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Abstract

We present eXpress, a software package for highly efficient probabilistic assignment of 

ambiguously mapping sequenced fragments. eXpress uses a streaming algorithm with linear run 

time and constant memory use. It can determine abundances of sequenced molecules in real time, 

and can be applied to ChIP-seq, metagenomics and other large-scale sequencing data. We 

demonstrate its use on RNA-seq data, showing greater efficiency than other quantification 

methods.

The proliferation of high-throughput sequencing experiments has produced a high volume of 

data that is increasingly expensive to archive and unwieldy to process1. Challenges brought 

by the rapidly increasing depths of modern sequencing experiments include the feasibility of 

long-term archiving as well as the increased memory requirements of informatics tools and 

analysis pipelines. For example, uncompressed alignments to the transcriptome for a typical 

human RNA-Seq experiment require approximately 1 GB of space for every million 

fragments sequenced.

One of the key computational bottlenecks in large sequencing-based2 experiments is the 

problem of fragment assignment3, or how to infer the origin of ambiguously mapping 

sequenced fragments. This problem is currently best addressed using the batch expectation-

maximization (EM) algorithm with restrictions on the extent of ambiguity allowed for multi-

mapping reads4,5. The algorithm alternates between assigning fragments to targets with a 

probability according to abundance parameters (expectation step), and updating abundances 

to the maximum likelihood solution based on the expectation step assignments 

(maximization step). Limits are necessary because, unlike algorithms used for read mapping, 

the batch EM algorithm is not trivially parallelizable. For example, when restrictions on 

multi-mapping are relaxed, large numbers of targets must be considered simultaneously for 
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fragment assignment (Supplementary Fig. 1). Even with restrictions, current methods scale 

poorly with sequencing depth.

Fragment assignment is a crucial step in many experiments based on high-throughput 

sequencing, including RNA-seq, ChIP-seq6, and metagenomic analysis7. In such 

applications, sequenced reads may map to many transcriptomic or genomic locations, and 

resolving the ambiguity is frequently the focus of the biological question being investigated. 

Ad hoc heuristics in fragment assignment algorithms can produce biased results8. 

Furthermore, as sequencing depth increases, the data can overwhelm hardware resources and 

confound algorithms relying on heuristics that may not scale.

In order to address these difficulties, we have developed an online algorithm for fragment 

assignment that processes data one fragment at a time. We specialized the online EM 

algorithm9 to the fragment assignment problem and adapted it to work directly with 

estimated counts rather than relative abundances10(Online Methods). In the algorithm, each 

incoming fragment may map to an arbitrary number of target sequences and is apportioned 

to the targets it maps to according to previously estimated counts (Fig. 1). Parameter 

estimates for the fragment length distribution, sequence bias11, and a sequencing error 

model for reads (including mismatches and indels) are simultaneously updated. As 

fragments are processed, they are assigned increasing “mass” to allow the algorithm to adapt 

to improving parameter estimates (Online Methods and Supplementary Fig. 2).

This dynamic scheme has favorable convergence properties that are crucial for the 

performance of the online algorithm (Supplementary Fig. 3). Moreover, the convexity of the 

likelihood function guarantees that the online algorithm converges to the global maximum. 

While updating relative abundance and count estimates, uncertainties in assignment are 

propagated so that posterior count distributions can be estimated. The methods are 

implemented in open-source software called eXpress, which is suitable for many 

applications requiring probabilistic fragment assignment. eXpress not only reduces the 

memory needed for processing, but also achieves a dramatic breakthrough in speed over 

previous approaches.

To quantify the tradeoffs in speed, efficiency and accuracy between (restricted) batch 

methods and the online EM algorithm, we simulated 75 bp paired-end reads from the 

sequencing of one billion RNA-seq fragments (Online Methods) and compared the 

performance of RSEM4 and Cufflinks5 to eXpress (Fig. 2 and Supplementary Fig. 4). RSEM 

uses a model and input similar to that used in eXpress but uses the batch EM algorithm for 

optimization, allows limited multi-mapping, and lacks a sequence bias model12. Cufflinks is 

a widely used tool for RNA-seq which employs an EM algorithm similar to RSEM, but is 

based on genomic rather than transcriptomic mapping to limit multi-mapping and improve 

efficiency.

