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Summary
Shared genomic segment (SGS) analysis is a method that uses dense SNP genotyping in high-risk
pedigrees to identify regions of sharing between cases. Here, we illustrate the power of SGS to
identify dominant rare risk variants. Using simulated pedigrees, we consider 12 disease models
based on disease prevalence, minor allele frequency, and penetrance to represent disease loci that
explain 0.2% to 99.8% of total disease risk. Pedigrees were required to contain ≥15 meioses
between all cases and to be high-risk based on significant excess of disease (p<0.001 or
p<0.00001). Across these scenarios the power for a single pedigree ranged widely. Nonetheless,
fewer than 10 pedigrees was sufficient for excellent power in the majority of the models. Power
increased with the risk attributable to the disease locus, penetrance, and the excess of disease in
the pedigree. Sharing allowing for one sporadic case was uniformly more powerful than sharing
using all cases. Further, we do a SGS analysis using a large Attenuated Familial Adenomatous
Polyposis pedigree and identified a 1.96 Mb region containing the known causal APC gene with
genome-wide significance (p<5×10−7). SGS is a powerful method for detecting rare variants and
offers a valuable complement to GWAS and linkage analysis.

Introduction
Recently the availability and decreased cost of high-density genome-wide single nucleotide
polymorphism (SNP) arrays has led to the development of new analytical techniques that
can take advantage of this wealth of information. One avenue of new development is the use
of these data in large pedigrees. Conventionally, linkage analysis has been used for pedigree
analyses; however, such an approach is computationally intensive in extended pedigrees and
problematic when high-density data are used. Linkage disequilibrium (LD) must be
accounted for and subtle undetected genotyping errors can disrupt inheritance estimation.
Computationally tractable gene-mapping methods for high-density SNP data have recently
been developed that attempt to identify genomic regions of sharing between affected
individuals (cases) in pedigrees. These new methods focus on assessing the number of
consecutive markers (“runs”) with alleles that are identical-by-state (IBS) across the cases
(Leibon et al., 2008, Thomas et al., 2008) to infer regions that they share identical-by-
descent (IBD); that is, chromosomal segments inherited from the same ancestral founder.
Computationally, IBS sharing is simple to calculate. Excessively long runs of IBS that are
not expected by chance are likely to be IBD. High-risk pedigrees containing multiple related
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cases are ideal for these new methods because genomic sharing across multiple meioses
happens seldom by chance and is short in length. The identification of long runs of IBS
sharing by distant relatives with a disease can therefore indicate regions harboring
predisposition alleles.

Growing evidence suggests that rare variants contribute to several different diseases
(Manolio et al., 2009, Owen et al., 2009, Sabatelli et al., 2009, Schork et al., 2009), and that
these variants may account for some of the missing heritability not captured by risk variants
identified by genome-wide association studies (GWAS). Genome-wide association studies
use common SNPs and lack the power to find rare risk variants (Iles, 2008). This is because
power decreases as the disease minor allele frequency (MAF) decreases due to low
correlation (r2) between SNPs on the GWAS arrays and the disease SNP. It has been shown
that the overall sample size needs to increase by a factor of 1/r2 to maintain power (Pritchard
& Przeworski, 2001). For example, the maximum correlation between a tagging SNP (tSNP)
with a MAF of 0.05 and a disease SNP with a MAF of 0.0005 is r2=0.0095 (VanLiere &
Rosenberg, 2008), and hence the sample size would need to be increased by about 100-fold
to maintain power. If the disease had prevalence 1% and a penetrance of 0.2, and the true
disease SNP (MAF 0.0005) was tested, only 100 cases and 100 controls would be required
for 80% power based on an trend test with alpha=0.05 (Slager & Schaid, 2001). However,
when using tSNPs (MAF≥0.05) at a minimum the sample size would need to increase to
10,000 cases and 10,000 controls to maintain the 80% power. In contrast, use of SGS with
large pedigrees has been suggested as a powerful method to identify rare disease variants
(Manolio et al., 2009). Thus far, SGS has identified novel shared regions containing possible
rare variants for prostate cancer (Thomas et al., 2008) and a rare form of inherited kidney
disease (Leibon et al., 2008). The SGS technique indicates potential in these applied
examples, but the power of the method has not been explored in depth. Here, we examine
the power of an SGS method (n sharing and n-1 sharing) across several different underlying
disease models and selection procedures for pedigrees. For a subset of these scenarios, we
also compare power to classical multipoint linkage analysis.

