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ABSTRACT

Word match counts have traditionally been proposed as an alignment-free measure of
similarity for biological sequences. The D2 statistic, which simply counts the number of exact
word matches between two sequences, is a useful test bed for developing rigorous mathe-
matical results, which can then be extended to more biologically useful measures. The
distributional properties of the D2 statistic under the null hypothesis of identically and
independently distributed letters have been studied extensively, but no comprehensive study
of the D2 distribution for biologically more realistic higher-order Markovian sequences
exists. Here we derive exact formulas for the mean and variance of the D2 statistic for
Markovian sequences of any order, and demonstrate through Monte Carlo simulations that
the entire distribution is accurately characterized by a Pólya-Aeppli distribution for se-
quence lengths of biological interest. The approach is novel in that Markovian dependency is
defined for sequences with periodic boundary conditions, and this enables exact analytic
formulas for the mean and variance to be derived. We also carry out a preliminary com-
parison between the approximate D2 distribution computed with the theoretical mean and
variance under a Markovian hypothesis and an empirical D2 distribution from the human
genome.
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1. INTRODUCTION

The D
2

statistic is defined as the number of short word matches of a given pre-specified length k

between two sequences of letters from a finite alphabetA. This statistic was first analyzed in the precise

form studied below by Lippert et al. (2002). It was motivated by more general statistics based on word counts

proposed by Blaisdell (1986), and by a statistic defined as a sum over word lengths of weighted inner products

of word counts, known as d2 (Torney et al., 1990; Hide et al., 1994). Such statistics have been proposed as a

measure of similarity between biological sequences in cases where the more commonly used alignment

methods may not be appropriate. A review of word-based alignment-free sequence comparison measures in

existence at or about the time of the Lippert et al. article [including angle metrics (Stuart et al., 2002a, b),

which bear considerable similarity to D2] can be found in Vinga and Almeida (2003).
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In subsequent developments, a number of variants of the D2 statistic have been studied and analyzed. A

shortcoming of the D2 statistic, first noted by Lippert et al. (2002), is that the signal of biological sequence

similarity one is trying to detect, namely, simultaneous over-representation of certain words in both

sequences, is masked by the natural variability of word counts in each of the two sequences. This is most

likely to be a problem for longer sequences, although perhaps not for sequences of short to moderate length

(Burden et al., 2012a). To address this problem, Reinert et al. (2009) introduced centered and standardized

statistics, which were demonstrated to have higher power to detect sequence similarity (Wan et al., 2010).

Other variations on the D2 statistic include allowing word matches up to a certain number of mismatches

(Burden et al., 2008) for detecting regulatory modules (Forêt et al., 2006, 2009a; Göke et al., 2012), and the

introduction of weighting factors to acknowledge chemically similar amino acids when studying protein

sequences ( Jing et al., 2011; Burden et al., 2012b).

The distributional properties of the D2 statistic under the null hypothesis of sequences composed of

independently and identically distributed (i.i.d.) letters have been studied extensively. Rigorous results for

limiting asymptotic distributions have been derived for D2 by Lippert et al. (2002) and Kantorovitz et al.

(2006) and for D2 with mismatches by Burden et al. (2008). Exact analytic formulas exist for the mean

(Waterman, 1995) and variance (Kantorovitz et al., 2006; Forêt et al., 2009b) of D2, and of the weighted

( Jing et al., 2011) and centered (Burden et al., 2012a) versions of D2. Accurate approximations to dis-

tribution of D2 and its variants in terms of gamma and Pólya-Aeppli (or compound Poisson) distributions

have been demonstrated via Monte Carlo simulations by Forêt et al. (2009a,b), Jing et al. (2011), and

Burden et al. (2012a), allowing for fast and practical calculations of approximate p values under the i.i.d.

null hypothesis.

However, analysis of the k-mer spectra of the genomes of several species by Chor et al. (2009a)

provides strong evidence that genomic sequences are more appropriately modeled as having a Markovian

dependence, possibly up to fifth order. In the current work, we extend previous exact analytic results for

the mean, variance, and an empirical distribution of D2 for i.i.d. sequences to the case of Markovian

sequences. A previous study of this problem, with some approximations, has been carried out by Kan-

torovitz et al. (2007) in the process of developing a method for detecting regulatory modules in genomic

sequences.

The current study differs in that we consider sequences with periodic boundary conditions (PBCs), for

which we introduce a new definition of Markovian sequences. For i.i.d. sequences, Forêt et al. (2009b)

have found imposition of PBCs to be an approximation that works well for biologically realistic se-

quences. In practice, PBCs are imposed on the D2 calculation for finite-length biological sequences

simply by sewing the ends together and including in the word count words that overlap the join. The

motivation for the restriction to periodic sequences is that it simplifies calculations of the mean and

variance, enabling exact analytic formulas that are readily computable on a laptop computer to double

precision accuracy for arbitrary sequence lengths. They also enable accurate practical approximations to

the D2 distribution under the null hypothesis of Markovian sequences for biologically realistic parameter

values. The approximation does not model boundary effects, but it does capture accurately the more

important effect of nonindependence of overlapping words (see terms V1 to V4 in the variance formula,

Section 3.3).

The layout of the article is as follows: In Section 2, we define Markovian sequences of arbitrary order

with PBCs in terms of an algorithm for generating such sequences. In Section 3, we define the D2 statistic

and derive exact analytic formulas for its mean and variance for Markovian sequences. In Section 4, the

accuracy of the mean and variance formulas is checked numerically, and hypothesized asymptotic distri-

butions are demonstrated to provide accurate representations of the complete D2 distribution. These dis-

tributions are compared with empirical distributions of D2 from the human genome. Conclusions are drawn

in Section 5. Technical details of the derivation of Var (D2) are given in the Appendix, and computer codes

for evaluating the mean and variance are given in the Supplementary Material (Supplementary Material is

available online at www.liebertonline.com/cmb).