Since RSEM does not model bias in sequencing experiments, we first compared it to 

eXpress in a simulation with no sequence bias (Fig. 2a). As expected, RSEM slightly 

outperforms eXpress when more than 20 million fragments are provided, although eXpress 

is initially more accurate due to its use of a prior. Performance is similar on individual genes 
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(Fig. 3), for which eXpress abundance estimates are more stable at low coverage. The high 

accuracy of the online EM algorithm in comparison to the batch algorithm, despite the fact 

that data is processed in a piecemeal fashion, can be attributed to the appropriate choice of 

forgetting factors (Supplementary Fig. 3) and the convergence properties of stochastic 

gradient ascent that it approximates8 (Online Methods). The fast convergence is 

corroborated by a direct comparison of likelihoods. Remarkably, the accuracy achieved by 

the online EM algorithm in one pass through the data is equivalent to 38 rounds of the batch 

EM algorithm (Supplementary Fig. 5). Furthermore, when data order is randomized—as is 

the case in current high-throughput sequencing experiments—it has an insignificant effect 

on abundance estimates (Supplementary Fig. 6).

Cufflinks slightly underperforms both RSEM and eXpress due to the limited number of EM 

rounds for genomic multi-read disambiguation (Supplementary Fig. 7) and the absence of a 

sequencing error model. On the other hand, the tradeoff allows for easy parallelization and 

Cufflinks is faster and more memory efficient than RSEM (Fig. 2b). Most striking is the 

performance of eXpress, which displays a run time linear in the number of fragments and 

memory requirement proportional only to transcriptome size. This is similar to the UNIX 

word count ‘wc’ program that simply counts the number of characters in a file (Fig. 2b). 

However, simply counting the number of fragments mapping to target sequences (without 

fragment assignment) cannot be used as a proxy for abundance. We compared eXpress to a 

modified version of NEUMA13 (Online Methods) that avoids explicit read assignment by 

incorporating a “mappability” index and length correction for each transcript. Even with this 

improvement over raw fragment counting, the accuracy of NEUMA does not match that of 

eXpress, RSEM, or Cufflinks (Supplementary Fig. 8). The combined speed and accuracy of 

eXpress means that it can be used in the analyses of much deeper sequencing experiments 

than previously possible.

The eXpress model includes parameters for the fragment length distribution, sequencing 

errors (including indels), and sequence-specific biases thought to result from the 

fragmentation and priming steps during library preparation11. All of these are estimated 

jointly with abundances, enabling eXpress to be used for a wide range of experiments. It is 

interesting to note that estimates of the auxiliary parameters converge rapidly, typically after 

less than 5 million fragments (Supplementary Fig. 9). To assess the impact of bias modeling 

in RNA-Seq, we simulated another billion fragments using a bias profile learned from a 

human embryonic stem cell RNA-Seq dataset (Online Methods). With bias affecting the 

prevalence of fragments in specific positions, eXpress and Cufflinks outperform RSEM, 

highlighting the importance of modeling this effect (Fig. 2a). The overall improvement of 

eXpress with respect to Cufflinks is due to the improvement in assignment of genomic 

multi-reads and the inclusion of an error model in eXpress (Online Methods), although 

Cufflinks outperforms eXpress on very high abundance transcripts (Supplementary Fig. 4). 

To establish the effectiveness of eXpress’ bias correction on experimental data, we re-

examined previous comparisons of RNA-Seq to quantitative PCR from the “gold standard” 

MAQC14 dataset and confirmed that the bias correction in eXpress improves the accuracy of 

abundance estimates (Supplementary Table 1).
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To enable the use of relative abundance and count estimates in downstream applications, 

eXpress quantifies uncertainties in the estimates. Specifically, for every transcript, the 

posterior fragment count distribution is approximated by a shifted beta binomial distribution 

(Online Methods). The accuracy of the approximation was confirmed by simulation study 

(Supplementary Fig. 10). We noted that on average, counts could be estimated within 5.4% 

of the true value, implying that for many transcripts, estimated counts obtained by eXpress 

can be used directly in differential expression packages such as DEseq15 that model count 

variability in biological replicates. When there is uncertainty in the count estimate, the count 

distribution can be incorporated in differential analysis16.