Lastly, we also provide a proof-of-principle example by applying SGS analysis to a large
Attenuated Familial Adenomatous Polyposis (AFAP) pedigree with a known disease locus.
AFAP is a colon cancer predisposition syndrome that is characterized by less than 100
adenomatous polyps in the colon and an increased risk of developing colon cancer.
Mutations in the APC gene on chromosome 5 have been shown to cause AFAP (Burt et al.,
2004, Neklason et al., 2004, Pilarski et al., 1999, Knudsen et al., 2010) and, in particular, a
dominant founder mutation (c.426_427delAT) has been identified in the pedigree presented
(Neklason et al., 2008).

These power estimates and illustrative proof-of-principle example provide important insight
into how this new technique can be used for gene-finding studies.

Methods
Simulated data are used to estimate power and type 1 error. For our proof-of-principle
example, the study was approved by the University of Utah Institutional Review Board and
by the University of Utah Resource for Genetic and Epidemiologic Research which oversees
the appropriate use of the Utah Population Database. Informed consent was obtained from
all research participants.

Shared Genomic Segment method
An SGS analysis uses dense SNP data in extended pedigrees to identify significantly long
runs of IBS sharing by multiple related cases.
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It has already been shown that the genome-wide probability that there is an allele at a locus
that is shared IBD by a set of individuals separated by ‘M’ meioses is:

(1)

for a single pedigree with two ancestral founders, assuming an autosomal genome measuring
35 Morgans (Thomas et al., 2008), where M indicates the number of meiotic events the
locus must survive to segregate to all individuals in the set.

Based on equation (1), the genome-wide probability of chance IBD sharing at a locus is
approximately 0.05 for individuals separated by 15 meioses. Hence, high-risk pedigrees with
M≥15 are good candidates for an SGS analysis and are the focus of our investigations here.

We assume each SNP is biallelic with alleles 1 and 2. Let n be the number of cases in a
pedigree and denote ni11, ni12 and ni22 as the number of cases with genotypes 11, 12 and 22
at the ith SNP (ni11,+ ni12 + ni22= n). The number of cases sharing at least one allele IBS at
the ith SNP can then be simply written as:

(2)

We define Ri(t) to be the number of consecutive SNPs (which includes the ith SNP) for
which at least one allele is shared IBS by at least t of the n cases, that is,

(3)

This partitions the genome into segments of potential sharing (runs of IBS) separated by
regions that are not shared by at least t of the n cases. In Thomas et al (2008) a single test
was suggested, comparing the maximum Ri(t) in the genome (maxRi(t)) to the maxima from
a set of simulated null genomes –these were not matched on genomic position. This single
test addresses one hypothesis based on maxRi(t) and leaves all other runs unexplored.
Furthermore, because it ignores the location of the observed maximum it will have reduced
power to identify true disease loci that occur in areas with low LD. Here, we present a point-
by-point procedure. We assess Ri(t) for every SNP, compared to an empirical null
distribution for the same SNP position (Ri(t|null)). In the empirical assessment, sharing
under the null is calculated for precisely the same set of individuals. Null genotype
configurations for those individuals are generated conditional on an LD and recombination
model and their precise pedigree structure. The LD model is estimated across entire
chromosomes using a graphical modeling approach (Thomas, 2009). This LD model is used
to assign haplotypes to pedigree founders. A gene-drop of these haplotypes is then
performed based on the precise pedigree structure with recombination events based on a
genetic model for the SNPs. The p-value for each SNP is the proportion of Ri(t|null) that are
at least as large as the observed Ri(t). The number of null simulations used to estimate these
p-values is user-defined (for example, for the proof-of-concept case-study we used 2
million). The significance for a run is then defined as the mean p-value across all SNPs
contained in the run. The mean p-value achieves the correct type 1 error rate (see Results),
compared to the minimum p-value in the run which has marginally better power, but also
marginally inflated type 1 errors (data not shown). The programs used for this analysis are
freely available at http://medicine.utah.edu/internalmedicine/geneticepidemiology/
analysis.php.
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Simulated data: Power
For our investigation of power, we generated extended pedigrees with affection status based
on various disease models. We focused on models with rare disease allele frequencies
(0.005, 0.0005 and 0.00005), as these are scenarios where current GWAS approaches are
underpowered (Iles, 2008, Pritchard & Przeworski, 2001). Prevalence of the disease (1% or
0.5%) and penetrance of the risk allele (0.2 or 0.5, assuming a dominant model) were also
considered. A sporadic rate was calculated for each model based on the prevalence of
disease, penetrance, and disease allele frequency. These models correspond to disease loci
that explain a wide range of the total attributable risk (0.2% to 99.8%).