2. DEFINITIONS

Consider a sequence x = x1‚ x2 . . . of letters from an alphabet A of size d. We say that x has periodic

boundary conditions (PBCs) and is of length m if xi + m = xi for all i = 1‚ 2‚ . . ..
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A sequence X = X1‚ X2 . . . of random letters has a h-th order Markovian dependence if

Prob(Xi + h = bj(Xi‚ . . . ‚ Xi + h - 1) = (a1‚ . . . ‚ ah)) = M(a1‚ . . . ‚ ah; b)‚ (1)

for a specified dh · d matrix M satisfying

0 � M(a1‚ . . . ‚ ah; b) � 1;
X
b2A

M(a1‚ . . . ‚ ah; b) = 1‚ (2)

for all a1‚ . . . ‚ ah‚ b 2 A. As a shorthand notation, we will write a string of length h with an arrow above:

~x = (x1‚ . . . xh)‚ (3)

and write any substring of X of length h in a similar fashion, labeled by the index of the first element:

~Xi = (Xi‚ . . . Xi + h - 1)‚ (4)

Thus, Equation (1) is written more compactly as

Prob(Xi + h = bj~Xi =~a) = M(~a; b): (5)

Following the notation of Reinert et al. (2005), define a dh · dh square matrix M as

M(~a‚~b) = M(~a; bh) if (a2‚ . . . ‚ ah) = (b1‚ . . . bh - 1)‚
0 otherwise:

�
(6)

Then the Markovian dependency can be written as a first-order Markovian dependency as

Prob(~Xi + 1 =~bj~Xi =~a) = M(~a‚~b): (7)

2.1. Markovian sequences with PBCs

Given an order h transition matrix M, we first attempt to define a periodic random sequence

X = X1‚ X2 . . . ‚ Xn of length n via the following algorithm:

Step 0: Choose a probability distribution on the set of strings of length h : Prob(~X1 =~x) = p(~x), where

0 � p(~x) � 1 and
P

~x2Ah p(~x) = 1.

Step 1: Generate ~X1 = X1‚ . . . Xh from this distribution.

Step 2: Generate Xh + 1‚ . . . ‚ Xh + n using Equation (5).

Step 3: If ~Xn + 1 = ~X1, accept the sequence X = X1‚ X2 . . . ‚ Xn, otherwise repeat from Step 1 until an accepted

sequence is obtained.

Clearly this algorithm entails that

Prob(X = x) =
p(~x1)M(~x1‚~x2)‚ M(~x2‚~x3) . . . M(~xn‚~x1)P

~u1‚ ... ‚~un2Ah p(~u1)M(~u1‚~u2)‚ M(~u2‚~u3) . . . M(~un‚~u1)
‚ (8)

where M is the transition matrix of the equivalent-first order Markov chain defined by Equation (6). The

idea behind PBCs is that there should be no privileged position along the sequence from which to begin

numbering. Thus, we further impose a condition that the sequence should have no privileged starting point,

that is, for each i = 1‚ . . . ‚ n,

Prob(X = xi + 1xi + 2 . . . xnx1 . . . xi) = Prob(X = x): (9)

Equations (8) and (9) imply that p(~xi + 1) = p(~x1) for each i and for every sequence x 2 An, which can only

happen if

p(~x) =
1

dh
8~x 2 Ah: (10)

This leads to the following definition:

Definition Given a transition matrix M of order h, a random Markovian sequence with PBCs of

length n is one generated by the algorithm of Section 2.1 with the initial distribution p in Step 0 equal to the

uniform distribution Equation (10).
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It follows from Equation (8) that for a random Markovian sequence X of length n, the probability of the

configuration x = (x1 . . . ‚ xm) occurring is

Prob(X = x) =
M(~x1‚~x2)M(~x2‚~x3) . . . M(~xm‚~x1)

tr (Mm)
: (11)

The distribution Equation (11) has also been proposed by Percus and Percus (2006), who made an

extensive study of the probability distribution of words on periodic sequences, which they refer to as rings.

Our approach is novel in that it gives an algorithm that can be implemented in practice to generate an

ensemble of such sequences.

3. THE D2 STATISTIC

3.1. Definition of D2

Definition Given two random sequences X and Y with PBCs of length m and n, respectively, the D2

statistic is defined as the number of k-word matches, including overlaps, between X and Y:

D2 =
Xm

i = 1

Xn

j = 1

Iij‚ (12)

where

Iij = 1 if (Xi‚ . . . ‚ Xi + k - 1) = (Yj‚ . . . ‚ Yj + k - 1)‚
0 otherwise

�
(13)

is the word match indicator random variable for words length k positioned at site i in sequence X and site j

in sequence Y.

Two Markovian sequences X and Y of order h generated by the dh · d matrix M define a random

variable D2(k, M). By Equation (7), an equivalent specification of this situation is a pair of first-order

Markovian sequences X and Y consisting of letters of an alphabet of size dh generated by the square matrix

M defined by Equation (6). The sparse structure of M ensures that the set of possible sequence pairs (X‚ Y)
is in one-to-one correspondence with the set of possible sequence pairs (X, Y), and furthermore, for k ‡ h, a

word match of length k between X and Y is equivalent to a word match of length k - h + 1 between X and

Y. It follows that the distributional properties of D2 for Markovian sequences can be determined in terms of

the properties of D2 for an equivalent first-order system:

D2(k‚ M) � D2(k - h + 1‚ M)‚ k � h: (14)

3.2. D2 mean for arbitrary h

Below we derive an exact formula for E(D2) for arbitrary-order Markovian sequences. In principle, the

mean for any k ‡ h case can be derived in terms of an equivalent h = 1 case. However, here we give an ab

initio proof for any h, noting that, for k ‡ h, the result is consistent with Equation (14).

Define the Hadamard product A � B of two matrices A and B as the matrix whose (a, b)-th ele-

ment is

(A � B)ab = AabBab: (15)

The mean of D2 is

E(D2(k‚ M)) =
mn

tr (Mm)tr (Mn) tr [(Mm - k + h �Mn - k + h)(M �M)k - h] if k � h‚
mn

tr (Mm)tr (Mn)

P
u‚ v2Ah - k

P
w2Ak Mm((wu)‚ (wu))Mn((wv)‚ (wv)) if k < h‚

(
(16)

where M is defined by Equation (6), (wu) means the h-tuple (w1 . . . wku1 . . . uh - k), and similarly for (wv).
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Proof: We have that

E(D2) =
Xm

i = 1

Xn

j = 1

E(Iij) =
Xm

i = 1

Xn

j = 1

Prob(Iij = 1)‚ (17)

where

Prob(Iij = 1) =
X
w2Ak

Prob(Xi . . . Xi + k - 1 = w)Prob(Yj . . . Yj + k - 1 = w): (18)

To calculate Prob(Xi . . . Xi + k - 1 = w)‚ we must consider separately the cases k ‡ h and k < h.

