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Abstract
Reported here is a phantom-based comparison of methods for determining the power spectral
density of ultrasound backscattered signals. Those power spectral density values are then used to
estimate parameters describing α(f), the frequency dependence of the acoustic attenuation
coefficient. Phantoms were scanned with a clinical system equipped with a research interface to
obtain radiofrequency echo data. Attenuation, modeled as a power law α(f)=α0fβ, was estimated
using a reference phantom method. The power spectral density as estimated using the short-time
Fourier transform (STFT), Welch's periodogram, and Thomson's multitaper technique, and
performance was analyzed when limiting the size of the parameter estimation region. Errors were
quantified by the bias and standard deviation of the α0 and β estimates, and by the overall power-
law fit error. For parameter estimation regions larger than ~34 pulse lengths (~1cm for this
experiment), an overall power-law fit error of 4% was achieved with all spectral estimation
methods. With smaller parameter estimation regions as in parametric image formation, the bias
and standard deviation of the α0 and β estimates depended on the size of the parameter estimation
region. Here the multitaper method reduced the standard deviation of the α0 and β estimates
compared to those using the other techniques. Results provide guidance for choosing methods for
estimating the power spectral density in quantitative ultrasound.

INTRODUCTION
Quantitative Ultrasound (QUS) methods attempt to characterize tissue microstructure to aid
in disease diagnosis and treatment monitoring.1,2 Two QUS parameters with demonstrated
potential are the frequency dependent attenuation coefficient, α(f) and the backscatter
coefficient, σb(f).3,4 The feasibility of estimating α(f) and σb(f) and their use as diagnostic
tools have been reported for pathologies in the liver, kidney, breast, and thyroid.1,5-10

Most methods for estimating α(f) and σb(f) rely on a spectral analysis of radiofrequency
(RF) echo signals by computing their power spectral density.11-21 Estimations of α(f) and
σb(f) are based on the assumption that the power spectral density quantifies the expected
energy resulting from the incoherent superposition of backscattered waves from scatterers
randomly distributed within the acoustic pulse volume. The power spectral density is usually
computed as the average of a set of periodograms from gated segments of RF echo signals
from adjacent acoustic scanlines within an estimation window. Averaging reduces “coherent
noise” components in the power spectral density estimate, resulting from the statistical
nature of the backscatter process.22-27 For data from a clinical scanner, the size of the power
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spectral density estimation window is defined axially by the duration of the gate and
laterally by the number of scanlines included in the estimation.

Each periodogram is the squared magnitude of the Fourier transform of the gated scanline
signal.22,23 Other methods for estimating the power spectral density based on the
periodogram include Welch's method and Thomson's multitaper method. In Welch's method,
the periodogram resulting from one RF echo-signal segment is the average of the
periodograms of shorter and overlapping subsections of the original segment.28,29 This
method was recently suggested as optimum for σb(f) estimations.26 The multitaper method
has been shown to offer a better tradeoff among bias, variance, and frequency resolution of
the power spectral density estimate than Welch's method and has been suggested as useful
for attenuation estimations.26,30

In practice, the frequency response of the gating window is convolved with the true RF
signal spectrum. The frequency response of the windowing operation is characterized by a
central main lobe bracketed by lower-amplitude side lobes. The main-lobe width, which is
inversely proportional to the length of the estimation window, defines the frequency
resolution, i.e., the amount of correlation between values of the power spectral density at
neighboring frequency points. The side-lobe amplitude defines the bias introduced by
spectral leakage. Bias can be reduced by multiplying each RF signal segment within the
estimation window by a tapering function such as the Hamming or Hann, but this leads to
wider main lobes, and affects the accuracy and precision of power spectral density estimates.

The area defined by the estimation window is illustrated in figure 1. The region of interest
(ROI) outlined on the image might include a lesion or a section of it and the surrounding
tissue. Within the ROI, a “parameter estimation region” defines the total amount of echo
data applied to obtain an estimate of the QUS parameter of interest. This parameter
estimation region can include one or more power spectral density estimation windows,
depending on the estimated QUS parameter. The number of parameter estimation regions
within an ROI depends on the task to be performed. In bulk parameter estimation the ROI
includes usually one parameter estimation region. This can be thought of as a “large
parameter estimation region” mode aimed at comprehensively gathering values of tissue
properties to be used in tissue classification.22 In contrast, in parametric imaging small
parameter estimation regions are positioned at different locations within the ROI to display
spatial variations of the QUS parameter.22

Algorithms for local estimation of α(f) characterize the variation of a spectral property along
the propagation depth. At least three methods are quantitatively meaningful because they
compensate for diffraction and system settings. These are the spectral difference method
(included as part of the reference phantom method),13 the spectral log difference method,
and the hybrid method.19 In general, the reference phantom method requires smaller
parameter estimation regions, although still fairly long (some cases suggesting up to 50mm),
compared to the other methods.31-36 Although this does not limit bulk-parameter estimation,
it is a major limitation in terms of the spatial resolution of parametric images. In this sense,
it has been suggested that Thomson's multitaper method may outperform the conventional
short-time Fourier transform and Welch's power spectral density estimate in terms of the
overall diagnostic performance of parametric images in which the size of the parameter
estimation region is severely reduced.26

This work presents a phantom-based analysis of constraints in the size of the parameter
estimation region when estimating the attenuation coefficient for two different tasks: either
bulk-parameter estimation or parametric image formation. The analysis is based on a power-
law model for the frequency dependence of attenuation.37-44 We present a comparison of the
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performance of two spectral estimation methods commonly applied in QUS when estimating
the attenuation coefficient (the short-time Fourier transform and Welch's periodogram) with
Thomson's multitaper method. Results quantify the accuracy and precision of the estimates
as the amount of data incorporated into the estimation is reduced.