We used a large, fixed pedigree structure as a backbone to generate simulated extended
high-risk pedigrees. Genotypes and phenotypes were generated based on the disease model
under consideration and hence varied for each simulation. For each generated pedigree, only
the structure required to connect the cases was maintained. The backbone structure was a
five-generation pedigree with two ancestral founders and 168 descendants (including 104
lateral founders that marry-in at the 2nd-4th generations for a total of 274 individuals). The
pedigrees generated were the type of extended pedigree structures often seen in pedigree
studies in the literature, including from the San Antonio Family Heart Study (e.g.,
Santamaria et al., 2007), Canadian and American Hutterites (e.g., Prasad et al., 2001), the
Genetics of Coronary Artery Disease in Alaska Natives (GOCADAN) Study (e.g., Howard
et al., 2005), the Carolinas Region Interaction of Aging, Genes and Environment Family
(e.g., Chen et al., 2010), isolate population studies (e.g., Vitart et al., 2010, Wijsman et al.,
2003, Williams-Blangero et al., 2002, Choh et al., 2001), in addition to studies from the
Utah Population Database (e.g., Camp et al., 2006). The upper generations were considered
missing, as is the situation in reality. Thus only the bottom two generations of descendants
(n=128) were considered. A high-risk pedigree was defined to be one where the number of
cases was significantly higher than expected based on a Poisson distribution conditional on
the disease prevalence in the model. The use of a statistical high-risk definition is
advantageous for pedigree-based studies, because it leads to pedigrees that are enriched for
genetic disease, rather than simply a chance clustering of sporadic disease. We considered
two criteria for defining high-risk pedigree status (p<0.001 and p<0.00001). For our
backbone pedigree structure, these definitions of high-risk correspond to requiring a
pedigree to contain ≥6 and ≥8 cases, respectively, for models with a 1% disease prevalence
and ≥4 and ≥6 cases for models with a 0.5% disease prevalence.

We assumed an Illumina 610Q array for SNP positions with MAFs and LD structure
estimated from the CEU Utah trio parents (n=60) available in HapMap (The International
HapMap Consortium, 2003). The disease locus (dSNP) was placed in the middle of the q
arm of Chromosome 21. There are 7785 SNPs on Chromosome 21 on the 610Q array. A
chromosome-wide LD model was estimated using a graphical modeling method (Thomas,
2009). This LD model was used to assign haplotypes to the founders in the pedigrees. We
know that, due to the frequency difference between a rare disease allele and common alleles
of SNPs on a high-density array, the correlation (r2) between the dSNP and the array SNPs
will be negligible. Hence, to place our dSNP, we identified a SNP uncorrelated with any
other and assigned that to be the dSNP position. We then removed the HapMap genotypes at
that position and replaced them with dSNP genotypes based on the disease MAF. To assign
haplotypes to descendants, a gene-drop was performed assuming Mendelian inheritance and
including recombination according to the genetic map for the 610Q SNPs. Affection status
was assigned based on a disease model. The dSNP genotypes were then removed. Generated
pedigrees that satisfied high-risk status and contained at least 15 meioses between cases
were the focus of our study. Figure 1 illustrates some examples of the high-risk pedigrees
generated.
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The power of sharing methods, such as SGS, depends largely on the dSNP genotypes
assigned to the founders. For example, a founder genotype set (Fj) that includes a single
ancestral founder being heterozygote for the dSNP (and all other founders wildtype) will
have the potential to generate pedigree configurations with good sharing across cases at the
dSNP and hence the potential for good power in an SGS analysis. In contrast, a founder set
that is wildtype at the dSNP in all founders will have little potential for power and will likely
resemble simply the type 1 error rate. It is therefore convenient to estimate power by
considering the different founder genotype sets separately and appropriately summing across
the results. Further, because we consider only pedigrees that are high-risk (HR) and that
contain at least 15 meioses (15M) between the cases, this must be taken into account also.
Hence, power for the SGS method was estimated as follows:

(4)

where Fj is the jth set of founder genotypes at the dSNP locus under the alternative
hypothesis.

To determine power, each of the four components was estimated separately and combined as
indicated in equation (4). Details of the simulation procedures are found in the appendix.

Simulated data: Type 1 error
For accurate type 1 error estimation it is important that the phenotypic configurations of the
pedigrees match those from the alternate hypothesis (i.e. HR and 15M); but, the dSNP
genotypes should lack correspondence between genotype and phenotype. To achieve this,
we selected pedigrees generated under the alternative hypothesis (as described above),
removed the dSNP genotypes and replaced these with genotypes under the null using a
Mendelian gene-drop. A total of 1000 such null simulations were generated to determine the
type 1 error rate for SGS with n and n-1 cases sharing.

