick (1993) and Papazoglou, et al. (2006). Also
in the incompressible limit, it can be shown that the QL and QT polarizations in (17) are
purely longitudinal and purely transverse, respectively.

The top row of Fig. 1 shows parametric plots of the PT and QT phase velocities calculated
using (16) and (20) with μT = 9 kPa, μL = 25 kPa, and ET/EL = 0.16, 0.36, and 0.64.

2.6. Group Velocity
Impulsive excitations generate localized displacement fields that can be described by a
superposition of plane waves with a range of frequencies, amplitudes, phases, polarizations,
and propagation directions. After the excitation, these waves evolve in time and continue to
interfere, forming wave packets that propagate radially away from the excitation region with
a group velocity V ⃗. This velocity can be measured experimentally by ultrasonic tracking of
the wave packets. In terms of the phase velocity ν and propagation wave vector k⃗ = kn̂, the
group velocity is given by (Born and Wolf, 1980; Berryman, 1979; Tsvankin, 2001)

(21)

For TI materials with plane wave propagation in the x1 − x3 plane, the components of group
velocity are given in terms of the phase velocity and angle as (Tsvankin, 2001)

(22)

(23)

and
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(24)

Thus, the group propagation vector N̂ also lies in the x1 − x3 plane and can be written as N̂ =
(sinϕ, 0, cosϕ)T where the group propagation angle ϕ is given by

(25)

The second row of Fig. 1 shows parametric plots of PT and QT group velocities for the same
sets of constants used to calculate the phase velocities in the top row. For the PT propagation
mode, the components of group velocity form an ellipse,

(26)

The bottom row of plots in Fig. 1 shows the group propagation angle ϕ as a function of
phase propagation angle θ. In some cases, the inverse relation θ(ϕ) and resulting group
velocities are triple valued, leading to the cusp structure seen in the plots.

3. Methods
3.1. Excitation and Wave Propagation Geometry

For experimental measurements in a TI medium, the ARFI excitation axis can be positioned
in any orientation relative to the material symmetry axis, and this flexibility can be used to
increase the sensitivity of experimental measurements to a particular elasticity constant. To
specify this orientation, we introduce a second, experimental coordinate system with axes
labeled by X, Y, Z that is distinct from the x1, x2, x3 coordinate system in Sec. 2. Figure 2
shows the experimental setup used for the FE models in this study. The excitation force F⃗

was directed along the Z axis at the center of the modeled volume. As indicated in the figure,
only propagation directions N ̂ in the X − Y plane are considered here to simulate the
experimental configuration typically used in ARFI excitations with ultrasonic tracking of
wave propagation perpendicular to the excitation axis. The FE simulations in this study were
performed with the material symmetry axis Â tilted at an angle of 45° in the X − Z plane of
the experimental coordinate system. As discussed in Sec. 5, this tilted configuration allows
the propagation velocities measured in the X − Y plane to be sensitive to all three elasticity
constants required to characterize an incompressible, TI material. While the exact angle is
not critical, the value of 45° simplifies the analysis and gives the greatest sensitivity to the
ET/EL elasticity constant.

The propagation velocities predicted by the theoretical analysis in Sec. 2 were determined
relative to the experimental X, Y, Z coordinate system as follows. For each propagation
direction N̂, the x1, x2, x3 coordinate system used in Sec. 2 is oriented so that x̂3 = Â and
wave propagation occurs in the x1−x3 plane, i.e., the Â − N̂ plane shown in red in Fig. 2. The
group propagation angle ϕ relative to the material symmetry axis Â was found using

(27)

Corresponding values of phase propagation angles θ were determined by inverting the ϕ − θ
relation shown in Fig.1. These values were used to calculate the theoretical propagation
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velocities using (16) and (20). For the ET/EL = 0.16 and ET/EL = 0.64 cases, some ranges of
ϕ gave three values for θ and the corresponding propagation velocities.