Consider first the case where k ‡ h. The required probability is calculated by summing Equation (11)

over all sequences x subject to the restriction that (xi . . . xi + k - 1) = w. The definition of the matrix M,

Equation (6), ensures that it is sufficient to restrict only those h-tuples~xi located within the word w, because

contributions to the sum from any partially overlapping h-tuples will be zero unless the overlap letters

match those of w (see Fig. 1a). Thus

Prob(Xi . . . Xi + k - 1 = w) =
Mm - k + h(~wk - h + 1‚~w1)M(~w1‚~w2) . . . M(~wk - h‚~wk - h + 1)

tr(Mm)
‚ (19)

where the h-tuples ~x1‚ . . . ‚~xi - 1‚~xi + k - h + 1‚ . . . ‚~xm have been summed over. Similarly we have

Prob(Yj . . . Yj + k - 1 = w) =
Mn - k + h(~wk - h + 1‚~w1)M(~w1‚~w2) . . . M(~wk - h‚~wk - h + 1)

tr(Mn)
: (20)

FIG. 1. Covering of the sequence

X with h-mers for the calculation of

Prob (Xi . . . Xi + k - 1 = w) (a) in the

case where k ‡ h, and (b) in the

case where k < h.
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The definition Equation (6) of the matrix M ensures that the sum over the k-word w in Equation (18) is

equivalent to a sum over a set of independent h-tuples ~w1‚ . . . ‚~wk - h + 1. Thus, substituting Equations (19)

and (20) into Equation (18) gives

Prob(Iij = 1) =
tr[(Mm - k + h �Mn - k + h)(M �M)k - h]

tr(Mm) tr(Mn)
: (21)

Equation (17) then gives the required result for the case k ‡ h.

For the case k < h, the Prob(Xi . . . Xi + k - 1 = w) is again calculated by summing Equation (11) over all

sequences x such that (xi . . . xi + k - 1) = w. In this case, it is sufficient to restrict any one of the h-tuples

overlapping w to equal w on the overlap, and the structure of M will ensure that only terms in which the

other overlapping h-tuples match w will contribute to the sum. Accordingly set ~xi = (w1 . . . wku1 . . . uh - k),
where the u1 . . . uh - k are not fixed (see Fig. 1b). Then

Prob(Xi . . . Xi + k - 1 = w) =
1

tr(Mm)

X
u2Ah - k

Mm((wu)‚ (wu))‚ (22)

and similarly

Prob(Yj . . . Yj + k - 1 = w) =
1

tr(Mn)

X
v2Ah - k

Mn((wv)‚ (wv)): (23)

Substituting these two probabilities into Equations (18) and (17) gives the required result. -

3.3. D2 variance for k ‡ h

For k ‡ h, Equation (14) ensures that any h > 1 case can be reduced to an equivalent h = 1 case via the

relation

Var(D2(k‚ M)) = Var(D2(k - h + 1‚ M))‚ k � h‚ (24)

where M is a square first-order Markov matrix. Even for h = 1, the exact variance of D2 for Mar-

kovian sequences with PBCs requires an extensive calculation. Here we give a summary of the h = 1

result, and leave the technical details of the derivation to the Appendix. The case k < h remains

intractable.

For the remainder of this section, we take M to be a square d · d first-order Markov matrix. We have

Var(D2) = E(D2
2) - E(D2)2: (25)

The second term can be calculated from Equation (16). The first term is a sum of contributions obtained

from Equation (12) by partitioning a sum over words beginning at positions i and i0 in sequence X and

beginning at j and j0 in sequence Y,

E(D2
2) =

Xm

i‚ i0 = 1

Xn

j‚ j0 = 1

E(IijIi0j0 )

=
Xm

i‚ i0 = 1

Xn

j‚ j0 = 1

Prob(Iij = 1‚ Ii0j0 = 1)

= V0 + V1 + V2 + V3 + V4: (26)

The partitioning reflects the degree of overlap between words in each of the two sequences, and is

illustrated in Figure 2. We assume m,n ‡ 2k, which will almost certainly be the case in any biological

application.
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We will write a Hadamard product of q factors, M � . . . �M, using the shorthand notation M+q. With this

notation, the contributions to E(D 2
2) are:

V0 =
mn

tr(Mm)tr(Mn)
·
Xm - 2k

r = 0

Xn - 2k

s = 0

tr[(Mr + 1 �Ms + 1)(M �M)k - 1(Mm - 2k - r + 1 �Mn - 2k - s + 1)(M �M)k - 1]‚ (27)

V1 =
mn

tr(Mm)tr(Mn)
·

(Xn - 2k

s = 0

[trf[(M �M �M)k - 1 � (Ms + 1)T ](Mm - k + 1 �Mn - 2k - s + 1)g

+ 2
Xk - 1

r = 1

trf(M �M)r[(M �M �M)k - r - 1 � (Ms + 1)T ]

· (M �M)r(Mm - k - r + 1 �Mn - 2k - s + 1)g] + the same with m and n interchanged

)
‚ (28)

V2 =
mn

tr(Mm)tr(Mn)
·

(
tr[(Mm - k + 1 �Mn - k + 1)(M �M)k - 1]

+ 2
Xk - 1

t = 1

tr[(Mm - k - t + 1 �Mn - k - t + 1)(M �M)k + t - 1]

)
‚ (29)

V3 =
2mn

tr(Mm)tr(Mn)

Xk - 1

t = 1

Xt - 1

s = 0

tr[(M �M)sQ(M �M)s

· (Mm - k - t + 1 �Mn - k - s + 1 + Mn - k - t + 1 �Mm - k - s + 1)]‚ (30)

where

� = º k - s

t - sß‚ q = (k - s) mod (t - s)‚ (31)

and

Q = (M�(2� + 3))q - 1 � [(M�(2� + 1))t - s - q + 1]T if q > 0‚

(M�(2� + 1))t - s - 1 � (M�(2� - 1))T if q = 0:

�
(32)

FIG. 2. Contributions to Var(D2) via the sum in Equation (26). The left-hand diagram shows the (i0, j0)-plane for a

fixed value of (i, j), shown as the black square. The right-hand diagram is an expanded view of the ‘‘accordion’’ region

- k + 1 £ s, t £ k - 1, where t = i0 - i and s = j0 - j up to PBCs [see Equations (41) and (42)].
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Finally,

V4 =
2mn

tr(Mm)tr(Mn)

Xk - 1

r‚ t = 1

trU‚ (33)

where

� = º k

r + t ß‚ f = k mod (r + t)‚ (34)

and

U = n
(M�(2� + 1))t - 1 � (Mm - k - t + 1)T

o
M�2�

·
n

(M�(2� + 1))r - 1 � (Mn - k - r + 1)T
o

M�2� if f = 0‚n
(M�(2� + 1))r - f + 1 �Mm - k - t + 1

o
(M�(2� + 2))f - 1

·
n

(M�(2� + 1))t - f + 1 �Mn - k - r + 1
o

(M�(2� + 2))f - 1 if 0 < f � r‚ t‚n
(M�(2� + 3))f - r - 1 � (Mm - k - t + 1)T

o
(M�(2� + 2))r

·
n

(M�(2� + 1))t - f + 1 �Mn - k - r + 1
o

(M�(2� + 2))r if r < f � t‚

as above with m and n interchanged

and r and t interchanged if t < f � r‚n
(M�(2� + 3))f - r - 1 � (Mm - k - t + 1)T

o
(M�(2� + 2))t + r - f + 1

·
n

(M�(2� + 3))f - t - 1 � (Mn - k - r + 1)T
o

(M�(2� + 2))t + r - f + 1 if r‚ t < f: (35)

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

A full derivation of these contributions is given in the Appendix.