Proof-of-Principle Real Data Example: AFAP and APC
The large AFAP pedigree analyzed is shown in Figure 2. It has 34 meioses between five
AFAP cases genotyped using Affymetrix Genome-Wide Human SNP Array 6.0. Data on the
same platform for the 60 CEU HapMap founders were used to estimate an appropriate LD
model. SNPs out of Hardy-Weinberg equilibrium in the 60 HapMap founders (p<0.001) and
SNPs that were monomorphic in both the five cases and 60 HapMap founders were
excluded, leaving 47,674 SNPs on Chromosome 5 where the known causal APC gene
resides (829,558 genome-wide). Significance of observed SGS runs were determined
empirically, conditional on the CEU HapMap LD model and the AFAP pedigree structure.

We determined the genome-wide significant threshold for the AFAP real data example by
performing a Bonferroni correction based on the number of SGS runs expected across the
genome under the null hypothesis. We determined the number of SGS runs for 1000 null
genomes based on the AFAP pedigree structure and the LD model. The number of runs was
very stable, with an average of 100,341 runs (95% CI 99,186-101,496; range
98,318-102,138). Hence, we considered 5.0 × 10−7 to be the genome-wide significant
threshold for the AFAP pedigree.
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Results
As expected, the results from the type 1 error simulations indicated that the empirical
assessment of significance for SGS for n and n-1 sharing were both valid. For SGS across n
cases, the estimated type 1 error rate was 0.053 and for n-1 it was 0.042; neither is
significantly different than the usual nominal benchmark of 0.05.

The results of power for a single pedigree are shown in Table 1. Single-pedigree power
varied substantially across the disease models considered (5.4% to 86.2%). In general, the
power increased with increased stringency in the high-risk pedigree definition and
penetrance. For a given prevalence and MAF, the power increased with an increase in the
disease attributable risk. For the models considered, power was consistently higher for
sharing across n-1 cases (i.e., allowing for one sporadic case) which is perhaps unsurprising
given the disease models all included the possibility for sporadic disease.

While SGS is designed to analyze a single pedigree, in practice multiple high-risk pedigrees
may be ascertained and each analyzed separately. Based on the single-pedigree power
estimates, Table 2 shows the number of pedigrees required to attain at least 80% power
overall (i.e., the probability that at least one pedigree will identify a disease locus). Note that
the multiple pedigrees are not required to share the same disease susceptibility loci. As seen
in Table 2, for the vast majority of the scenarios considered (18/24 for n, and 19/24 for n -1),
fewer than 10 pedigrees would be sufficient for ≥ 80% power overall. Furthermore, five or
fewer pedigrees would provide good power for at least half of the scenarios investigated.

Table 3 shows the average length of the shared segment for the significant results in single
pedigrees. The shared segments were short for the analysis with n cases (average 3.17 Mb,
range 1.6-7.2 Mb), and shortest for the 1% disease prevalence and the 0.2 penetrance
(average 2.53 Mb, 1.6-3.7 Mb). For n-1 cases sharing, the shared lengths were longer
(average 7.98 Mb, 5.0-14.1 Mb).

The results of the real data AFAP proof-of-principle example are illustrated in Figure 3. The
longest shared segment in the genome for all five cases was found on Chromosome 5 and
this shared segment achieved genome-wide significance (p< 5×10−7; none of 2,000,000
simulations were as extreme as the observed sharing). This SGS shared region stretched
from 111,641,797 to 113,606,106 bp (1.96 Mb) and contained the known disease-causing
APC gene.

Discussion
We found that SGS can be a powerful method for detecting rare disease variants. In general
very few pedigrees (<10) were required to generate a well-powered study. Useful for study
design, we observed patterns in the power based on the underlying disease model, the
criterion for high-risk pedigree status, and the consideration of n or n -1 sharing. As
intuitively expected, power generally increased with the attributable risk for the disease
locus. Also, the extreme high-risk pedigree definition (significant excess disease,
p<0.00001) also uniformly produced better power. For the stricter high-risk pedigree
definition, the power advantage was most pronounced at the lowest disease MAF (0.0005)
and lower attributable risks (<10%). A perhaps counter-intuitive pattern seen within
scenarios with the extreme high-risk pedigree definition was that of decreased power with
increasing disease MAF for a prevalence of 0.5% (specifically, MAF 0.005 compared to
MAF 0.0005). We identified this to be because the strict high-risk definition led to pedigrees
segregating multiple disease alleles (for the higher MAF of 0.005) which generated a lack of
sharing of the exact same disease allele across the n or n -1 cases. While these particular
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examples all had good power (single pedigree power >50%), the pattern highlights that the
strength of the SGS method lies in identification of rare disease alleles, especially in relation
to the disease prevalence, and that the method will have reduced power for common disease
alleles. Finally, the power was consistently higher for n-1 sharers, compared to n. This is
consistent with the disease models generated, which all included the possibility for sporadic
disease. This also likely better reflects reality.