In addition, the orientation of the polarization vectors for the PT and QT propagation modes
are determined relative to the x1 − x3 plane, i.e., the Â − N̂ plane. Thus, the orientation of the
polarization vectors relative to the X, Y, Z axes varies depending on the propagation
direction N̂. As shown in Fig. 2, P̂PT is oriented perpendicular to the Â − N̂ plane, and P̂QL
and P̂QT lie in the Â − N̂ plane. However, P ̂QL and P̂QT are parallel and perpendicular,
respectively, to the phase propagation direction n̂, and are parallel and perpendicular to the
group propagation direction N̂ only if ϕ = θ and n̂ = N̂.

3.2. Finite Element Modeling
Previously validated FE models were used to simulate the dynamic response of an elastic, TI
solid to impulsive, acoustic radiation force excitations (Palmeri, et al., 2005). The excitation
force was modeled as a three-dimensional Gaussian distribution to approximate a typical
ARFI interrogation,

(28)

where F0(t) is a time dependent force amplitude and σ = 2 mm. The force was applied only
during the excitation interval 0 < t < 200 µs during which time the amplitude was set to a
constant value chosen empirically to achieve a maximum, on-axis displacement of roughly
20 µm which is consistent with experimental ARFI methods.

The three-dimensional, dynamic response of the elastic, TI solid was solved through the
balance of linear momentum using LS-DYNA3D (Livermore Software Technology Corp.,
Livermore, CA) with an explicit, time-domain method (Palmeri, et al., 2005). The FE mesh
had dimensions of 40 × 40 × 40 mm3 with element dimensions of 0.25 × 0.25 × 0.25 mm3.
The model used non-reflecting boundaries to simulate an infinite volume without reflection
artifacts. Simulations were performed for a total time of 6 ms with intermediate results saved
at intervals of 25 µs. Calculations were performed on a Linux cluster with an average CPU
speed of 2.6 GHz. In addition to LS-DYNA3D, calculations were performed using Matlab
(The MathWorks, Natick, MA).

3.3. Material Models
Materials were modeled as linear, elastic solids with a density of ρ = 1 g/cm3. To simulate
incompressibility, materials were described using Poisson ratios chosen to retain the
essential properties of an incompressible model (Palmeri, et al., 2005). Specifically, νTT was
set equal to the value given by (8) so that the dilatation (7) is given by

(29)

With this approach, the dilatation (29) remains sensitive to each normal stress, and the
compressibility is controlled by the value of one Poisson ratio, νLT. In this study, νLT was set
equal to the value of 0.499 (Palmeri, et al., 2005).

FE simulations were performed using the three sets of elasticity constants listed in Table 1.
The values of μL = 25 kPa, μT = 9 kPa, and ET/EL = 0.16, 0.36, and 0.64 are the same as
used for the results shown in Fig. 1. Relations (8) and (6) were used to calculate νTT and ET,
respectively.
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3.4. Determination of Shear Wave Velocity
The results of the FE simulations were compared with theoretical predictions by measuring
the propagation speeds from displacement vs. time data along radial trajectories directed
away from the excitation region. The propagation velocities were determined using the
Radon sum approach described by Rouze, et al. (2010). This method identifies the spatio-
temporal trajectory which maximizes the sum of the displacement data along the trajectory.
For the displacement data shown in Fig. 3, the PT and QT propagation modes can give two
propagation velocities for the same trajectory. In this case, only the speed corresponding to
the trajectory with the largest Radon sum was identified.