3.4. Computational advantages of PBCs

One could, in principle, define D2 more conventionally without imposing PBCs by considering standard

Markov chains and stopping the sums in Equation (12) at n - k + 1 and m - k + 1, respectively. This is the

approach used by Kantorovitz et al. (2007). However, the PBCs confer two computational advantages that

allow the mean and variance to be calculated to higher orders and without further approximation.

Firstly, the ‘‘no privileged starting point’’ condition implies that the summands in Equation (17) for the

mean and Equation (26) for the variance are independent of the word positions i and j, which reduces the

sums to multiplicative factors of m and n, respectively. The variance summand in particular depends only

on the relative word positions i0 - i and j0 - j. Kantorovitz et al. (2007) deal with this by assuming the first

word occurrence in each random sequence to have a stationary distribution. This amounts to neglecting end

effects, which introduces roughly the same order of approximation as PBCs.

Secondly, and more importantly, calculation of the variance via the Kantorovitz et al. (2007) approach

entails multiple sums over sets of all possible words up to length 2k - 1, whereas the PBCs reduce these

sums to traces of powers of matrices that are readily computed. In particular, the terms V 2 to V 4 above can

be computed very rapidly, whereas Kantorovitz et al. (2007) suggest that the equivalent terms be omitted to

save computation.

3.5. Differing Markov models

It may be necessary in some biological situations to consider a situation in which the sequences X and Y

are generated by differing transition matrices, say M1 and M2, respectively. In this case, the formula for the

mean easily generalizes to
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E(D2(k‚ M1‚ M2)) =
mn

tr(Mm
1 )tr(Mn

2) tr[(Mm - k + h
1 �Mn - k + h

2 )(M1 �M2)k - h] if k � h‚

mn
tr(Mm

1 )tr(Mn
2)

P
u‚ v2Ah - k

P
w2Ak Mm

1 ((wu)‚ (wu))Mn
2((wv)‚ (wv)) if k < h:

(
(36)

A detailed formula for the variance in this case is beyond the scope of this article, but the key points of

difference arising between this case and the case of a single common Markov matrix are clear. To

summarize, the terms V 0, V1, and V2 generalize relatively easily, but the terms V 3 and V 4 require more

attention. For instance, the symmetry between the subcases of V 3 shown in Figure 2 is broken, and thus the

factor M+(2m + 1) in Equation (32) becomes either M1
+m + M2

+(m + 1) or M1
+(m + 1) + M2

+m, thus doubling the

number of terms.

4. NUMERICAL RESULTS

4.1. Computer implementation of the mean and variance

In the Supplementary Material, we provide an R implementation (R Core Development Team, 2012) of

E(D2(k, M)) for arbitrary k and of Var (D2(k, M)) for k ‡ h using the formulas derived above. The k > h
means and variances are calculated by reducing the problem to the equivalent h = 1 calculation with

effective dh · dh Markov matrix M and effective word length k - h + 1 [see Equation (24)].

The computationally most expensive parts of the computation of Var (D2) are the sums over r and s

occurring in Equation (27) and the first line of Equation (28). These sums are implemented efficiently for

large sequence lengths m and n by storing powers of M out to convergence and by making use of the fact

that the summand is essentially constant over parts of the domain of summation for which these matrix

powers have converged. Although the programs are not yet fully optimized, they calculate Var (D2) in

about 30 sec on a standard laptop computer for an alphabet of size d = 4, Markovian order h = 3, word

lengths up to k = 20, and arbitrarily large sequence lengths m and n. The variance program slows for higher

order Markov models as the size of M grows exponentially with h. Considerable gains are possible for the

case k = h, as the terms V2, V3, and V4 in the equivalent h = 1 calculation are automatically zero, and

double sum in the term V0 can be computed more efficiently by using the identity

Xm - 2

r = 0

Xn - 2

s = 0

tr[(Mr + 1 �Ms + 1)(Mm - r - 1 �Mn - s - 1)] =

Xdh

i‚ j = 1

Xm - 2

r = 0

(Mr + 1)ij(M
m - r - 1)ji

 ! Xn - 2

s = 0

(Ms + 1)ij(M
m - s - 1)ji

 !
: (37)

Also included in the Supplementary Material is a test program that generates the complete distribution of

D2 for short sequences for a randomly chosen Markovian model created by choosing each matrix element

from a uniform distribution on the interval [0, 1] and then normalizing each row sum to 1. Using this

program, we have confirmed the accuracy of the above mean and variance formulas to 13 significant figures

for sequences up to length m = n = 10 for various values of the alphabet size d, Markov order h, and word

length k. Two examples of the exact D2 distribution for short sequences are shown in Figure 3.

For the case of sequences composed of i.i.d. letters, certain rigorous results are known for the asymptotic

distribution of D2 as the sequence lengths m, n / N . For m = n, it has been shown that the limiting

distribution is normal in the regime k < 1/2 log b n + const. (Burden et al., 2008) and Pólya-Aeppli in the

regime k > 2 log b n + const. (Lippert et al., 2002). Here b = 1=
P

a2A p2
a where pa is the probability of

occurrence of letter a. A Pólya-Aeppli random variable is the sum of a Poisson number of geometric

random variables, and is therefore an example of a compound Poisson random variable. It often arises in

the study of random word counts as a Poisson number of clumps of overlapping words, each clump

containing a geometric number of k-words (Reinert and Schbath, 1998; Reinert et al., 2005). In earlier work

on i.i.d. sequences, Burden et al. (2012a) have found in general that, for simulations of D2 for moderate to

long sequences, the gamma distribution provides a good interpolation between the normal and Pólya-

Aeppli regimes. Although the asymptotic results for D2 are not proved for Markovian sequences, it is a
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reasonable experiment to compare our numerical simulations with these distributions as they may poten-

tially provide an accurate estimate of p values in biological applications.

One would not expect the asymptotic distributions to be an accurate fit to the exact distributions for the

short sequences considered in Figure 3. Nevertheless, we have added the Pólya-Aeppli distribution function

with the mean and variance adjusted to their theoretical values to the plots, and find it to be a surprisingly

close fit. Disagreement arises in the tail of the distribution because, for combinatoric reasons, certain values

of D2 within the range 0 to mn do not occur, whereas the Pólya-Aeppli has support over the whole range

(and also out to N, albeit with very low probability).