METHODS
Tissue mimicking phantoms

The reference phantom method13 was used to estimate the attenuation coefficient of a
sample from RF echo signals obtained from a clinical scanner. The reference phantom
method accounts for system-dependent parameters (transducer and pulser-receiver transfer
functions) using power spectral density estimates from a reference material (with speed of
sound equal to that of the sample), generated at the same depths as estimates from the
sample. The sample consisted of a homogeneous tissue-mimicking phantom composed of
water-based gel containing graphite powder (50mg/cm3 of agar) to control the attenuation
and 3000E glass beads (Potters Industries, Inc., Valley Forge, PA; 5 to 40μm diameter, 4mg/
cm3 of agar) to provide scattering.45 The reference phantom was a similar homogeneous
material, consisting of an emulsion of 70% safflower oil in gelatin and also containing
3000E glass-bead scatterers (4mg/cm3 of emulsion). Both the sample and the reference
phantoms were in acrylic boxes that had 25μm thick Saran wrap® (Dow Chemical,
Midland, MI) scanning windows.

During phantom fabrication, 2.5cm-thick test samples were prepared to measure the sound
speed and attenuation of the phantom materials. Laboratory estimates of α(f) and the speed
of sound of these materials were performed using a narrowband substitution technique46 at
frequencies from 2.25 to 10MHz. The attenuation coefficient was modeled as a power of
frequency f, using:

(1)

Table I shows the resultant α0 and β (and the corresponding R2 of the power-law fit), and the
estimated speed of sound c ± one standard deviation for both phantoms. The speed of sound
of the sample and the reference materials agreed within 0.4%. This difference is not
expected to be a significant source of bias in the attenuation estimates.47 The laboratory-
estimated parameters of the power-law fit were used as the expected values to which the α0
and β estimates from scanner derived backscatter signals were compared.

Scanner data acquisition
The phantoms were scanned with an 18L6 linear array transducer on a Siemens Acuson
S2000 clinical imaging system (Siemens Medical Solutions USA, Inc, Malvern, PA). The
transducer was driven by single cycle 9MHz pulses. The system was equipped with the
Axius Direct Ultrasound Research Interface48 that allows acquisition of beamformed RF
echo signals after time-gain compensation. The transmit focus was placed as shallow as
possible (2.5mm) to estimate attenuation in regions distal to the focus, in accordance with
previous results.47,49 RF echoes for 20 parallel image planes from the sample and 25 parallel
planes from the reference phantom were acquired by sweeping the transducer elevationally
between successive planes in steps equal to half the height of the transducer's elements. Each
plane scanned provided a 2D RF echo-signal frame consisting of 456 acoustic scanlines
spaced at 0.128mm. The RF data were digitized at 40MHz for a total of 2076 samples
spanning 39mm axially.
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Axial and lateral correlation
The size of the scattering volume determines the correlation among neighboring RF echo
samples. This volume is affected by the pulse bandwidth and the diffraction field. Therefore,
the number of uncorrelated axial samples and acoustic scanlines within a spectral estimation
window or a parameter estimation region depends on the experimental conditions. To
generalize our results, we parameterized the size of the spectral estimation window and the
area spanned by the parameter estimation region in terms of the number of uncorrelated
axial (time) and lateral (acoustic scanlines) samples of RF echo signals. For this purpose we
computed the separation between the two closest axial samples and closest lateral samples
considered to be uncorrelated.20,26,50-53 For segments including m axial samples of RF echo
signals from N adjacent acoustic scanlines, the lateral correlation coefficient is defined as:26

(2)

where Xj,i is the ith (i=1,..,m) axial sample of the segment of the jth (j=1,...,N) acoustic
scanline. The upper bar indicates averaging of all the axial samples within the segment of a
particular acoustic scanline signal. The computation of the axial correlation coefficient
ρA(Δ) was performed similarly, substituting the lateral dimension for the axial dimension in
(2). ρA(Δ) and ρL(Δ) were estimated over a region spanning 5mm axially (m=267) and
15mm laterally (N=121). Correlation lengths were defined empirically as the range of spatial
lags (samples in the axial direction, acoustic scanlines in the lateral direction) over which the
one-sided correlation coefficient (linearly interpolated at 1/1000 of a sample to obtain
fractional lags) remained above 0.2.20,53 Under this criterion the axial and lateral correlation
lengths within the parameter estimation region (defined below) were 0.188mm and four
adjacent acoustic scanlines, respectively. In the axial direction, we define the “pulse echo
correlation length” as the full width of the two-sided correlation curve at a 0.2 level, i.e.,
twice the one-sided axial correlation length.

Power spectral density estimation
The parameter estimation region required to obtain one α(f) estimate includes a set of
axially-aligned spectral estimation windows, as illustrated in figure 1. The size of the
parameter estimation region is defined axially by the number of spectral estimation
windows, and laterally by their widths.

It is important to notice the trade-offs in the axial size of a spectral estimation window and
the parameter estimation region. Each spectral estimation window should be long enough so
that the power spectral density estimate is not dominated by windowing and tapering-
function effects while also short enough that nonstationarity effects (diffraction, spatial
variations in scattering or attenuation) can be considered negligible. Following this criterion,
the maximum spectral estimation window length that was explored in this work was smaller
than 10mm. The axial span of the parameter estimation region should be long enough to be
sensitive to attenuation-dependent variations in the power spectral density amplitude over
depth.