4. Results
4.1. Nearly Incompressible Material Model

The effect of setting νLT = 0.499 in the FE models can be evaluated by comparing the exact
velocities of the QT and QL propagation modes evaluated using (18) with the velocities
obtained in the incompressible limit with νLT = 0.5. For the QT mode, there is less than a
0.05% difference between the velocities calculated using (18) and (20) for each of the cases
in Table 1. For the QL propagation mode, the theoretical velocity diverges in the
incompressible limit, and the appropriate comparison is between the relative sizes of νQL
and the characteristic shear wave speeds of 3 m/s and 5 m/s that correspond to the shear
moduli μT and μL. Using (18) gives results with less than 0.04% angular dependence and
mean values of νQL = 232.5, 150.9, and 108.8 m/s, which are significantly greater than the
shear wave speeds, but of course, still an order of magnitude lower than observed for the
velocity of longitudinal waves in tissue.

4.2. Displacement Images
Images of displacements in the X − Y plane are shown in Fig. 3 at time steps of 0.8, 1.4, 2.0,
2.6, and 3.2 ms. The first three rows in Fig. 3 shows the Z component of displacements
obtained from the three FE models using the material constants in Table 1. The fourth row
shows the X component of displacements for the ET/EL = 0.64 case. The color map used in
these plots is nonlinear to increase the dynamic range for smaller displacements at later
times.

We observe that the Z displacement results shown in the first three rows of Fig. 3 are large at
early times soon after the excitation, and the displacement magnitude decreases as the wave
propagates away from the excitation region. Structure in the wave shape develops at later
times after sufficient time elapses for the variations in the angular dependence of the
velocities to become apparent.

For the X components of displacements shown in the fourth row of Fig. 3, the displacements
are approximately zero at early times because the ARFI excitation force is directed in the Z
direction. Structure in the wave shape develops at later times with a negative X displacement
preceeding the positive X displacement for propagation along the Y axis. The corresponding
images in the third row of Fig. 3 show two waves with positive Z displacements that
separate in time. This behavior is an example of shear splitting (Shearer, 2009) in which the
PT and QT modes propagate with different velocities causing their displacement fields to
separate spatially. The propagation modes can be identified by the orientation of their
polarization vectors. Referring to Figs. 1 and 2, for propagation along the Y axis, the Â − N̂

plane is oriented at an angle of 45° to the X − Y plane and ϕ = θ = 90°. Relative to the X, Y, Z

coordinate system, the PT and QT polarization vectors are  and
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, respectively. Thus, we interpret the X and Z displacement data in the
third and fourth rows of Fig. 3 as the propagation of PT and QT modes along the Y axis with
VQT > VPT.

4.3. Group Propagation Velocities
Figure 4 shows parametric plots of the theoretical group propagation velocities in the X − Y
plane for the PT and QT propagation modes calculated using the procedure described in Sec.
3.1. Results are shown for each of the three sets of elasticity constants listed in Table 1. We
observe that the theoretical velocities shown in Fig. 4 have the same magnitudes as the
group velocities shown in Fig. 1. However, the angular dependence of the results shown in
Fig. 4 is more complicated than in Fig. 1 because, for any given propagation direction N̂, the
group propagation angle ϕ must be determined relative to the material symmetry axis Â
using (27) before calculating the velocity.

The plots in Fig. 4 also show the velocities calculated from the results of the FE models
using the Z component of displacement data and the procedure described in Sec. 3.4.
Velocities were calculated for propagation directions directed radially away from the
excitation region. Only one velocity is determined for each propagation direction even
though the displacement data contains contributions from all three propagation modes. We
observe that the calculated velocities are in good agreement with one of the theoretically
predicted propagation velocities. However, the agreement switches between the PT and QT
modes as a function of propagation direction depending on the relative displacement
amplitude for the two modes.

5. Discussion
The FE simulations described in this paper have been designed to model ARFI excitations
and shear wave propagation in an incompressible, TI medium. To be compatible with FE
simulation, the material model used here is constructed to be nearly incompressible with the
compressibility controlled by the value of a single Poisson ratio. At the same time, the
elasticity constants μT, μL, and ET/EL are identical to the values used in an incompressible
model. The excitation and propagation configuration is chosen so that the plane in which
wave propagation is monitored is perpendicular to the excitation axis, and the modeled
volume and tracking time are similar to those used in experimental measurements. Results
are presented in Figs. 3 and 4 using the Z component of displacement, i.e., the displacement
component parallel to the excitation force as would be measured using ultrasonic tracking.