The ability of eXpress to accurately assign fragments using a streaming algorithm means 

that it is compatible with novel single-molecule sequencing technologies that produce reads 

incrementally17. In a dynamic sequencing pipeline, eXpress could be coupled directly to a 

sequencer and be used to estimate abundances of target sequences in real time as individual 

fragments are sequenced. We examined the use of stopping criteria based on the relative 

increments of the global likelihood or the local likelihood for a group of target sequences 

and found that eXpress can automatically determine when sufficiently many reads have been 

processed to guarantee convergence (Fig. 3), thus avoiding the complicated issue of 

choosing a sequencing depth. We note that such an approach to high-throughput sequencing 

also eliminates the need for storing read sequences, providing an alternative to cloud-based 

bioinformatics18.

The eXpress software is freely available on the Nature Methods website and at http://

bio.math.berkeley.edu/eXpress.

Online Methods

Probabilistic model

Our approach to fragment assignment is based on a probabilistic graphical model for 

sequencing experiments (Supplementary Fig. 11). In this framework, experiments produce 

multiple random fragments (according to the random variable F) that consist of pairs of 

sequences (reads) from a set of target sequences. F depends on hidden random variables 

describing fragment length (L), target sequences of origin (T), and starting positions within 

target sequences (P). The probability distributions for the random variables are based on 

parameters for target abundances, fragment length probabilities, sequence biases affecting 

the start and end locations of the fragment, and probabilities for sequencing errors in reads. 

The generative model stipulates that the joint probability of obtaining a fragment f of length 

l sequenced from position p in target t is given by

(1)

where the parameters of the model are the conditional probabilities ϕf∣p,t,l: = ℙ(F = f∣P = p, T 

= t, L = l), πp∣t,l: = ℙ(P = p∣T = t, L = l), τt∣1: = ℙ(T = t∣L = l) and λl: = ℙ(L = l).

From this we obtain the likelihood function
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(2)

where F is the set of sequenced fragments,J is the set of target sequences, ML is the 

maximum length of a fragment and l(t) is the length of target sequence t. The likelihood 

function is derived from the generative model, but there is a more convenient form that is 

useful computationally and which corresponds more directly to the main quantities of 

interest: the relative abundances of target sequences. If ρt denotes the relative abundance of 

target t, and the probability of generating a fragment of arbitrary length from a target t is 

, then rewriting the likelihood function in terms of the τt yields

(3)

where the remaining auxiliary parameters consist of λ, ϕ, normalized weights10 wp∣t, l 

satisfying

(4)

and an effective length10

(5)

The weights wp∣t, l reflect sequence bias resulting in preferential selection of certain 

fragments10 so that

(6)

The derivation that (3) is equivalent to (2) is based on the cancellation of the numerator of 

(6) with the reciprocal of (5) after summing over lengths, followed by the application of (4). 

The ϕ parameterize an error model that provides probabilities for fragment sequences to 

originate from different reference sequences. This is specified in the form of a first order 

Markov chain of substitution probabilities that depend on read position and, in the case of 

paired-end reads, their respective sequencing order. Each position also has a probability of 

insertion (of 0-10 sites) or deletion (0-10 sites) initialized with a truncated geometrically 

distributed prior (p=0.73) on the insertion/deletion (indel) length. The model described here 

is similar to the Cufflinks model5,12, but incorporates a different order for fragment length 

selection in the generative model and includes the modeling of errors and indels.

Lemma 14 in the Supplementary Material of the Cufflinks paper5 explains how to recover 

the abundances ρt from the parameters τt. Abundances are reported in FPKM4 units in 

eXpress.
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The online EM algorithm for maximum likelihood estimation

The online EM algorithm is an iterative algorithm that consists of computing vectors 

 where n = 1,2, …, |F| If the fragments are ordered as f1, …, f|F| then each 

represents an estimate of the parameter τt after processing the fragments, f1, …, fi. The 

update procedure is given by

(7)

where  for some constant  and

(8)

The probabilities in (8) can be calculated using Bayes rule from the conditional probabilities 

described in the section above.