The size of the spectral estimation window was varied both axially and laterally, and the
effects of these variations on the accuracy and precision of estimates of the power-law
parameters of α(f) were studied. The window length was reduced from 20 pulse-echo
correlation lengths down to 2.5 pulse-echo correlation lengths leading to window lengths
from 7.5mm down to 0.9mm. The number of uncorrelated acoustic lines included in the
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spectral estimation window, and therefore in the parameter estimation region, was varied
from 22 down to 4, resulting in widths from 10.9mm down to 2.0mm. Fourier transforms
were computed after zero-padding the echo signals segments to 1024 points.

For each spectral estimation window size, a periodogram was computed by each of three
methods: The Short-time Fourier transform (STFT), Welch's method, and Thomson's
multitaper method. The STFT estimate of the periodogram is computed as the squared
magnitude of the Fourier transform of the RF echo segment multiplied by a tapering
function. Two tapering functions were used: the rectangular and Hann functions.28,29 In
Welch's method, the RF echo segment is first divided into NSS overlapped subsegments. The
power spectral density estimate from Welch's method is the average of the periodograms of
each of the subsegments after tapering.54 The subsegment length and the overlap ratio were
50% of the original segment, and 50% of the subsegment length, values commonly used in
QUS.26,29,55-59 The Hann tapering function was used for subsegment tapering. The
multitaper method requires defining a value for the time-half bandwidth product NW
(described below). Then, a set of tapered signal segments is obtained by multiplying an RF
echo-signal segment by each one of the first NDPSS=2NW-1 Discrete Prolate Spheroidal
Sequences (DPSS). These tapering functions contain the greatest amount of energy within a
frequency band 2W.29,60,61 The squared magnitude of the Fourier transform of each tapered
signal segment is referred to as an eigenspectrum, and the final power spectral density
estimate is given by the weighted average of the set of NDPSS eigenspectra.29,60 The first
three DPSS for 256 time samples and NW=3 are displayed in figure 2.

The rectangular and Hann are common tapering functions used in STFT-based α(f)
estimations and offer good frequency resolution.28 Other tapering functions with lower side-
lobe levels (Blackman-Harris, Chebyshev, and Kaiser) were not found to improve the
accuracy and precision of the estimates over the Hann function. Assuming an underlying
white Gaussian noise process, the 50%-overlap, Hann-tapered Welch's method is expected
to reduce the variance of the power spectral density estimate by a factor kWeclh= 18NSS

2/
(19NSS-1).29 Thus, kWelch= 2.89 for our case. Under the same assumptions, the multitaper
method would reduce the spectral variance by a factor kMultitaper~NDPSS=5,29,60 although
this factor varies with the power spectral density value. When applied to RF echo signals
from tissues or phantom materials, noise properties of the RF echo signals differing from
white noise, such as colored noise from the pulse-tissue spectrum and coherent noise from
the interference of scattered waves, affect the variance reduction performance of these
methods.29

The multitaper method allows the user to conveniently choose the time-bandwidth product
(NW) for the windowing function, where N is the axial length of the spectral estimation
window and W is half the main-lobe bandwidth of the frequency response of the multitaper
method, WMultitaper, normalized to the sampling frequency fs (W=WMultitaper/fs). It thus
expresses the main-lobe width of the multitaper method as a multiple k of the main-lobe
width of the STFT method with a rectangular taper (WRect=1/NΔt), where Δt =1/fs is the
sampling period:

(3)

As previously mentioned, the variance of the power spectral density estimate can be reduced
by using a larger number of tapers, and this number is related to the selected time- half
bandwidth product (NDPSS=2NW-1). This comes at the expense of losing frequency
resolution.29 Aiming at resolving smooth features in the spectrum while smoothing
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statistical and coherent noise, the following criterion was used to select NW: In order to
resolve the main peak of a unimodal power spectral density having bandwidth BW, the width
of the spectral response main lobe of the multitaper method (2WMultitaper) must be no greater
than 0.5BW.29 If two peaks whose widths are each BWare separated by a frequency gap of
BW, they could be properly resolved. Therefore, our criterion is 2WMultitaper=(BW/2)/3 or
WMultitaper=BW/12. BWwas defined as the frequency bandwidth corresponding to the section
of the power spectral density estimate of the sample material with values 10dB above the
noise floor (from 4.8MHz to 8MHz in the present experiment) measured at the farthest
power spectral density estimate from the transducer to consider bandwidth reduction caused
by attenuation. Under these conditions, BW =3.2MHz and WMultitaper=0.27MHz. In the
longest spectral estimation window, there were 401 samples (10 μs), giving NW~3. The
resulting NW value is consistent with common values used to estimate smooth spectra.26,29

Further optimization of the NW value for the reduction of coherent noise is the subject of
ongoing studies.

Attenuation estimation
Attenuation estimates were made using power spectral density estimates from the sample
and from the reference phantom computed using various window sizes. Three non-
overlapped parameter estimation regions were defined side by side in each RF data frame.
Each one of these regions included 22 uncorrelated scanlines. Estimates of the power
spectral density were computed within each parameter estimation region at 34 axial
locations, separated by one pulse-echo correlation length. This axial span accommodated at
least four uncorrelated power spectral density estimates (see Discussion). The length and
width of the spectral estimation windows centered at these locations, as well as the spectral
estimation methods, were varied (see above), and attenuation estimates were obtained for
each combination of these parameters. Reference spectra were obtained at the same axial
locations as in the sample. To reduce spectral coherence noise in the reference spectra, a
total of 4225 estimates from 25 parallel frames were averaged.