While not the focus of this investigation, because classical linkage analysis is the historical
mainstay for pedigree-based analyses for identifying rare risk variants, we also investigated
the power of multipoint linkage analysis for a few scenarios. We selected three scenarios to
represent SGS n sharing performed at the high, moderate and low end for power
performance (these are indicated with an asterisk in Table 1). We note that due to the
structure of the pedigrees, multipoint linkage could not be performed in software such as
Genehunter (Kruglyak et al., 1996) or Merlin (Abecasis et al., 2002),and instead a Monte
Carlo Markov chain method was employed (Mclink; (Thomas et al., 2000). Single pedigree
linkage analyses assuming a general dominant model (disease allele frequency=0.003;
penetrances: 0.0005 0.5, 0.5) and based on a trimmed set of “LD-free” SNP genotypes were
performed. As a single test for linkage at the known true disease locus, power was assessed
at alpha=0.05. Under the first scenario (high-risk pedigree criterion p<0.00001, disease
prevalence 0.5%, disease MAF=0.0005 and a penetrance of 0.5) multipoint linkage in 1000
simulated pedigrees yielded 68.8% power, compared to 71.0% and 86.2% for SGS n and n
-1 sharing, respectively. For the second scenario (high risk p<0.001, prevalence 1%, disease
MAF 0.005 and penetrance 0.5) linkage yielded 57.2% power compared to 54.2% and
68.0% for SGS n and n -1 sharing. For the final scenario (high-risk p<0.00001, prevalence
0.5%, disease MAF 0.00005, penetrance 0.2) linkage produced 34.8% power compared to
32.4% and 42.5% for SGS n and n -1 sharing. Hence, multipoint linkage and SGS n sharing
appear near-equivalent for power; however, both are outperformed by SGS n -1 sharing due
to its increased robustness to intra-familial heterogeneity. For localization, we identified the
size of the region identified by the 1-LOD support interval in the pedigrees that successfully
identified the true locus with multipoint linkage analysis. For the three scenarios outlined
above, these localized linkage regions were found to be 8.5 Mb, 7.6 Mb and 8.0 Mb on
average, respectively.

Another widespread study design is the GWAS, although it is well-acknowledged not to be a
study design of choice for rare risk variant detection. Here, we have shown that: there are
scenarios where a single pedigree has >80% power; five or fewer pedigrees are sufficient to
attain >80% power for over half of the scenarios considered; and in the vast majority of
scenarios less than ten pedigrees are required to be well-powered in an SGS analysis.
Pedigrees in our simulation study contained 4.0-9.7 cases on average; hence, with an SGS
approach and between one to ten pedigrees, fewer than 100 (and may be as few as four) very
well selected cases can produce a well-powered study. This is quite remarkable when
compared to the 10,000 cases and 10,000 controls required to achieve 80% power in a
traditional case-control GWAS study design.

A further advantage of the SGS method is that it clearly localizes the region for follow-up
sequencing efforts, and these regions are generally quite small (average for n sharing 3.17
Mb, range 1.6-7.2 Mb, and average for n -1 sharing 7.98 Mb, 5.0-14.1 Mb). SGS not only
provides focused regions for sequencing but also identifies the sharers to sequence. Hence, it
is an efficient and extremely cost-effective strategy for focused regional next generation
sequencing technology. The regional approach also radically reduces the amount of
sequence data generated allowing it to be explored more thoroughly, and it is plausible to
search for risk variants in non-coding regions. Furthermore, variant filtering based on
sharing between multiple relatives provides a distinct advantage in prioritizing sequence
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variants potentially underlying disease susceptibility. Lastly, we note that although the
power for multipoint linkage and SGS n sharing appear to be very similar, the shared
segments identified for SGS were substantially shorter than the 1-LOD support intervals
suggested by the linkage analysis.

Finally, our analysis of the extended AFAP pedigree with a known causal gene provided a
positive proof-of-principle example. We illustrated that SGS was able to produce genome-
wide significant results in the region containing the known mutation. In line with our finding
outlined above, this shared genomic segment was small (1.96 Mb) which was substantially
smaller than the previously identified 7.17 Mb using linkage analysis on the reduced density
10K SNP array (Neklason et al., 2008).