Theorem 19,10—The online EM algorithm is asymptotically equivalent to stochastic 

gradient ascent in the space of sufficient statistics. Moreover, assuming that 

together with mild regularity assumptions9, it converges to a local maximum of the 

likelihood function.

For fixed auxiliary parameters the model (2) is convex5 and it follows that the online 

algorithm (also called the stepwise EM algorithm) converges to the (unique) global 

maximum.

Updating (7) requires O(|J|) operations at every step making the algorithm intractable for 

large numbers of target sequences. There are two reasons for this. First, computing (8) 

requires, in principle, calculation of a normalization constant that is based on a sum taken 

over all positions in all targets. Second, the update in (7) requires changing  for all t ∈ T.

The first difficulty can be overcome by limiting the calculation to locations where fragments 

map using one of many heuristic alignment programs, such as Bowtie19. This is reasonable 

because the probabilities ℙ(T = t∣F = fi) are approximately zero when a fragment does not 

align to a target, due to the relatively low probability of sequencing errors. Nevertheless, 

Bowtie, and many other fast read mappers might lead to biased quantification results 

because they restrict mappings in ad-hoc ways. For example, in Bowtie an exact matching 

seed is required and at most 3 mismatches can be allowed only at the end of reads. To 

confirm that such heuristics do not affect performance in practice, we performed a detailed 

analysis with the mapper Hobbes20, which finds all mappings within a specified Hamming 

distance, and compared the results to Bowtie (Supplementary Table 2). It is important to 

note that different mappers may be suitable for other types of sequencing reads (e.g. 

SOLiD), but the model for assignment is independent of the technology used. The second 

difficulty can be addressed by a change of coordinates that greatly simplifies the calculation:
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We replace the  with variables  where i ∈ {1,2, …, |F|} and instead of iterating (7) we 

compute

(9)

where

(10)

is called the forgetting mass and depends on the forgetting factors γi. It is convenient to use 

the form  where . In that case the recursion (10) reduces to the formula in Fig. 

1. Note that  implies  enabling efficient updating of (9). Thus, the online EM 

algorithm scales linearly with the number of fragments analyzed, with a (small) constant 

number of operations per iteration.

Each vector  represents an estimate of the number of fragments originating from t from 

among the fragments f1, …, f|F| and the τ are related to the α via . The α 

estimates can also be interpreted as parameters of Dirichlet distributions, providing a 

Bayesian interpretation of the online EM algorithm8. In eXpress, the online EM algorithm is 

used to estimate the auxiliary parameters alongside the abundances.

Counts

We distinguish between two forms of useful output in an RNA-Seq experiment. The relative 

abundances of targets (encoded in the parameters ρ discussed above) are of primary interest. 

However, also of interest are the posterior distributions of counts. The latter describe, for 

each target, the number of fragments estimated to originate from each target given the read 

mappings. For example, if a target sequence t has k fragments mapping to it and all the k 

fragments map uniquely to the set of target sequences, then the posterior count distribution 

for t is the discrete distribution with all its mass at k. However, ambiguous fragments are 

assigned probabilistically and result in posterior count distributions with wider support. 

Count estimates can be further refined to account for sequence bias and bias introduced by 

fragmentation. The effective count distribution for a transcript is defined to be the posterior 

count distribution assuming the experiment had no sequence bias and all fragments had 

length one. Effective counts are useful because they can be directly compared across 

experiments after normalizing for sequencing depth. They can be calculated from estimated 

counts and the effective lengths (5), by rescaling the counts for a transcript t by l(t)/l̃(t).

In eXpress, fragment count distributions are modeled by shifted beta binomial distributions 

as follows: For each target sequence t, the number of unique (Uniqt) and total (Tott) 

fragments mapping to the target sequence are computed. Then a beta binomial distribution 

with n = Tott - Uniqt is used to approximate the posterior distribution by fitting moments. 