The sample-to-reference power spectral density ratio at each spectral estimation window
depth was obtained. Assuming negligible differences in attenuation losses over the spectral
estimation window length, this is given by:13

(4)

where

σb(f,z) is the backscatter coefficient, PSD(f,z) is a power spectral density estimate, and the
subscripts “sample” and “ref” refer to the sample and the reference phantoms, respectively.
The factor A(f;z) accounts for differences in attenuation between the transducer and the
spectral estimation window center in the sample and in the reference phantom. Notice that
the depth z refers to the center of the spectral estimation window; thus, we are accounting
for possible effects of attenuation differences between sample and reference phantom within
the spectral estimation window by performing a point correction.62 Although more accurate
methods have been proposed to account for attenuation within the spectral estimation
window, these methods are comparable to point compensation over the window lengths
considered in this work.62
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Assuming that the backscatter and attenuation coefficients do not vary over the parameter
estimation region the logarithm L(f ;z) of the power spectral density ratio can be expressed
as:13

(5)

A least squares linear fit is applied to L(f ;z) vs. z. The slope of this fit is proportional to the
difference between the attenuation coefficients of the sample and the reference phantom at
frequency f. The latter is known so the attenuation coefficient for the sample at f is derived.
Three estimates of αsample(f) were available per frame, one for each parameter estimation
region. Their average was taken, and a power-law least-squares fit (vs. frequency) was
applied to produce one estimate of α0 and β per frame [see Eq. (1)].

In addition to the effects of reducing the spectral estimation window size, we also analyzed
the accuracy and precision of α0 and β estimates when shortening the distance over which
the linear fit of L(f ;z) vs. depth was applied. In figure 1 this distance is referred to as the “α-
estimation length”. This was achieved by gradually reducing the number of power spectral
density estimates within the parameter estimation region from 34 down to 2.

Analysis of power spectral density estimates
Two characteristics of the power spectral density estimate that affect the accuracy and
precision of QUS parameters are its frequency resolution, and variance. These were
quantified in terms of Δf, the spectral correlation bandwidth, and SNRPSD, the signal to noise
ratio of the power spectral density estimate. Δf is defined by Lizzi et al.22 as the frequency
band over which the spectral correlation coefficient varies by no more than 70%. The power
spectral density correlation coefficient CPSD is defined as:

(6)

where

The value of Δf was assessed using the power spectral density estimates at the deepest
locations (34th row of the 34×3 array) because they present the most severe bandwidth
constraints caused by attenuation. The values of CPSD(f, f+Δf) were averaged across all
frequency bins within the analysis bandwidth previously defined (4.8-8.0MHz). The average
and standard deviation of Δf were computed from each of the three deepest PSDsample(f)
estimates in each of the 20 sample frames.

The value of SNRPSD at frequency f and depth z was computed as

(7)

where r refers to each estimate of PSD(f,z) from the 20 sample frames. Brackets indicate
averaging across the 20 estimates. For simplicity, we report the values of SNRPSD(f,z) at the
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frequency of the maximum power spectral density value, i.e., 6.2MHz. The average and
standard deviation of SNRPSD (6.2MHz, z) were obtained from all estimates within the
parameter estimation region.

Analysis of α0 and β estimates
The accuracy and the precision of α0 and β estimates as independent QUS parameters were
quantified when constraining the spectral estimation window size and the α-estimation
length. For this purpose, the normalized bias and standard deviation of α0 and β estimates
were computed. The normalized bias (BiasQ) was defined as the expected value of the
difference between estimated quantity Q (either α0 and β) and its value, Qexp obtained from
laboratory estimates (Table I), normalized with respect to the latter. BiasQ was taken as the
inter-frame average of the normalized difference between each frame's Q estimate and Qexp:

(8)

where the subindex r refers to each of the NR=20 sample frames. The normalized standard
deviation (STDQ) was defined as the square root of the estimated value of the variance of Q,
normalized with respect to Qexp. STDQ was computed as the square root of the inter-frame
average of the normalized difference between each frame's Q estimate and the inter-frame
average (brackets) of Q:

(9)

We also analyzed an overall “fit error”, FE, defined as the expected value of the absolute
difference between the estimated power-law fit αFit,r(f) and the laboratory-estimated power
law fit αexp(f), normalized with respect to the latter at each frequency point, and averaged
across all frequency points included in the analysis bandwidth. It was estimated by
computing for each frame r:

(10)

and then obtaining the average and standard deviation across the 20 sample frames.

Error bars in plots of BiasQ, STDQ, and FE correspond to the standard error of the inter-
frame average estimated from the inter-frame standard deviation of each error estimate
divided by NR

1/2.

RESULTS

Power spectral density
Figure 3(a) shows the frequency resolution measured by the spectral correlation bandwidth
Δf as a function of the power spectral density estimation window length in pulse-echo (axial)
correlation lengths. Each curve corresponds to a different spectral estimation method.
Shortening the window increases Δf, as expected. Furthermore, Δf for the short-time Fourier
transform (STFT) with a Hann taper, Welch's periodogram, and Thomson's multitaper
method was larger than for the rectangular-taper STFT (or no taper) by a factor of 1.5, 2.2,
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and 2.8, respectively, because of the wider frequency-response main lobe of the latter
spectral estimation methods with respect to the former. Thus, the STFT methods lead to
better frequency resolution than the Welch and the multitaper methods.