In conclusion, both our power study and the proof-of-principle example suggest that the
SGS method (particularly n-1 sharing) will be an extremely valuable new analysis tool, and
will help to fill a much needed gap for localizing rare disease variants. From our results, it is
apparent that the SGS approach will not attain excellent power for all possible disease
models involving rare variants; however, it is also evident that there are many scenarios
where using this technique on a small number of extended high-risk pedigrees will have
more power to identify rare disease variants than multipoint linkage analysis or extremely
large GWAS studies. Our results suggest that SGS analyses have the potential to play an
important role in identifying rare risk variants by localizing small genomic regions that are
practical for intense sequencing, and by thorough sequence variant analyses facilitating the
identification of novel disease variants
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Appendix
Here we describe the details of the estimation of power based on equation (4) which is
repeated here for convenience:

The four components of this are: (A) The probability that a pedigree is high-risk and
contains at least 15 meioses between cases, denoted P(HR ∩15M). This probability depends
on the definition for high-risk pedigree status (significant excess disease p<0.001 or
p<0.00001) and the disease model (12 considered, see Table 1); (B) The probability of a set
of founder genotypes for the dSNP, denoted P(Fj). This probability depends on the disease
model allele frequency; (C) The probability that a pedigree will be high-risk and have ≥15
meioses separating cases conditional on a specific set of founder genotypes, denoted P(HR
∩15M| Fj). This probability depends on the definition for high-risk status and the disease
model; and (D) The probability of rejecting the null hypothesis (p<0.05) under a disease
model (12 considered) conditional on a high-risk pedigree with ≥15 meioses separating
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cases with a specific set of founder genotypes, denoted P(reject H0 | Fj | HR ∩15M). This
can be thought of as the power specific to a certain founder genotype set. This probability
depends on the high-risk pedigree definition and the disease model.

A. P(HR ∩ 15M)
For each disease model and high-risk definition, we estimated P(HR ∩ 15M) using
simulation. Based on our backbone pedigree, we simulated 25,000 pedigrees for each
disease model. We identified the pedigrees from each 25,000 that satisfied both high-risk
status (based on the two definitions; p<0.001 and p<0.00001) and at least 15 meioses
between cases. For each disease model and high-risk definition, the proportion of pedigrees
from the 25,000 that satisfied these conditions was used as the estimate for the probability.

B. P(Fj)
The probability for each founder genotype set was calculated explicitly. Because there is
substantial redundancy in many of the sets, some sets were grouped together. For example,
the genotype set created by the female ancestral founder being heterozygous for the dSNP
plus all other founders wildtype is equivalent to the genotype set created by the male
ancestral founder being heterozygous for the dSNP and all other founders wildtype. Such
equivalent sets are considered together as a single Fj. For each Fj, the probability is simply
the product of genotype frequencies multiplied by the number of equivalent sets. In our
backbone pedigree there are 106 founders. For example, the probability that a single
ancestral founder is in heterozygous and all other founders are wildtype is:

(5)

where p is the disease allele MAF.

C. P(HR ∩15M/Fj)
We estimated P(HR ∩15M| Fj) using simulation. For each disease model we simulated
between 15,000-150,000 pedigrees (more to estimate low probability values). We
conditioned on each dSNP founder genotype set Fj, performed a gene-drop, and assigned
disease status according to the model. Pedigrees were assessed for high-risk status and ≥15
meioses between cases. The proportion that satisfied both conditions provided the estimate
for the probability.

D. P(reject H0 | Fj | HR ∩15M)
Genomic sharing between multiple distant relatives is highly unlikely by chance. The SGS
method is based on identifying this sharing between related cases and will therefore have
most power for a rare, dominant risk allele that has entered the pedigree in heterozygous
form via an ancestral founder and segregated to the related cases. Given this assumption,
and for efficiency of simulations, we conservatively consider only two founder genotypes
sets at the dSNP (Fj) for the above conditional power. All other Fj were assumed to produce
only 5% power (i.e. the chance probability of rejecting the null at the disease position when
testing at the 0.05 level). The two founder genotype sets considered were: (1) dSNP
heterozygous in a single ancestral founder and all other founders wildtype; and (2) dSNP
heterozygous in one ancestral founder and in one 4th generation lateral founder and all other
founders wildtype.
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The conditional power (P(reject H0 | Fj| HR ∩15M)) was estimated via simulation for each
disease model and high-risk definition. From the 15,000-150,000 simulations generated for
each model in (C) above, we selected 1000 pedigrees for the Fj of interest that satisfied both
high-risk status and ≥15 meioses between cases. For each of these 1000 pedigree sets and 24
scenarios (12 models, two high-risk definitions), we determined the run length Ri(t) that
spanned the true disease locus for both t=n and t=n-1 sharing. The significance of this run
was determined empirically as the mean of the p-values of each SNP contained in the run.
The null hypothesis was rejected for this single test if the significance of the run was p≤0.05
(i.e. alpha=0.05). The conditional power was considered to be the proportion of the 1000
pedigrees where the null hypothesis was rejected.