The development of the structures seen the Figs. 3 and 4 can be understood as follows.
Material displacements resulting from the excitation process can be expressed as a
superposition of plane waves with a range of frequencies, amplitudes, phases, polarizations,
and propagation directions. After the excitation, these waves evolve in time and continue to
interfere, forming wave packets that propagate radially away from the excitation region with
the group propagation velocity. Multiple wave packets can travel in the same direction with
different propagation velocities. In addition, the PT, QT, and QL propagation modes are
defined relative to the Â − N̂ plane so that the decomposition of displacement data into the
three propagation modes depends on the propagation direction. As a consequence, the
results shown in Figs. 3 and 4 are surprisingly complex even though the material and
excitation models are relatively simple.

It is interesting to compare the displacement images shown in Fig. 3 with the velocity plots
shown in Fig. 4. These results show surprisingly similar structures even though the figures
display different quantities. These similarities are a result of the relatively short duration of
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the excitation compared to the propagation time so that the position r⃗ of a wave packet
traveling away from the excitation region is given approximately as r⃗ = V⃗t. Thus, the
position and velocity have roughly the same angular dependence, and the structures
appearing in Figs. 3 and 4 are similar.

Figure 4 shows relatively good, but not perfect, agreement between the theoretically
predicted velocities and the velocities measured from the FE displacement data. These
differences arise because the displacement data used to calculate the propagation velocities
is the sum of displacements from both PT and QT propagation modes, and it is not possible
to isolate displacements from a single mode. Similarly, near the cusps in the QT mode, three
wave packets propagate with nearly the same velocity, and displacements cannot be
separated to identify a single propagation velocity. Extending the spatial and temporal
ranges would allow for increased separation of the wave packets from different modes, but
at the expense of decreased displacement amplitude. It is encouraging to see the good
agreement shown in Fig. 4 using temporal and spatial ranges similar to those used
experimentally.

Finally, we consider the ARFI and ultrasonic tracking experimental measurements needed to
characterize a TI material. For an incompressible material, it is necessary to measure three
elasticity constants, for example, μT, μL, and ET/EL. To date, experiments in muscle have
measured μT and μL by measuring the shear wave speed for wave propagation parallel and
perpendicular to the muscle fibers. In addition, Wang, et al. (2013a) have measured the
angular dependence of both the phase and group velocities for the PT propagation mode.

Measurement of the third elasticity constant ET/EL is more difficult because this constant
only contributes to the QT propagation mode, for example, in (20). However, excitation of
the QT mode can be difficult because the polarization vector for this mode lies in the Â − N̂

plane, and the propagation direction must be chosen carefully relative to the excitation and
material symmetry axes. Furthermore, for typical ARFI displacement amplitudes on the
order of a few microns, only the Z components of displacements can be detected using
ultrasonic tracking. Thus, when using ultrasonic imaging to monitor motion, it is not
possible to identify the PT and QT propagation modes from measurements of the X
component of displacements as in the images shown in the fourth row of Fig. 3.

For the FE models in this study, orienting the material symmetry axis at an angle of 45° as
shown in Fig. 2 allows the QT mode to be observed. For wave propagation along the X axis,
the Z component of displacements will consist of only the QT propagation mode, and, as
shown in Fig. 3, the amplitude of these displacements will be relatively large. Furthermore,
with propagation along the X axis, ϕ = θ = 45° and (20) gives

(30)

so that ET/EL can be determined if μT is known. Thus, an experimental configuration similar
to that shown in Fig. 2 should allow measurement of μT, μL, and ET/EL and a complete
characterization of an incompressible, TI material.