The SNRPSD is shown in figure 3(b) as a function of the number of uncorrelated scanline
signals within the spectral estimation window. A guide curve corresponding to the square
root of the number of uncorrelated scanlines is also provided. SNRPSD=1 when no spectral
averaging is performed and increases with N1/2 when averaging N estimates from
uncorrelated RF echo scanlines.63,64 The agreement with the N1/2 curve corroborates our
estimation of the lateral correlation length. SNRPSD is also expected to increase by factors
kWelch and kMultitaper (defined in the Methods section) when using the Welch and multitaper
methods. From figure 3(b), kWelch=2.7 and kMultitaper=4.5. These values are slightly smaller
than those predicted for a white Gaussian noise process because of the particular noise
properties of the RF echo signals and the use of Thomson's version of the multitaper
method.29

Figure 4 shows power spectral density estimates of the sample from all spectral estimation
methods using either (a, left) a severely length-constrained but wide spectral-analysis
window (2.5 pulse-echo correlation lengths, 22 uncorrelated scanlines), or (b, right) a
severely width-constrained spectral estimation window with its length in the middle of the
analyzed range (10 pulse-echo correlation lengths, 4 uncorrelated scanlines). In the former
case, the Welch and multitaper methods have wider power spectral density estimates than
the STFT-based methods. In the latter case, the smooth appearance of the multitaper
estimate is due to the ability of this method to reduce coherent noise, as quantified in figure
3(b).

α0 and β estimates
Figure 5 shows αsample(f) estimates plotted versus frequency for an α-estimation length of
33 pulse-echo correlation lengths (12.4mm). Results are divided into two rows (i and ii) and
three columns (a-c). The rectangular-taper STFT was used for spectral estimation in the top
(i) row, while the multitaper was used in the bottom (ii) row. Columns (a), (b), and (c)
correspond to different window sizes: 20 pulse-echo correlation lengths and 22 uncorrelated
scanlines (largest window), 10 pulse-echo correlation lengths and 22 uncorrelated scanlines,
and 10 pulse-echo correlation lengths and 2 uncorrelated scanlines, respectively. In each
subfigure, the dark gray continuous curve is the estimated αsample(f) averaged across 20
frames, the light gray continuous curves are the average ± one standard deviation, and the
black curve is the laboratory estimate. The αsample(f) estimates are centered about the
laboratory estimates, indicating their accuracy. Furthermore, the standard deviation of the
estimated αsample(f) does not depend on frequency, which agrees with theoretical
derivations.27,63,64

The reduction of the spectral coherence noise by the multitaper method leads to a less
fluctuating frequency dependence of the estimated αsample(f) (figure 5, bottom row),
compared to the use of the STFT method (figure 5, top row). The reduction of the spectral
estimation window length also reduces the spectral coherence noise, although a slight
increase in variance expressed as an increase in the overall separation between the lightly
shaded curves (average ± one standard deviation) is observed. This can be attributed to the
loss of backscatter signal information as the window length is reduced.29

Figures 6 and 7 show the normalized bias as defined in Eq. (8) [α0 in figure 6(a), β in figure
7(a)] and the normalized standard deviation as defined in Eq. (9) [α0 in figure 6(b), β] in
figure 7(b)] as functions of the α-estimation length expressed in pulse-echo correlation
lengths. Subfigures (a) and (b) have four components (i-iv), one for each spectral estimation
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method. Different curves in each component correspond to a different spectral estimation
window length. In all cases, the number of uncorrelated scanlines used for spectral
estimation was 22. To facilitate image interpretation, error bars for window lengths only of
20 and 7.5 pulse-echo correlation lengths at two different α-estimation length values are
included. Figure 8 shows the overall fit error defined in Eq. (10), and subfigures (a)-(d)
correspond to different spectral estimators.

In figures 6-8, combinations of spectral estimation window lengths and α-estimation lengths
shorter than 5 pulse-echo correlation lengths led to errors in α0 and β estimates larger than
200% and hence are excluded from further discussion. The plots can be divided in two
regions. For α-estimation lengths longer than ~15 pulse-echo correlation lengths, the
standard deviation in α0 estimates (37%), the bias and standard deviation in β estimates (2%
and 16%, respectively), and the overall fit error (4%) are comparable among spectral
estimation methods and for the different spectral estimation window lengths and α-
estimation lengths. The only significant difference was in the bias of α0: the bias from the
rectangular-taper STFT method (~3%) was one third of the bias from other methods. When
the α-estimation length is shorter than about 15 pulse-echo correlation lengths, the errors
increase as the α-estimation length is reduced. The rate of increase is more severe for shorter
spectral estimation windows. The bias and standard deviation of α0, the bias of β, and the
overall fit error from the multitaper method was smaller than those from other methods by a
factor of 0.8 (ratio of 32% bias of β from the multitaper method over 40% bias from the
rectangular-taper STFT) or less.

In some cases, an apparent decrease in fit error when using α-estimation blocks shorter than
~5 pulse-echo correlation lengths combined with spectral estimation window lengths shorter
than 7.5 pulse-echo correlation lenghts was observed. This might have been caused by the
inability to measure a signal decrease over such short data lengths. Under these
circumstances, the estimate of the slope in Eq. (5) is effectively zero, and therefore the value
assigned to αsample(f) is that of αref(f), which happened to be similar to the expected sample
attenuation in this experiment.