References
Abecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin--rapid analysis of dense genetic maps

using sparse gene flow trees. Nat Genet. 2002; 30:97–101. [PubMed: 11731797]

Burt RW, Leppert MF, Slattery ML, Samowitz WS, Spirio LN, Kerber RA, Kuwada SK, Neklason
DW, Disario JA, Lyon E, Hughes JP, Chey WY, White RL. Genetic testing and phenotype in a
large kindred with attenuated familial adenomatous polyposis. Gastroenterology. 2004; 127:444–51.
[PubMed: 15300576]

Camp NJ, Farnham JM, Cannon-Albright LA. Localization of a prostate cancer predisposition gene to
an 880-kb region on chromosome 22q12.3 in Utah high-risk pedigrees. Cancer Res. 2006;
66:10205–12. [PubMed: 17047086]

Chen HC, Kraus VB, Li YJ, Nelson S, Haynes C, Johnson J, Stabler T, Hauser ER, Gregory SG, Kraus
WE, Shah SH. Genome-wide linkage analysis of quantitative biomarker traits of osteoarthritis in a
large, multigenerational extended family. Arthritis Rheum. 2010; 62:781–90. [PubMed: 20187133]

Choh AC, Gage TB, Mcgarvey ST, Comuzzie AG. Genetic and environmental correlations between
various anthropometric and blood pressure traits among adult Samoans. Am J Phys Anthropol.
2001; 115:304–11. [PubMed: 11471128]

Howard BV, Devereux RB, Cole SA, Davidson M, Dyke B, Ebbesson SO, Epstein SE, Robinson DR,
Jarvis B, Kaufman DJ, Laston S, Maccluer JW, Okin PM, Roman MJ, Romenesko T, Ruotolo G,
Swenson M, Wenger CR, Williams-Blangero S, Zhu J, Saccheus C, Fabsitz RR, Robbins DC. A
genetic and epidemiologic study of cardiovascular disease in Alaska natives (GOCADAN): design
and methods. Int J Circumpolar Health. 2005; 64:206–21. [PubMed: 16050315]

Iles MM. What can genome-wide association studies tell us about the genetics of common disease.
PLoS Genet. 2008; 4:e33. [PubMed: 18454206]

Knudsen AL, Bulow S, Tomlinson I, Moslein G, Heinimann K, Christensen IJ. Attenuated Familial
Adenomatous Polyposis (AFAP) Results from an international collaborative study. Colorectal Dis.
2010

Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES. Parametric and nonparametric linkage analysis: a
unified multipoint approach. Am J Hum Genet. 1996; 58:1347–63. [PubMed: 8651312]

Leibon G, Rockmore DN, Pollak MR. A SNP streak model for the identification of genetic regions
identical-by-descent. Stat Appl Genet Mol Biol. 2008; 7 Article 16.

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, Mccarthy MI, Ramos EM,
Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN,
Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL,
Mackay TF, Mccarroll SA, Visscher PM. Finding the missing heritability of complex diseases.
Nature. 2009; 461:747–53. [PubMed: 19812666]

Neklason DW, Solomon CH, Dalton AL, Kuwada SK, Burt RW. Intron 4 mutation in APC gene
results in splice defect and attenuated FAP phenotype. Fam Cancer. 2004; 3:35–40. [PubMed:
15131404]

Neklason DW, Stevens J, Boucher KM, Kerber RA, Matsunami N, Barlow J, Mineau G, Leppert MF,
Burt RW. American founder mutation for attenuated familial adenomatous polyposis. Clin
Gastroenterol Hepatol. 2008; 6:46–52. [PubMed: 18063416]

Knight et al. Page 10

Ann Hum Genet. Author manuscript; available in PMC 2014 January 03.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Owen MJ, Williams HJ, O'donovan MC. Schizophrenia genetics: advancing on two fronts. Curr Opin
Genet Dev. 2009; 19:266–70. [PubMed: 19345090]

Pilarski RT, Brothman AR, Benn P, Shulman Rosengren S. Attenuated familial adenomatous
polyposis in a man with an interstitial deletion of chromosome arm 5q. Am J Med Genet. 1999;
86:321–4. [PubMed: 10494086]