FIG. 3. The exact distribution of the D2 statistic for short sequences of length m, n and words of length k from a

Markov model of order h and alphabet of size d. The Markov matrix M has been generated randomly in each case, and

the exact distribution has been calculated by enumerating all dm + n possible sequence pairs. Also shown (dashed curve)

is the cumulative distribution of the Pólya-Aeppli distribution with mean and variance set to the theoretical values using

the formulas of Section 3.
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4.2. Comparison with simulated distributions

For sequences of realistic biological length composed of the four-letter nucleotide alphabet, it is nec-

essary to resort to Monte Carlo simulations to investigate the D2 probability distribution.

We used a combination of R scripts and the SAFT program [Sequence Alignment-Free Tool, under

development (Forêt, 2012)] to further verify the formulas for the mean and variance, and to compare the

empirical distribution of the D2 statistic with the conjectured asymptotic normal, Pólya-Aeppli, and gamma

distributions. For this purpose, as well as using randomly generated Markov matrices, we used matrices

obtained from DNA sequences occurring in nature. The Supplementary Material to Chor et al. (2009a)

contains maximum likelihood estimates of Markov matrices for a number of species and for different

regions within the human genome. As an example, we used the Markov matrices for human chromosome 1,

with Markov orders 0, 1, 2, and 3 (Chor et al., 2009b). For each of these matrices, we used an R script that

implements the algorithm of Section 2.1, using the built-in random number generator of R, via the function

sample.int(), to generate 20,000 sequences of length 1,000, arranged as 10,000 pairs of cyclic sequences.

The SAFT program calculated the D2 statistic for each of these 10,000 pairs. We then used a second R

script, based on the code in the Supplementary Material, to compare the mean and variance of the empirical

distribution of the D2 statistic with the theoretical values given by Equations (16) and (25) to (35), to

compare the empirical cumulative distribution of the D2 statistic with known distributions, and to plot

results. Some simulations were also carried out for sequences of length 100 and 400.

As the purpose of these simulations is to verify the accuracy of the mean and variance formulas and to

test the validity of certain functional approximations to the distribution function, the short to moderate

sequence lengths are chosen to be in a range in which all terms in the variance formula are observed to

make a noticeable contribution. The variance term V0 is O(m2n2) in the sequence lengths, V1 is

O(mn(m + n)), and the remaining terms are O(mn), and so for longer sequences the term V0 dominates. It

happens that the sequence lengths in these simulations reflect typical sizes of cis-regulatory modules

(Kantorovitz et al., 2007), but the theory will be applicable to biological sequences of any length.

Table 1 presents the results for the mean and variance for Markov orders 0 to 3. For the mean, the row

labeled ‘‘Theoretical’’ is calculated from the corresponding Markov matrix using formula (16), the row

labeled ‘‘Empirical’’ is estimated from the 10,000 values of D2 obtained via SAFT, and the rows labeled

‘‘Lower 95%’’ and ‘‘Upper 95%’’ are obtained from the confidence interval returned by the R function

t.test() that implements Student’s t test. For the variance r2, the row labeled ‘‘Theoretical’’ is calculated

from the corresponding Markov matrix using formulas (25) to (35), the row labeled ‘‘Empirical’’ is

estimated from the 10,000 values of D2 obtained via SAFT, and the rows labeled ‘‘Lower 95%’’ and

‘‘Upper 95%’’ are obtained via the v2 distribution, using the R quantile function qchisq and the inequality

given by Snedecor and Cochran (1980; Section 5.10.2, p. 74),

(N - 1)s2=v2
0:025pr2p(N - 1)s2=v2

0:975‚

Table 1. Mean and Variance of D2 Calculated from Theoretical Formulas

Order

0 1 2 3

Mean Lower 95% 18.84 24.70 27.66 28.84

Theoretical 18.92 24.73 27.79 28.97

Empirical 18.95 24.83 27.80 29.00

Upper 95% 19.07 24.96 27.95 29.15

Variance Lower 95% 32.89 43.23 53.06 59.01

Theoretical 33.24 44.69 55.56 60.53

Empirical 33.81 44.44 54.54 60.65

Upper 95% 34.77 45.70 56.09 62.37

Mean and variance of D2 were calculated from the theoretical formulas derived in Section 3, and

estimated from synthetically generated data (10,000 sequence pairs) for Markov models of order h = 0,

1, 2, and 3 using Markov matrices estimated from human chromosome 1. Word length k = 8, alphabet

size d = 4, sequence lengths m = n = 1,000.
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where N = 10,000 in this case, and s2 is the sample variance. In these and in a number of other simulations we

have performed (data not shown), we find that in roughly the expected proportion of times the mean and variance

calculated from the formulas of Section 3 lie within the 95% confidence intervals computed from the ensemble.

As a general rule, and as can be seen from Table 1, we observe that both the mean and variance of D2

increase markedly as the Markov order increases for fixed word length k and sequence lengths m and n. The

difference between the empirical cumulative distribution functions for the different Markov orders for the

parameters of Table 1 is further illustrated in Figure 4.

We compared the empirical distribution of D2 for each Markov order with conjectured asymptotic

distributions based on the theoretical mean and variance calculated via Equations (16) and (25) to (35). For

Markov order 3, this is illustrated by Figure 5. Here the cumulative gamma and normal distributions are

plotted using the built-in R functions pgamma() and pnorm(), respectively, and the cumulative Pólya-Aeppli

distribution is plotted using the function pPolyaAeppli() included in the Supplementary Materials. We ob-

serve that, for these parameter values, the three conjectured distributions do not differ greatly from one

another, although the Pólya-Aeppli clearly gives the best fit, particularly in the important tail of the
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FIG. 4. Comparison of empirical cumulative

distribution function for simulated D2 using

Markov matrices for human chromosome 1 from

Chor et al. (2009a,b), for orders h = 0, 1, 2, and 3.

10,000 pairs per order, word length k = 8, al-

phabet size d = 4, sequence lengths m = n =
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distribution relevant to estimating p values. This trend is also observed for the other Markov orders and

sequence lengths simulated including the simulations in Figure 4. In general, the Pólya-Aeppli behavior that is

expected to apply asymptotically for large sequence lengths is reached within the accuracy expected of our

Monte Carlo simulations at sequence lengths of some hundreds of letters. For parameters leading to large

values of E(D2), the continuous normal and gamma distributions are more readily computable, although slightly

less accurate, than the Pólya-Aeppli, and of these two the gamma is invariably observed to give a better fit.