Figure 9 depicts (a) the normalized bias and (b) the normalized standard deviation in
estimates of (i) α0 and (ii) β as the spectral estimation lateral window size is reduced. In
each subfigure, each curve corresponds to a different spectral estimation method. Similarly,
figure 10 presents the overall fit error of α(f). The spectral estimation window length was 10
pulse-echo correlation lengths and the α-estimation length was 33 pulse-echo correlation
lengths (the minimum total error expected is 4%). The multitaper method produced values
of the standard deviation of α0 and β estimates smaller than those from other methods by a
factor of 0.88 or less and values of the overall fit error smaller by a factor of up to 0.93.

DISCUSSION
The problem of constraints in the size of the parameter-estimation region on α(f) estimates
was addressed by Parker,27 Yao et al.,63 and Huisman et al.64 These authors show that the
variance of the slope of a linear fit of α versus frequency is proportional to the ratio of the
square root of the frequency resolution divided by the signal-to-noise ratio of the power
spectral density estimate (SNRPSD). Considering this and the results presented in figures 3(a)
and 3(b), the multitaper method is expected to offer the best precision for attenuation
coefficient estimations from spectral data. However, theoretical expressions for the variance
of descriptors of the attenuation coefficient27,63,64 cannot be directly applied to our
experiment because they were derived assuming the estimates of the power spectral density
are normally distributed random variables. As discussed by Lizzi et al.,22 this assumption
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does not apply to severely constrained parameter estimation regions like some of those
considered here.

Averaging periodograms from adjacent scanlines was used for computing the sample and
reference power spectral density.22 When a small number of independent realizations of the
periodogram are available, the Welch and multitaper methods notably reduced the
contribution of spectral coherence noise. The increase in SNRPSD for the Welch and
multitaper methods, with respect to the rectangular-taper STFT method (kWelch and
kMultitaper), was close to theoretical predictions for white Gaussian noise. Thus the
multitaper method outperformed the other spectral estimation methods analyzed in terms of
SNRPSD.

Average estimates of αsample(f) shown in figure 5 were in agreement with laboratory
estimates done on test samples of the phantom material. However, it is important to note that
an estimate of the parameters of the power-law model applied to αsample(f) is obtained from
a single estimate of αsample(f) and not from the inter-frame averaged αsample(f) presented in
figure 5. Assuming a Gaussian distribution,63 a single estimate of αsample(f) is expected to
lie between the two “average ± one standard deviation” curves in each subfigure of figure 5
with a probability of 68%. Although this assumption does not hold when the number of
uncorrelated scanlines used in spectral estimation is severely constrained, it gives an idea of
the expected variability of α0 and β estimates.

Figures 6-10 show that the shortest reliable spectral estimation window length was about 8
pulse-echo correlation lengths. The pulse-echo correlation lengths estimated from intensity
(squared RF) data can be considered an estimate of the pulse length.65,66 The intensity
pulse-echo correlation length was 1.47 RF pulse-echo correlation lengths in our experiment.
Therefore, 8 RF pulse-echo correlation lengths ~ 11 pulse lengths. This is within the range
of 7-15 pulse lengths that is frequently presented as the window length offering the best
tradeoff between spatial resolution, accuracy and precision when estimating attenuation and
effective scatterer size.20,24-26,31,36,64-69 Tapering functions such as the Hann or Hamming,
commonly used in QUS,14,15,24,25,36,62,67,70 were found to increase the bias and standard
deviation of the attenuation estimates. This indicates a less important role of side-lobe
reduction in the accuracy and precision of the estimated parameters than the frequency
resolution and SNR of the power spectral density estimate.

The bias and standard deviation of both α0 and β did not change significantly when the α-
estimation length was longer than 15 pulse-echo correlation lengths (figures 6-8).
Furthermore, the choice of a particular spectral estimation method or window length had
little effect on the attenuation estimate error when the estimation length was longer than
about 15 pulse-echo correlation lengths, consistent with findings of Huisman et al.,64 and
Labyed et al.33 This is explained by the number of axially uncorrelated power spectral
density estimates within the 12.4mm span that the parameter estimation region covered. To
determine this number, we computed the axial autocorrelation function among values at the
same frequency of the 34 axial estimates of the power spectral density, and applied Eq. (23)
in Ref. 63. This resulted in 4.3 independent power spectral density samples within 12.4mm
(~33 pulse lengths). Therefore, the span required to have at least 2 uncorrelated axial
estimates of the power spectral density would be 15.4 pulse-echo correlation lengths. This
indicates that the selection of the spectral estimation method and window length is not of
primary importance when estimating α0 and β if the parameter estimation region contains at
least 2 axially uncorrelated power spectral density estimates. For our experimental
condition, and considering the smallest reliable window length (~8 pulse-echo correlation
lengths), the total data length would span about 23 pulse-echo correlation lengths or ~34
pulse lengths or 9mm.
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When constraining the lateral dimension of the spectral estimation window (figures 9 and
10), our results show that the standard deviation of the α0 and β estimates are significantly
larger than the bias. In the results shown, the window length was already reduced to 10
pulse-echo correlation lengths and the α-estimation length was 33 pulse-echo correlation
lengths. According to the discussion in the previous paragraph, these parameter estimation
region length values are within the ranges where the α0 and β estimates are not expected to
vary significantly. The average standard deviations of α0 and β in these ranges, shown in
figures 6(b) and 7(b), were about 37% and 16%. To keep these standard deviation levels,
figures 9(b.i) and 9(b.ii) show that the window width can be reduced to about 15
uncorrelated scanlines. This is within the range of 10-20 independent scanlines suggested
elsewhere.22,25,26,32 For our conditions, this parameter estimation region width spans
7.4mm. This is smaller than the parameter estimation region length of ~9mm stated in the
previous paragraph. These results agree with previous findings that the total area spanned by
the parameter estimation region would be limited by errors caused by its axial length rather
than those caused by its lateral width.26,27,63

If tissue homogeneity allows the selection of a parameter estimation region that can axially
accommodate at least two uncorrelated power spectral density estimates and at least 15
uncorrelated scanlines, all spectral estimation methods shown here are expected to perform
similarly. This parameter estimation region size (15 pulse-echo correlation lengths × 15
uncorrelated scanlines) fits the task of bulk parameter estimation where large homogeneous
parameter estimation regions are available to obtain accurate and precise estimates of α0 and
β.