Experimental demonstration of the methodology described in this study is the subject of
future work. These measurements are complicated by several factors that have not been
considered in the idealized simulations presented here. One complicating factor is that the
orientation of the muscle fibers must be known before the ARFI excitation axis can be
positioned. However, the muscle fiber orientation is not typically known with high
precision, especially for in vivo measurements. One method that could be used
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experimentally would be to determine the fiber orientation using either a high frequency
ultrasound probe or an initial measurement using a 3-D probe as described by Wang, et al.
(2013a), and then to position the excitation probe so that the axis is near the ideal 45° angle.
Alternatively, a probe capable of generating a steerable excitation axis could be used to
determine the fiber orientation, and then to position the axis for the measurement. Of course,
the exact angle of 45° is not required since the ratio ET/EL and its uncertainty can be
determined from measured values of μT, μL and θ using (20). In addition, the structure of
muscle is complicated by inhomogeneities in fiber orientation and interfaces between of
fiber bundles. Effects of these complications have been neglected in the current study and
also in previous measurements of propagation velocities along and across the muscle fiber
orientation. The impact of these non-idealized structures on experimental measurements of
elasticity parameters is complicated and remains to be addressed.
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Figure 1.
Parametric plots of phase (top row) and group (middle row) velocities for the PT (dashed)
and QT (solid) propagation modes calculated using (16), (20), (22), and (24) with μL = 25
kPa, μT = 9 kPa, and ET/EL = 0.16 (left), 0.36 (center), and 0.64 (right). The bottom row
shows plots of group propagation angle ϕ calculated using (25) as a function of phase
propagation angle θ.
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Figure 2.
Experimental coordinate system used for the FE simulations. The ARFI excitation force F⃗ is
directed along the Z axis and wave propagation is observed for propagation directions N̂

perpendicular to the excitation axis in the X − Y plane. As discussed in Sec. 3.1 the material
symmetry axis Â is tilted at an angle of 45° relative to the excitation axis. The x1, x2, x3
coordinate system used to calculate the theoretical propagation velocities in Sec. 2 is
oriented with x̂3 = Â and wave propagation in the x1 − x3 plane, i.e., the Â − N̂ plane shown
in red in the figure. Thus, the orientation of the x1, x2, x3 coordinate system relative to X, Y,
Z varies for different propagation directions N̂ in the X − Y plane. The P̂PT, P̂QL, and P̂QT
polarization vectors are defined relative to the x1 − x3 plane with P̂PT perpendicular to the
plane, and P̂QL, and P ̂QT in the plane.
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Figure 3.
Results of the FE models showing displacement data in the X−Y plane at time steps of 0.8,
1.4, 2.0, 2.6, and 3.2 ms. The top three rows show the Z component of displacements (which
is the only component of displacement that is tracked during ARFI imaging) calculated
using the elasticity constants in Table 1 with ET/EL = 0.16 (top row), ET/EL = 0.36 (second
row), and ET/EL = 0.64 (third row). The fourth row shows the X component of
displacements for the ET/EL = 0.64 case. Note the nonlinear color scale.
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Figure 4.
Parametric plots of theoretical group propagation velocities in the X − Y plane calculated
using the procedure described in Sec. 3.1. Results are shown for the PT (dashed) and QT
(solid) propagation modes calculated using μL = 25 kPa, μT = 9 kPa, and ET/EL = 0.16 (left),
0.36 (center), and 0.64 (right). The data points show velocities calculated from the
displacement results of the FE models for wave propagation along trajectories directed
radially away from the excitation region, see Sec. 3.4.
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Table 1

Values of elasticity constants used for the three FE simulations.

Constant ET/EL = 0.16 ET/EL = 0.36 ET/EL = 0.64

μL (kPa) 25.0 25.0 25.0

μT (kPa) 9.0 9.0 9.0

ET/EL 0.16 0.36 0.64

νLT 0.499 0.499 0.499

νTT 0.92 0.82 0.68

ET (kPa) 34.56 32.76 30.24

EL (kPa) 216.0 91.0 47.25
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