Specifically, for each target, the mean of the beta binomial distribution is estimated as the 

mean of the posterior assignment probabilities for all fragments that ambiguously aligned to 
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it. This is computed online (together with other parameters, as in the previous section). The 

variance of the posterior distribution is also computed online by compounding the variances 

associated with the ambiguous fragment assignments.

To address instability of assignment in targets with few mapped reads, a flag (referred to as 

the solvability flag) is assigned to each target sequence. Initially all target sequences are 

unsolvable. After target sequences become solvable they can never revert back to their 

previous state. There are two ways by which a target sequence can become solvable: if a 

fragment maps uniquely to a target sequence then that target sequence becomes solvable, or 

if a fragment maps ambiguously to a set of target sequences and all but one is solvable, then 

the remaining one becomes solvable. Unsolvable targets are assigned the uniform 

distribution whereas solvable targets are assigned a beta binomial with support n by fitting 

moments.

For the above procedure to work it is necessary that the estimated counts always lie between 

Uniqt and Tott. Moreover, the structure of (2) can be used to provide bounds on the scaled 

maximum likelihood solution for the abundances:

Theorem 2—For each target t, let Uniqt and Tott denote the unique number and total 

number of reads mapping to t respectively. The maximum likelihood solution ρ̂
t satisfies 

Uniqt ≤ Nρ̂
t ≤ Tott where N is the total number of reads sequences in an experiment. 

Equivalently, the maximum likelihood solution ρ̂ must lie inside the count polytope defined 

by the inequalities above, together with the constraint Σt ρ̂
t = 1.

The theorem follows from the fact that the likelihood increases at every step of the EM 

algorithm. However, because the online EM algorithm incorporates forgetting factors at 

each step, it may be that the reported result for the estimated number of counts does not lie 

in the count polytope. In order to report estimates that are meaningful, we project the 

solution into the count polytope using von Neumann’s alternating projection method, which 

in our case consists of alternate projection to the cube and the hyperplane which intersect to 

form the count polytope. The algorithm converges in a finite number of steps.

Implementation of eXpress

eXpress takes as input alignments in SAM or BAM format and makes use only of required 

fields. It can therefore be applied to alignments made with any tool that outputs SAM 

format. The output of eXpress consists of three files containing the estimated abundances 

and fragment counts for each target sequence, parameter estimates, and the variance-

covariance matrix for the posterior count distributions. A modified SAM file containing the 

posterior probability of each alignment or a single alignment for each read, sampled from 

the posterior distribution, can also be optionally output.

Fragments are processed in a multi-threaded pipeline. One thread parses the file (or input 

stream) into individual alignment objects. A second thread takes a set of fragment read 

alignments, computes the likelihood of each, and updates the model parameters based on the 

posterior probabilities of fragment origin. A third thread asynchronously updates the 

auxiliary parameters for the target objects (sequence bias and effective length), while 
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simultaneously recalculating the expected fragment length distribution The algorithm is 

seeded by assigning one pseudo-count per 100 sites per target. This equivalent to setting a 

uniform prior on target abundances via the Bayesian interpretation of the online EM 

algorithm mentioned above. Once convergence of auxiliary parameters is reached, one final 

pass through the targets is made, and the thread is terminated. Currently, convergence is 

assumed to occur by the time five million fragments have been processed, but a dynamic 

stopping criterion based on the KL divergence could be used instead.

In current applications in which alignments are stored on disk before analysis, eXpress 

accuracy can be improved with multiple passes through the data, either by repeating the 

online EM algorithm or coupling the batch EM algorithm to the online EM algorithm10. We 

explored different strategies for improving performance by re-examining fragments and 

found that the coupled method using a single pass of the online EM algorithm followed by 

additional rounds of the batch algorithm provides more improvement than the repeated 

online EM after 21 rounds (Supplementary Fig. 5). Neither method requires additional 

memory, but both require a substantial, yet practical increase in running time that is linear in 

the number of iterations. The coupled iteration method can be accessed with the -B option 

followed by an integer specifying the number of rounds. The repeated online EM feature can 

be executed using the -O option, again followed by an integer specifying rounds.