4.3. Comparison with chromosomal DNA

Ultimately, one hopes to use D2 or similarly defined statistics as an alignment-free tool to assess the

relatedness of biological sequences. To this end, it is helpful to know to what extent genomic sequences can

FIG. 6. Density of the empirical distribution of

D2 from human chromosome 1 sample data from

Ensembl compared with gamma distributions

with calculated mean and variance, based on

Markov models of various orders h. 10,000

sample pairs, word length k = 8, and sequences

lengths m = n = 1,000 (upper plot), word length

k = 5 and sequences lengths m = n = 300 (lower

plot).
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be modeled as Markovian sequences for the purpose of defining a null-hypothesis distribution for the D2

statistic. With this in mind, we have performed some exploratory comparisons between the D2 distributions

obtained via simulating the Markov processes using maximum likelihood estimates of Markov matrices and

the D2 distribution obtained by sampling original DNA data, for example, the DNA sequence from human

chromosome 1 from Ensembl (Wellcome Trust Sanger Institute and European Bioinformatics Institute,

(2012). For consistency with the range of parameters used in the simulations of the previous section, the

comparisons were done for sequence lengths m = n = 300 and 1,000.

Figure 6 illustrates the comparison between D2 distributions approximated by gamma distributions with

exact means and variances calculated under Markovian hypotheses of various orders, and the empirical

density of the D2 distribution obtained from sampling human chromosome 1. The Markov transition matrices

used for calculating the mean and variance at each order were estimated using maximum likelihood from the

same subset of human chromosome 1 as that used for obtaining the empirical D2 density (see below). The

gamma representation was demonstrated to provide a very accurate approximation to the D2 distribution (as

estimated from Monte Carlo simulations) for m = n = 1,000 and Markov order h = 0, 1, 2, and 3 in the

previous Section (see Fig. 5). Here we also assume the gamma approximation to the D2 distribution for h and

up to 5 to avoid further Monte Carlo simulations, as the computational demands of the algorithm of Section

2.1 for generating sequences with PBCs become prohibitive for higher Markov orders.

To obtain the empirical density, we took the soft-masked DNA sequence for human chromosome 1 from

Ensembl, and took uniform random samples of subsequences of length 300 or 1,000, according to Knuth’s

Algorithm S (Knuth, 1981, Section 3.4.2), but avoiding all ambiguous and masked regions. Ensembl’s

masking removes repetitive regions including tandem repeats. This data source and procedure for esti-

mating Markov transition matrices correspond to those described by Chor et al. (2009a), except that the

Markov matrices have been estimated from Ensembl’s ‘‘soft-masked’’ sequences with the repeat regions

(i.e., the lowercase letters) ignored, whereas Chor et al. include the repeat regions. We find that, as

expected, including the repeat regions leads to a skewed empirical D2 distribution with an extremely heavy

right-hand tail corresponding to repetitive regions.

The sample mean and variance from the soft-masked DNA sequence, together with the theoretical

values, are shown in Table 2. In general, agreement between the Markovian model and the empirical

distribution improves as the Markovian order increases. For higher orders, the Markovian mean overshoots

slightly. The Markovian variance, on the other hand, severely underestimates the empirical variance at any

order. This is consistent with earlier observations by Cs}urös et al. (2007) that genomic word count dis-

tributions tend to have heavier tails than that predicted by Markovian models, or, to put it another way,

certain k-mers are ‘‘under-’’ or ‘‘over-represented’’ within genomes.

Note also that the Markovian plots in Figure 6 suggest that h = k may be in some sense a limiting case.

Recall that the formula for the mean takes a different form for h > k [see Equation (16)], and that the formula

derived for the variance is only valid for h £ k and remains intractable for h > k. We suspect that this is related

to the fact that, for sufficiently long sequences, h-mer frequencies are determined by the stationary eigenvector

of the Markov matrix, and that the statistics of k-mers for k < h is implicit with the statistics of h-mers.

Table 2. Empirical Estimates of Mean and Variance of D2 from Human Chromosome 1

Theoretical values

h = 0 1 2 3 4 5 Sample estimate

m = n = 1,000, k = 8

Mean 19.08 24.74 26.90 27.55 28.30 28.74 27.66

Variance 33.58 44.62 50.99 52.19 54.37 56.01 181.1

Std. Dev. 5.795 6.680 7.141 7.224 7.373 7.484 13.46

m = n = 300, k = 5

Mean 101.1 117.4 122.4 123.5 124.3 124.3 120.7

Variance 216.6 254.4 307.5 307.8 315.6 321.9 1,258.

Std. Dev. 14.71 15.95 17.53 17.55 17.77 17.94 35.47

Empirical estimates of the mean and variance of D2 from human chromosome 1 sample data from Ensembl (right-hand column)

were compared with the theoretical mean and variance based on Markov models of various orders using estimated Markov matrices for

human chromosome 1. The variance for k = h = 5 was calculated by implementing Equation (37).
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5. DISCUSSION

The primary purpose of this article is to demonstrate that it is possible to construct accurate represen-

tations of the distribution of the D2 statistic under the null hypothesis of periodic Markovian sequences

without the need to resort to computationally expensive Monte Carlo simulations or to asymptotic ap-

proximations valid only when log n [ k. Our method consists of deriving exact formulas for the mean and

variance of D2 that are readily computable for any sequence lengths, to which we fit functional forms based

on asymptotic distributions typically observed for word count statistics. We have demonstrated that, for

sequences of moderate length of up to only a few hundred letters, and for which log n & k, the Pólya-

Aeppli distribution with parameters determined by the exact formulas for the mean and variance developed

herein accurately represents the true D2 distribution for Markovian sequences of any order (see Fig. 5). For

comparatively longer sequences with higher E(D2), for which evaluating the Pólya-Aeppli distribution may

be slow, the gamma distribution provides an acceptable approximation that is more accurate than the

normal distribution.

It is known that the D2 statistic itself, if used directly as a measure of sequence similarity, may

perform poorly as the signal of over-representation of the same words in the query and target se-

quences is masked by the natural variability of word counts in each of the two sequences (Lippert

et al., 2002). Variations on the theme of the D2 statistic, such as the weighted, centered statistic D�2
studied by Reinert et al. (2009), have been developed to circumvent this problem. Burden et al.

(2012a,b) have extended calculations of the exact mean and variance for i.i.d. sequences to weighted

and centered versions of D2, and it is expected that the analogous calculation for Markovian sequences

will be entirely feasible.

The secondary purpose of this article is a preliminary comparison of the approximate D2 distribution

computed with the theoretical mean and variance under a Markovian hypothesis with an empirical genomic

D2 distribution. As a test example, we have considered the empirical distribution of the D2 statistic between

randomly chosen segments of a single human chromosome, avoiding highly repetitive parts of the chro-

mosome such as stretches of tandem repeats. In general, we find that the empirical distribution has much

heavier tails than the D2 distribution for a Markovian sequence of any order up to h = 5 (see Fig. 6). We

interpret this as a signal that the chromosome, taken as a whole, contains a number of strongly over- and

under-represented k-mers, relative to a Markovian sequence. Thus, one is tempted to conclude that a

Markov model will tend to overestimate significance and give an inflated false-positive rate when at-

tempting to detect relatedness of genomic sequences.

