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Abstract
In recent years, it has become apparent that there exist several roles for respiratory complex II
beyond metabolism. These include: (i) succinate signaling, (ii) reactive oxygen species (ROS)
generation, (iii) ischemic preconditioning, (iv) various disease states and aging, (v) a role in the
function of the mitochondrial ATP-sensitive K+ (mKATP) channel. This review will address the
involvement of complex II in each of these areas, with a focus on how complex II regulates or
may be involved in the assembly of the mKATP.
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1. Introduction
Mitochondrial respiratory complex II/succinate dehydrogenase (SDH)/succinate ubiquinone
oxidoreductase (SQR); EC 1.3.5.1 (referred to in this review as complex II) is a 124 kDa
protein complex located on the matrix side of the mitochondrial inner membrane [1]. It is
comprised of four subunits: SDHA, SDHB, SDHC and SDHD. SDHA, the flavin-adenine
dinucleotide (FAD) containing subunit and SDHB, the iron-sulfur cluster containing subunit
[2], are anchored to the membrane by the cytochrome b containing membrane proteins
SDHC and SDHD. Complex II is a component of both the Krebs cycle and the respiratory
chain [3]. Complex II oxidizes the Krebs cycle intermediate succinate, generating fumarate
by passing electrons from succinate to FAD. The electrons are passed along the 2Fe-2S,
4Fe-4S and 3Fe-4S centers in SDHB, finally reducing one molecule of ubiquinone (co-
enzyme Q10) to ubiquinol (reviewed in [4,5]). A schematic is shown in Figure 1.

Unlike respiratory Complexes I or III, complex II does not pump protons across the inner
membrane. However, complex II is capable of reducing co-enzyme Q10, which can then be
re-oxidized by complex III and thus participate in the proton pumping Q cycle of oxidative
phosphorylation (Ox-Phos). It is generally believed that the primary function of complex II
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is to maintain the reduced state of the integral membrane Q pool [6]. Fully reduced co-
enzyme Q10 has been shown to function as an antioxidant, protecting mitochondrial lipids
and proteins from damage by constitutively produced reactive oxygen species (ROS) [7].

There exist several roles for complex II beyond metabolism, including succinate signaling,
reactive oxygen species (ROS) generation, ischemic preconditioning, various disease states
and aging, and in the function of the mitochondrial ATP-sensitive K+ (mKATP) channel.
This review will address the involvement of complex II in each of these areas.

2. Complex II inhibition and disease states
2.1 Cancer

Each of the four subunits of complex II is encoded by nuclear DNA. This is a unique feature
of complex II compared to the other respiratory chain complexes, which contain additional
mitochondrial DNA (mtDNA) encoded subunits. Mutations in each of the four complex II
subunits in humans, although rare, have been identified (see Table 1), and result in two
general phenotypic classes. Loss of function or nonsense mutations typically produce slow
growing or benign (SDHC [8] and SDHD [9]) or highly aggressive (SDHB [10]) tumors of
the carotid body, classified as hereditary paragangliomas or pheochromocytomas. In these
cases there is typically no detectable SDH activity in tumors [11]. Mutations in the succinate
dehydrogenase assembly factor 2 (SDHAF2) gene have also been identified, and produce
tumors similar to those caused by SDH-B/C/D mutations [12]. Tumorous phenotypes only
manifest after both copies of a particular SDH gene have been lost and thus are classified as
tumor suppressor genes [13]. The link between complex II and tumor formation may involve
the Warburg effect, wherein defects in Ox-Phos may play a role in driving metabolism more
toward glycolysis. The shift in metabolism, which has been reported in SDH-derived
pheochromocytomas, is thought to be a an important tumor survival mechanism [14].