The diagnostic performance of a parametric image is related to the contrast-to-noise ratio
(CNR) exhibited by the structure of interest. The CNR is affected by the loss of accuracy
and precision of the estimates when the parameter estimation region is gradually reduced
below ~1cm × 1cm to create parametric images with sufficient spatial resolution to depict
spatial fluctuations of the tissue property. In the case of α0, the minimum α-estimation and
spectral estimation window lengths for which the bias is less than 10% are ~10 and ~8
pulse-echo correlation lengths, respectively, spanning a total length of 18 pulse-echo
correlation lengths or ~6.8mm (considering a parameter estimation region width of 22
uncorrelated scanlines or 10.9mm). This parameter estimation region length would allow,
for example, to distinguish fatty tissue from invasive ductal carcinoma in the breast, whose
α0 values differ from healthy parenchyma by about 72% and 53%, respectively.42 For this
parameter estimation region length, the multitaper method reduces the standard deviation of
α0 over the rectangular-tapered STFT method by a factor of 0.9. If the parameter estimation
region width is also reduced to 6.8mm (14 uncorrelated scanlines), the use of the multitaper
method reduces the standard deviation of α0 by a factor of 0.79 compared to use of the
rectangular-taper STFT. Although a complete analysis of the CNR must consider the shape
and size of the object of interest, this analysis indicates the potential advantage of the
multitaper in the creation of parametric images. In addition, it is important to consider that
the multitaper method reduced the error of modeling the attenuation coefficient as a power-
law by a factor of up to 0.93, suggesting its applicability when estimating effective scatterer
sizes. These estimates are obtained by comparing the frequency dependence of the
backscatter coefficient to a theoretical model, so accurate and precise compensation of the
frequency-dependent attenuation is of primary importance.

The advantage of the multitaper method has been attributed to its ability to reduce spectral
coherence noise without severely compromising the accuracy of the power spectral density
estimates. The influence of spectral coherence noise may be more important when the
analysis bandwidth is further reduced, such as when dealing with low SNR values caused by
strongly attenuating or deep lesions. In these scenarios, the multitaper method would offer
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additional advantages compared to other estimation methods. As an example, in figure 11
the overall fit error is plotted versus the spectral estimation window width for the
rectangular-taper STFT (gray curves) and multitaper (black curves) methods. As observed,
the multitaper method maintains the same error level under the bandwidth reductions tested,
while the error from rectangular-taper STFT significantly increased when the bandwidth was
reduced. Another method to reduce spectral coherence noise is spectral smoothing, achieved
by convolving the power spectral density estimate with a smoothing function, such as that
applied by Kim et al.19 for estimating attenuation. However, spectral smoothing introduces
bias that would affect the smooth spectral components that the multitaper method was
designed to resolve by means of the NW selection criterion.29 Alternatives to spectral
estimation based on the Fourier transform include autoregressive algorithms. A
comprehensive comparison between the multitaper method and the autoregressive methods
is beyond the scope of this manuscript and will be a topic of future research.