However, this test is preliminary, and takes no account of the structure of the genome. In particular, we

have not restricted ourselves to non–protein-coding segments. As current opinion is that even the non-

coding part of the human genome may be up to 80% functional (ENCODE Project Consortium, 2012),

the possibility exists that the over- and under-represented words are restricted to segments of genome

with specific, possibly yet unknown, functions. Thus, the potential exists, for instance, to use D2 as an

exploratory probe to detect functional regions within the noncoding part of the genome: Using a ran-

domly generated Markovian probe sequence (a random probe of length m = 10,000, say, would contain

almost all 6-mers), one could calculate D2 between the probe and a moving window running along the

genome. This exercise would expose whether, for instance, the genome consists of a sea of ‘‘null

hypothesis’’ Markovian sequence containing islands of repeated motifs, or whether the genome is uni-

formly peppered with a particular set overexpressed words. The ability to easily calculate the null D2

distribution as a function of sequence and word lengths enables the experiment to be performed readily at

different resolutions. Furthermore, the property of D2 that it is dominated by the natural variability in

either of the two sequences being compared becomes an advantage. If a subset of words is over-

represented within the moving window at a specific location in the genome, provided that subset contains

some words also present in the probe sequence, its over-representation within the window will manifest

as an extreme D2.

6. APPENDIX: CONTRIBUTIONS TO VAR (D2)

We derive the contributions V0 to V4 to Var (D2) when h = 1 given in Section 3.3. These contributions are the

partial sums
P

i‚ i0‚ j‚ j0 Prob(Iij = 1‚ Ii0j0 = 1) contributing to Equation (26) where, for given (i, j), the indices (i0, j0)
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range over the regions shown in Figure 2. The event ‘‘Iij = 1‚ Ii0j0 = 1’’ means that the k-words beginning at sites i

and i0 in sequence X match the k-words beginning at sites j and j0 in sequence Y, respectively.

Nonoverlapping words in both sequences: V0

Taking into account the PBCs, these are the contributions from the cases for which both

k � ji0 - ij � m - k and k � jj0 - jj � n - k occur simultaneously. Consider the situation

i0 = (i + k + r) mod m‚ r = 0‚ . . . ‚ m - 2k‚

j0 = (j + k + s) mod n‚ s = 0‚ . . . ‚ n - 2k‚

shown in Figure 7a. As the two sequences are independent, applying Equation (11) gives

FIG. 7. Arrangements of word

matches contributing to (a) non-

overlapping words, V0, (b) crab-

grass V1, (c) accordions V2, V3, and

(d) accordion V4. Images of words

due to periodic boundary condi-

tions are shown as a dashed outline.
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Prob(Iij = 1‚ Ii0j0 = 1) =
X

w‚ v2Ak

Prob(Xi . . . Xi + k - 1 = w)Prob(X0i . . . Xi0 + k - 1 = v)

· Prob(Yj . . . Yj + k - 1 = w)Prob(Y 0j . . . Yj0 + k - 1 = v)

=
1

tr(Mm)tr(Mn)
·
X

w‚ v2Ak

(Mm - 2k - r + 1)vkw1
Mw1w2

. . . Mwk - 1wk
(Mr + 1)wkv1

Mv1v2
. . . Mvk - 1vk

· (Mn - 2k - s + 1)vkw1
Mw1w2

. . . Mwk - 1wk
(Ms + 1)wkv1

Mv1v2
. . . Mvk - 1vk

=
tr[(Mr + 1 �Ms + 1)(M �M)k - 1(Mm - 2k - r + 1 �Mn - 2k - s + 1)(M �M)k - 1]

tr(Mm)tr(Mn)
: (38)

Summing over r and s, and including a factor of mn to account for the sum over i and j then gives

Equation (27).

Overlaps in one sequence only: V1

These are cases for which either k � jj0 - jj � n - k and ji0 - ij < k or > m - k (overlaps in X but not in

Y), or k � ji0 - ij � m - k and jj0 - jj < k or > n - k (overlaps in Y but not in X). This region is referred to as

the ‘‘crabgrass’’ by Waterman (1995). Figure 7b shows the case of overlaps in X but not Y, where we have set

r =
i0 - i if ji0 - ij < k‚

i0 - i - m if ji0 - ij > m - k‚

�
j0 = (j + k + s) mod n‚

for r = - k + 1‚ . . . ‚ 0‚ . . . ‚ k - 1 and s = 0‚ . . . ‚ n - 2k. We split the common word beginning at i and j into a

piece a of length r and a piece b of length k - r, and split the common word beginning at i0 and j0 into the

piece b and a piece c of length r.

Then

V1 = mn

(Xn - 2k

s = 0

Xk - 1

r = - k + 1

X
a2Ar

X
b2Ak - r

X
c2Ar

Prob(configuration in Fig: 7b)

+ a similar sum with the roles of X and Y interchanged

)
‚ (39)

where the sums over r and s arise from sums over i0 and j0 for fixed i and j, and the factor of mn arises from

the outer sum over i and j. Using Equation (11),X
a2Ar

X
b2Ak - r

X
c2Ar

Prob (configuration in Fig: 7(b))

=
1

tr(Mm)tr(Mn)
·
X
a‚ b‚ c

Ma1a2
. . . Mar - 1ar

Marb1
Mb1b2

. . . Mbk - r - 1bk - r
Mbk - rc1

· Mc1c2
. . . Mcr - 1cr

(Mm - k - r + 1)cra1
· Ma1a2

. . . Mar - 1ar
Marb1

Mb1b2
. . . Mbk - r - 1bk - r

(Ms + 1)bk - rb1

· Mb1b2
. . . Mbk - r - 1bk - r

Mbk - rc1
Mc1c2

. . . Mcr - 1cr
(Mn - 2k - s + 1)cra1

=
X

a1‚ b1‚ bk - r‚ cr

[(M �M)r]a1b1
[(M �M �M)k - r - 1]b1bk - r

[(M �M)r]bk - rcr

· (Ms + 1)bk - rb1
(Mm - k - r + 1)cra1

(Mn - 2k - s + 1)cra1

= trf(M �M)r[(M �M �M)k - r - 1 � (Ms + 1)T ] · (M �M)r(Mm - k - r + 1 �Mn - 2k - s + 1)
�

‚

(40)

where the superscript T indicates the matrix transpose. Equations (39) and (40) combine to give the

crabgrass contribution Equation (28).
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Overlaps in both sequences

The set of configurations for which the words at positions i, i0, j, and j0 overlap in both sequences

simultaneously is referred to as the ‘‘accordion’’ by Waterman (1995). For convenience, we define the

following overlap distances (illustrated in Fig. 7c):

t =
i0 - i if ji0 - ij < k‚

i0 - i - m if ji0 - ij > m - k‚

�
(41)

in sequence X and

s =
j0 - j if jj0 - jj < k‚

j0 - j - n if jj0 - jj > n - k‚

�
(42)

in sequence Y. These definitions ensure that - k + 1 £ t, s £ k - 1. The remaining three contributions are

from the accordion.