Two approximations were used in the implementation of bias correction in order to improve 

performance. First, instead of calculating the effective length as described above, the 

average fragment bias weight for each target was calculated by taking the product of the 

average 5’ and 3’ bias weights. The average bias was then multiplied by the effective length 

with bias parameters omitted (wp∣t,l = 1 in (5)) to get an approximate bias-corrected effective 

length. Second, when learning the expected sequence bias distributions, only the weights at 

the center position in each window were calculated, and these parameters were used to 

approximate all window positions.

eXpress is an open-source C++ program and is freely available in both source and binary at 

http://bio.math.berkeley.edu/eXpress/. eXpress is distributed under the Artistic 2.0 License 

and runs on Mac OS X, Linux, and Windows.

Simulation RNA-Seq study

Two sets (one with sequence bias, one without) of a billion reads from an RNA-Seq 

experiment were simulated using the generative model (above and Supplementary Fig. 11) 

with parameters for the model determined by running eXpress on RNA-Seq data from the 

ENCODE project human embryonic stem cells (cell line H1-hESC) consisting of 50,170,737 

75bp paired-end reads (Accession SRX026669). Bowtie was used for the mapping with the 

same settings as below, providing proper alignments for 33,189,908 of the pairs. The 73,660 

transcripts in the UCSC Genes hg19 annotation (http://genome.ucsc.edu) were used as the 

target set. The simulated reads together with the parameters used are available at http://

bio.math.berkeley.edu/eXpress/simdata/.
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Software comparisons

To generate the alignments used by eXpress, RSEM, and NEUMA, we used Bowtie19 

v0.12.7 (http://bowtie-bio.sourceforge.net/index.shtml) with the options -a to report all 

mappings, -X 800 to allow fragments up to length 800, and -v 3 to allow up to three 

mismatches in each read. With these parameters 97.7% of the simulated read pairs mapped 

to the reference genome.

Additional alignments were generated by Hobbes20 v1.4 (http://hobbes.ics.uci.edu/) with the 

options -a to report all mappings, −max 800 to allow fragments up to length 800, and -g 7 –

hamming -v 9 to allow for up to nine mismatches in each read. Results for the Hobbes 

mappings can be found in Supplementary Table 2.

eXpress v1.2.0 was used for all experiments with default parameters. The FPKM values, 

which are proportional to the abundances, were used for performance comparisons.

The RSEM4 software requires the same type of input as eXpress (reads mapped to 

transcripts) and therefore the identical read mappings were used for both programs. RSEM 

v1.1.11 downloaded from http://deweylab.biostat.wisc.edu/rsem/ was used in all 

experiments. The rho value reported by RSEM was used as the abundance measure.

NEUMA13 uses Bowtie internally to map the raw reads. However, we found that the Bowtie 

options used by NEUMA in default mode reduce its accuracy by not accommodating errors 

in the reads. We modified the internal mapping to allow for up to 3 mismatches in each read, 

thus greatly increasing the accuracy of NEUMA in our tests (Supplementary Fig. 8). Other 

then this improvement, default options were used. Because NEUMA only outputs 

abundances for a subset of the transcripts that it deems measurable (56,658 out of the 73,660 

UCSC hg19 transcripts), we limited our analysis of other methods to this same subset when 

NEUMA was also compared. NEUMA v1.1.2 (http://neuma.kobic.re.kr/) was used in all 

experiments where it was tested. The reported iFVKM11 values were used as the abundance 

measures.

Since Cufflinks5 requires (spliced) alignments to the genome, we mapped reads using 

TopHat v2.0.0 (http://tophat.cbcb.umd.edu/) with the Map2GTF feature enabled. This 

feature aligns reads to transcript sequences using Bowtie and then projects the mappings 

onto the genome. The options used were -T to enable Map2GTF, -n 3 to allow up to 3 

mismatches in each read, and -G to provide the genome annotation used to generate the 

transcript sequences (hg19, UCSC Genes). Cufflinks was also provided the hg19 UCSC 

Genes annotation as the reference transcriptome. To improve read assignment with 

Cufflinks in cases where reads map to different genomic locations, we modified the program 

to include an optional extra single round of batch EM after initial deconvolution of read 

assignments within genes (Supplementary Fig. 7, the modification has been distributed in 

versions following 1.0.0). All experiments in this paper were run with Cufflinks v1.4.0. 