CONCLUSION
This work has investigated the performance of various methods to compute the power
spectral density in the context of estimating parameters describing the frequency dependence
of the acoustic attenuation coefficient. For the task of obtaining bulk estimates of these
parameters, our results support the use of any of the power spectral density estimations
tested, with expected error levels of the power-law fit to α(f) on the order of 4%. When
creating parametric images, the selection of the size of the parameter estimation region must
consider its strong influence on the bias and standard deviation of the α0 and β estimates.
However, in general, the multitaper method reduced the standard deviation of the parameter
estimates with respect to the other methods (21% reduction for a parameter estimation
region offering a 10% bias in α0). These results, which are specific to the materials
investigated here, encourage use of Thomson's multitaper method for estimating acoustic
parameters under spatially constrained conditions.
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Fig. 1.
Description of a parameter estimation region (PER) from which one estimate of the
attenuation coefficient is obtained. Each power spectral density (PSD) estimate is assigned
to the center of the spectral estimation window, indicated by a dot. The PER width is
defined by the number of adjacent scanlines it includes, and its length is defined by the α-
estimation length plus one spectral estimation window length. The abbreviation “est.” stands
for “estimation”.
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Fig. 2.
First three Discrete Prolate Spheroidal Sequences for 256 time samples and a time –half
bandwidth product NW=3.61
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Fig. 3.
(a) Frequency resolution based on the spectral correlation bandwidth22 of the power spectral
density of the sample PSDsample(f) as a function of the spectral estimation window length
(see figure 1), expressed as the number of RF pulse-echo correlation lengths (PECLs) for all
spectral estimation methods. (b) SNRPSD as function of the spectral estimation window
width for all spectral estimation methods: Short-time Fourier transform with rectangular
taper (REC), short-time Fourier transform with Hann taper (HAN), Welch's method (WEL),
and Thomson's multitaper method (MTM). The guide line (no symbols) shows the square
root of the number N of uncorrelated scanlines.
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Fig. 4.
Power spectral density estimate of the sample PSDsample(f) (light gray curve)) at the deepest
spectral estimation window location. Spectral estimation window sizes are: (a) Window
Length (WL) = 2.5 pulse-echo correlation lengths (PECLs) and Window Width (WW) = 22
uncorrelated scanlines (SL), and (b) WL = 10 PECLs and WW = 4 uncorrelated SL.
Subfigures in (a) and (b) are for different spectral estimators: (i) Short-time Fourier
transform with rectangular taper (REC), (ii) short-time Fourier transform with Hann taper
(HAN), (iii) Welch's method (WEL), (iv) Thomson's multitaper method (MTM). The
expected spectrum (black curve) is the average of 60 estimates for the largest window (3
estimates at the same depth in each of the 20 sample data frames).
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Fig. 5.
Laboratory and “reference phantom method” estimates of αsample(f) [dB/cm] vs. frequency
for (a) the largest window size (20 pulse-echo correlation lengths (PECLs) and 22
uncorrelated acoustic scanlines (SL)), (b) 10 PECLs and 22 uncorrelated SL, and (c) 10
PECLs and 2 uncorrelated SL. Subfigures in (a)-(c) are for different spectral estimators: (i)
Short-time Fourier transform with rectangular taper (REC) and (ii) Thomson's multitaper
method (MTM). Estimates were averaged across 20 RF frames. In all cases, the α-
estimation length was 33 PECLs.
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Fig. 6.
(a) Normalized bias and (b) normalized standard deviation of the estimates of α0 vs. the α-
estimation length. Each curve corresponds to a different spectral estimation window length,
but a fixed width of 22 uncorrelated acoustic scanlines. Spectral estimators in (a) and (b)
are: (i) Short-time Fourier transform with rectangular taper (REC), (ii) short-time Fourier
transform with Hann taper (HAN), (iii) Welch's method (WEL), (iv) Thomson's multitaper
method (MTM). Estimates were averaged across 20 frames.
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Fig. 7.
(a) Normalized bias and (b) normalized standard deviation of the estimates of β vs. the α-
estimation length. Each curve corresponds to a different spectral estimation window length,
but a fixed width of 22 uncorrelated acoustic scanlines. Subfigures in (a) and (b) are for
different spectral estimators: (i) Short-time Fourier transform with rectangular taper (REC),
(ii) short-time Fourier transform with Hann taper (HAN), (iii) Welch's method (WEL), (iv)
Thomson's multitaper method (MTM). Estimates were averaged across 20 frames.
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Fig. 8.
Normalized fit error of the power-law fit applied to αsample(f) with respect to the laboratory-
estimated power-law model vs the α-estimation length. Each curve corresponds to a
different spectral estimation window length, but a fixed width of 22 uncorrelated acoustic
scanlines. Subfigures are for different spectral estimators: (a) Short-time Fourier transform
with rectangular taper (REC), (b) short-time Fourier transform with Hann taper (HAN), (c)
Welch's method (WEL), (d) Thomson's multitaper method (MTM). Fitting error estimates
were averaged across 20 frames.
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Fig. 9.
(a) Normalized bias and (b) normalized standard deviation of the estimates of (i) α0 and (ii)
β vs. the spectral estimation window width expressed in the number of uncorrelated acoustic
scanlines, with a fixed window length of 10 pulse-echo correlation lengths (PECLs) and α-
estimation length of 33 PECLs. Each curve corresponds to a different spectral estimation
method: Short-time Fourier transform with rectangular taper (REC), short-time Fourier
transform with Hann taper (HAN), Welch's method (WEL), and Thomson's multitaper
method (MTM). Error estimates were averaged across 20 frames. Error bars are shown only
for HAN and MTM at alternate window widths for easier visualization.
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Fig. 10.
Normalized fit error of the power-law fit applied to αsample(f) with respect to the laboratory-
estimated power-law model vs. the spectral estimation window width expressed in the
number of uncorrelated acoustic scanlines, with a fixed window length of 10 pulse-echo
correlation lengths (PECLs) and α-estimation length of 33 PECLs . Each curve corresponds
to a different spectral estimation method: Short-time Fourier transform with rectangular
taper (REC), short-time Fourier transform with Hann taper (HAN), Welch's method (WEL),
and Thomson's multitaper method (MTM). Error bars are shown only for HAN and MTM at
alternate window widths for easier visualization.
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Fig. 11.
Normalized fit error of the power-law fit applied to αsample(f) with respect to the laboratory-
estimated power-law model vs. the spectral estimation window width expressed in the
number of uncorrelated acoustic scanlines, with a fixed window length of 10 pulse-echo
correlation lengths (PECLs) and α-estimation length of 33 PECLs . Each curve corresponds
to the use of the short-time Fourier transform with a rectangular taper (REC) or Thomson's
multitaper method (MTM) methods under different bandwidths (3.2 MHz and 1.6 MHz).
Error estimates were averaged across 20 frames. Error bars are shown only for REC
(1.6MHz bandwidth) and MTM (3.2MHz bandwidth) at alternate window widths for easier
visualization.
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Table I

Speed of sound, c, and power law fits applied to the laboratory estimates of the attenuation coefficient α(f) of
the sample and reference phantoms, including each fit's R2.

Property Sample Reference

c (m/s) 1498± 1 1492± 1

Attenuation coefficient α(f)=α0fβ

α0 (dB/cm-MHzβ) 0.43 0.26

β 1.16 1.37

R2 0.998 0.998
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