Diagonal part of the accordion: V2

This is the contribution from those cases with s = t, in which case Figure 7c becomes a match between

the (k + jtj)-letter word at position i in X and the (k + jtj)-letter word at position j in Y. Noting that the

probability of this match is independent of i and j, we have

V2 = mn
Xk - 1

t = - k + 1

Prob((Xi . . . Xi + k + jtj - 1) = (Yj . . . Yj + k + jtj - 1))‚ (43)

where, by analogy with Equation (21),

Prob((Xi . . .Xi + k + jtj - 1) = (Yj . . . Yj + k + jtj - 1)) =
tr[(Mm - k - t + 1 �Mn - k - t + 1)(M �M)k + t - 1]

tr(Mm)tr(Mn)
: (44)

Combining Equations (43) and (44) gives Equation (29).

Off-diagonal part of the accordion: subcases contributing to V3

The off-diagonal part of the accordion is divided into a number of subcases. Consider first the contri-

bution from the four subcases making up the region V3 in Figure 2:

3(i): 0 £ s < t £ k - 1;

3(ii): - k + 1 £ s < t £ 0;

3(iii): - k + 1 £ t < s £ 0; and

3(iv): 0 £ t < s £ k - 1.

By symmetry, each subcase makes an equivalent contribution to the variance. Subcase 3(i) is shown in

Figure 8, and the required contribution takes the form

V3 = 2mn
Xk - 1

t = 1

Xt - 1

s = 0

X
a‚ b2As

X
c2Aq

X
d2Ar

[Prob (configuration shown in Fig: 8)

+ Prob(same configuration with m and n interchanged)]: (45)

To calculate the probability of the configuration, the overlapping words have been divided into repeating

independent elements. Elements a and b are the nonoverlapping parts of length s at either end of the words

at j and j0 in Y. The nonoverlapping part of the words at i and i0 in X are segmented into elements (acd) and

(dcb) shown in the upper part of Figure 8. The segment (cd) repeats an integer number m times within the

overlapping part in sequence Y, with a segment c of length q left over. We set the length of element d equal

to r. Thus
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� = º k - s

t - sß‚ q = (k - s) mod (t - s)‚ and r = t - s - q: (46)

When q = 0 the element c does not occur (lower part of Fig. 8).

Using arguments similar to those for the crabgrass contribution, we have, for q > 0,

X
a‚ b2As

X
c2Aq

X
d2Ar

Prob(configuration shown in Fig: 8) =
1

tr(Mm)tr (Mn)

·
X

a1‚ as‚ b1‚ bs‚ c1‚ cq‚ d1‚ dr2A
[(M �M)s - 1]a1as

(M �M)asc1
[(M�(2� + 3))q - 1]c1cq

· (M�(2� + 1))cqd1
[(M�(2� + 1))r - 1]d1dr

(M�(2� + 1))drc1

· (M �M)cqb1
[(M �M)s - 1]b1bs

(Mm - k - t + 1 �Mn - k - s + 1)bsa1

=
1

tr(Mm)tr (Mn)
tr [(M �M)s

�
(M�(2� + 3))q - 1 � [(M�(2� + 1))r + 1]T

�
· (M �M)s(Mm - k - t + 1 �Mn - k - s + 1)]‚

(47)

whereas for q = 0 we have

X
a‚ b2As

X
c2Aq

X
d2Ar

Prob (configuration shown in Fig: 8) =
1

tr (Mm)tr (Mn)

·
X

a1‚ as‚ b1‚ bs‚ d1‚ dr2A
[(M �M)s - 1]a1as

(M �M)asd1
[(M�(2� + 1))t - s - 1]d1dr

(M�(2� - 1))drd1

· (M �M)drb1
[(M �M)s - 1]b1bs

(Mm - k - t + 1 �Mn - k - s + 1)bsa1

=
1

tr(Mm)tr (Mn)
tr [(M �M)s

�
(M�(2� + 1))t - s - 1 � (M�(2� - 1))T

�
· (M �M)s(Mm - k - t + 1 �Mn - k - s + 1)]:

(48)

FIG. 8. Arrangements of word

matches contributing to subcase

3(i) when q = (k - s) mod (t - s)

> 0 (upper figure) and q = 0 (lower

figure).
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Combining Equations (45) to (48) gives Equations (30) to (32).

Off-diagonal part of the accordion: subcases contributing to V4

These are contributions from the subcases

4(i): 1 £ t £ k - 1, - k + 1 £ s £ - 1; and

4(ii): 1 £ s £ k - 1, - k + 1 £ t £ - 1,

FIG. 9. Arrangements of word

matches contributing to V4 (first

four cases).
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labeled V4 in Figure 2. In these cases, either t or s is negative. By symmetry, each of these two subcases

makes an equivalent contribution to V4, so we consider subcase 4(i) and for convenience set r = - s (see

Fig. 7d). Then

V4 = 2mn
Xk - 1

r‚ t = 1

Prob[(Xi . . . Xi + k - 1) = (Yj . . . Yj + k - 1)‚

(Xi + t . . . Xi + t + k - 1) = (Yj - r . . . Yj - r + k - 1)]‚ (49)

where the factor mn arises from a sum over i and j, and we make use of the fact that for periodic Markovian

sequences the summand is independent of i and j.

It is convenient to define

� = º k

r + t ß‚ f = k mod (r + t): (50)

Here m is the integer number of times the complete repeat unit (Yj . . . Yj + r + t - 1) fits inside the k-word

(Yj . . . Yj + k - 1), and f is the number of letters remaining (see Figs. 9 and 10). Calculation of the proba-

bility occurring in Equation (49) then proceeds in a similar fashion to that for V3 by dividing the

overlapping words into independent nonoverlapping elements. It turns out that the configuration of

elements depends on the relationship between f, r, and t. The complete set of configurations is

FIG. 10. Arrangements of word

matches contributing to V4 (final

three cases).
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enumerated in Figures 9 and 10, with the repeated elements labeled a, b, etc. The calculation is lengthy

and repetitive but straightforward, and yields Equations (33) and (35) after recombining cases that give

the same algebraic formula.
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