Prasad C, Johnson JP, Bonnefont JP, Dilling LA, Innes AM, Haworth JC, Beischel L, Thuillier L,
Prip-Buus C, Singal R, Thompson JR, Prasad AN, Buist N, Greenberg CR. Hepatic carnitine
palmitoyl transferase 1 (CPT1 A) deficiency in North American Hutterites (Canadian and
American): evidence for a founder effect and results of a pilot study on a DNA-based newborn
screening program. Mol Genet Metab. 2001; 73:55–63. [PubMed: 11350183]

Pritchard JK, Przeworski M. Linkage disequilibrium in humans: models and data. Am J Hum Genet.
2001; 69:1–14. [PubMed: 11410837]

Sabatelli M, Eusebi F, Al-Chalabi A, Conte A, Madia F, Luigetti M, Mancuso I, Limatola C, Trettel F,
Sobrero F, Di Angelantonio S, Grassi F, Di Castro A, Moriconi C, Fucile S, Lattante S, Marangi
G, Murdolo M, Orteschi D, Del Grande A, Tonali P, Neri G, Zollino M. Rare missense variants of
neuronal nicotinic acetylcholine receptor altering receptor function are associated with sporadic
amyotrophic lateral sclerosis. Hum Mol Genet. 2009; 18:3997–4006. [PubMed: 19628475]

Santamaria A, Diego VP, Almasy L, Rainwater DL, Mahaney MC, Comuzzie AG, Cole SA, Dyer TD,
Tracy RP, Stern MP, Maccluer JW, Blangero J. Quantitative trait locus on chromosome 12q14.1
influences variation in plasma plasminogen levels in the San Antonio Family Heart Study. Hum
Biol. 2007; 79:515–23. [PubMed: 18478967]

Schork NJ, Murray SS, Frazer KA, Topol EJ. Common vs. rare allele hypotheses for complex
diseases. Curr Opin Genet Dev. 2009; 19:212–9. [PubMed: 19481926]

Slager SL, Schaid DJ. Case-control studies of genetic markers: power and sample size approximations
for Armitage's test for trend. Hum Hered. 2001; 52:149–53. [PubMed: 11588398]

The International Hapmap Consortium. The International HapMap Project. Nature. 2003; 426:789–96.
[PubMed: 14685227]

Thomas A. A method and program for estimating graphical models for linkage disequilibrium that
scale linearly with the number of loci, and their application to gene drop simulation.
Bioinformatics (Oxford, England). 2009; 25:1287–92.

Thomas A, Camp NJ, Farnham JM, Allen-Brady K, Cannon-Albright LA. Shared genomic segment
analysis. Mapping disease predisposition genes in extended pedigrees using SNP genotype assays.
Ann Hum Genet. 2008; 72:279–87. [PubMed: 18093282]

Thomas A, Gutin A, Abkevich V, Bansal A. Mulilocus linkage analysis by blocked Gibbs sampling.
Stat Comput. 2000; 10:259–269.

VanLiere JM, Rosenberg NA. Mathematical properties of the r2 measure of linkage disequilibrium.
Theor Popul Biol. 2008; 74:130–7. [PubMed: 18572214]

Vitart V, Bencic G, Hayward C, Herman JS, Huffman J, Campbell S, Bucan K, Zgaga L, Kolcic I,
Polasek O, Campbell H, Wright A, Vatavuk Z, Rudan I. Heritabilities of ocular biometrical traits
in two croatian isolates with extended pedigrees. Invest Ophthalmol Vis Sci. 2010; 51:737–43.
[PubMed: 19875653]

Wijsman EM, Rosenthal EA, Hall D, Blundell ML, Sobin C, Heath SC, Williams R, Brownstein MJ,
Gogos JA, Karayiorgou M. Genome-wide scan in a large complex pedigree with predominantly
male schizophrenics from the island of Kosrae: evidence for linkage to chromosome 2q. Mol
Psychiatry. 2003; 8:695–705. 643. [PubMed: 12874606]

Williams-Blangero S, Vandeberg JL, Subedi J, Aivaliotis MJ, Rai DR, Upadhayay RP, Jha B,
Blangero J. Genes on chromosomes 1 and 13 have significant effects on Ascaris infection. Proc
Natl Acad Sci U S A. 2002; 99:5533–8. [PubMed: 11960011]

Knight et al. Page 11

Ann Hum Genet. Author manuscript; available in PMC 2014 January 03.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Examples of simulated high-risk pedigrees (penetrance=0.5, prevalence=1% and disease
MAF=0.0005).
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Figure 2.
AFAP pedigree.
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Figure 3.
AFAP SGS runs for chromosome 5.
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