(http://bio.math.berkeley.edu/cufflinks/) utilizing this option (-u) as well as bias correction12 

(-b), and with −max-bundle-frags set sufficiently high so that no bundles were skipped. The 

FPKM value was used as the abundance measure.
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The wc program is a Unix utility that originally appeared in AT&T Unix. It counts the 

words, lines and characters in an input file. For the purposes of Fig. 2 we ran wc on the 

SAM alignment files.

In order to compare accuracy, we presented each algorithm with the same, multi-sized 

subsets of 1 billion simulated fragments and calculated the Spearman ranked correlation 

coefficient between the resulting estimates and ground-truth abundance values used in the 

simulation. The software was run on a server with 512 GB of RAM to allow RSEM and 

Cufflinks to process a large number of reads. These results are presented in Fig. 2a and 

Supplementary Fig. 7–8.

In order to assess and compare performance on typical hardware, each algorithm was tested 

individually on an 8-core Intel Xeon 2.27 GHz Mac Pro with 24 GB of RAM and 16 hyper 

threads. Cufflinks and RSEM were allowed eight threads for processing, and both were run 

with the same options as above. As before, each algorithm was presented with the same 

multi-sized subsets of one billion simulated reads. For each input size, the total run time and 

peak memory use were measured. Cufflinks and RSEM were halted once they crashed or 

began to report memory errors. These results are presented in Fig. 2b.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of eXpress. The input consists of either single or paired-end reads aligned to a set 

of target sequences and provided in a file or streamed to eXpress. For single fragments that 

map to multiple sites, assignment probabilities are calculated for each site given previous 

estimates of target sequence abundances (initially a uniform prior is used). Next, a 

“forgetting mass” is calculated and partial counts are distributed to the target sequences 

according to the assignment probability. Parameters for fragment length distribution, 

sequence bias, and sequence read errors are updated in a similar fashion and used in the next 

round of alignment. Once the input data has been processed, relative abundances are 

calculated from the count distributions, along with distributions of estimated and effective 

counts. An alignment file that includes mapping probabilities can be generated. eXpress can 

determine whether further sequencing is needed by monitoring relative abundances, making 

it applicable to real-time sequencing and analysis.
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Figure 2. 
(a) Accuracy of eXpress, RSEM, and Cufflinks at multiple sequencing depths in a 

simulation of one billion read pair fragments generated with (dashed lines) and without 

(solid lines) sequencing bias. Accuracy for different abundance levels can be found in 

Supplementary Figure 4. (b) Comparison of time and memory requirements. Since eXpress 

only stores counts for each of the targets and auxiliary parameters, its memory use is 

constant in the number of fragments processed. The running time scales linearly with the 

number of fragments. Stars represent an imposed memory constraint of 24 GB or a software 

crash
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Figure 3. 
Example of abundance estimation by eXpress, RSEM, and Cufflinks at different depths of 

simulated data for the three-isoform human gene UGT3A2. The RefSeq annotation is shown 

at top. Dashed lines indicate the ground-truth relative abundances used for the simulation. 

eXpress only processes each fragment once whereas RSEM and Cufflinks perform many 

iterations before converging to the maximum likelihood solution. Nevertheless, as more 

fragments are observed, all three algorithms converge toward the correct answer at 

approximately the same depth. In fact, eXpress is more robust than the batch algorithms at 

low depth due to its use of a prior. The stop sign shows where eXpress using an optimal 

forgetting factor would automatically stop if a convergence threshold was set to 10-6 in 
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terms of the Kullback-Leibler divergence between the abundance estimates at intervals of 

100 fragments. The lower x-axis shows the estimated depth required to observe the 

corresponding number of reads mapping to this gene (upper x-axis) at a fixed gene-level 

abundance. Abundance was calculated using a human embryonic stem cell RNA-seq dataset 

(Online Methods).
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