The mechanisms through which loss of SDH activity promotes tumor growth via the
Warburg effect are debated, and are summarized in Figure 2. The most prominent theories
pose that complex II deficiency results in accumulation of metabolic intermediates that
signal activation of tumor-promoting pathways. The first theory is that loss of SDH activity
leads to an increase in matrix succinate, which freely enters the cytosol through the
dicarboxylic acid transporter. Succinate has been shown to act as a cytosolic signaling
molecule in the hypoxia-response pathway [15–17], by acting as an inhibitor of prolyl
hydroxylases (PHDs) [18]. In this signaling pathway, cells respond to environmental oxygen
levels though hypoxia inducible factor (HIF)-1α. In the presence of molecular oxygen
HIF-1α is hydroxylated by PHDs and targeted by the E3 ubiquitin ligase Von-Hippel-
Lindau (VHL) protein for degradation [19]. In low oxygen, or if PHD is inhibited, HIF-1α
migrates to the nucleus where it forms a heterodimeric transcription factor complex with
HIF-1β, activating genes that lead to increased glycolysis, angiogenesis, motility and
survival [20]. This signaling pathway is generally regarded as pro-tumor survival, enabling
cancer cells to survive the low oxygen environment of the tumor. In support of this
mechanism as a link between complex II mutations and cancer, increased cytoplasmic
succinate levels have been confirmed in SDH–A [21], –B [22], -C and –D [11,23] mutants
in association with an activated HIF pathway (see also[24,25]). For further reviews see:
[6,26–28].

Another key player in cancer, which has been linked to complex II signaling, is the tumor
suppressor p53. Mutant SDHB/D backgrounds are associated with decreased levels of p53
and reduced p53 binding to NADH ubiquinone oxidoreductase I [29], further strengthening
the link between decreased Ox-Phos and tumorous phenotype. Of interest from a
mitochondrial viewpoint, transcriptional targets of p53 include the glycolysis-inhibiting
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gene, TP53-induced glycolysis regulator (TIGAR), and the Ox-Phos activating gene,
synthesis of cytochrome c oxidase 2 (SCO2) [30,31]. Cellular p53 can be activated by
increased reactive oxygen species (ROS). When p53 is not bound to the SCO2 gene, SCO2
is active and stimulates Ox-Phos, leading to increased generation of reactive oxygen species
(ROS) as a byproduct. If ROS levels rise p53 is activated and translocates to the nucleus
where it binds to the SCO2 and TIGAR genes, inactivating and activating transcription,
respectively. The activated TIGAR leads to increased production of the ROS scavenger
glutathione. Interestingly, both hyper-activation of HIF and reduced p53 activity have been
observed in the rare autosomal-dominant conditions Cowden syndrome (CS) and Cowden-
like syndrome (CSL). These syndromes are associated with increased risk of tumors and
hamartomas. In addition, CS and CSL patients harboring SDHB and SDHD mutations have
been identified [29]. This suggests complex II may play a role in other tumors in which both
HIF and p53 are implicated.

Complex II has begun to be recognized as a source of ROS [27,32,33]. Thus a second
mechanism by which complex II mutations may facilitate cancer is by the generation of
damaging levels of ROS. Structural models of bacterial complex II first indicated that the
flavin subunit SHDA was capable of generating ROS [34]. Other complex II subunits were
later identified as a sources of ROS, specifically SDHB [35–37], -C and –D [38] in yeast,
SDHC in C. elegans [39] and mice [40], and SDHB but not SDHA in human cells. In one
study the increase in ROS induced by SDHB mutants was found to be capable of stimulating
the hypoxia-response by inhibiting PHD [41]. However in another study ROS generation by
SHDB was not observed with siRNA knockdown [42] or in human cancer cells exhibiting
an SDHB mutation [23]. The concept that complex II is a biologically significant source of
ROS generation is relatively new, and the production of ROS by various mutants of complex
II subunits therefore requires further analysis for a consensus to be reached.

2.2 Diabetes
ROS and succinate signaling, implicated in cancer formation as a result of complex II
mutations, have also been linked to diabetes. Diabetes is classically characterized by an
inability to regulate blood glucose levels due to the absence of (type 1) or acquired
resistance to (type 2) insulin. In diabetes, mitochondria are subjected to an increase in
substrate delivery as a result of prolonged increases in blood glucose levels. This leads to an
increased rate of succinate and ROS generation [43–45]. In addition to its role as a signaling
molecule in the hypoxia response, succinate has been identified as a ligand for the orphan G
protein coupled receptor GPCR91 [46]. This receptor is expressed in the kidney suggesting
that increased succinate signaling could contribute to renal hypertension, a disease that is
closely linked to diabetes.

A mechanism was recently proposed where succinate regulation/accumulation is a key
mediator of insulin release by pancreatic β-cells [47]. Altered mitochondrial function as well
as increased ROS production were both implicated as pathogenic products of the diabetic
state [48,49]. ROS generation was shown to be increased in insulin deficient rats respiring
on complex I or complex II substrates. The increased ROS was largely attributable to
increased electron leak from the co-enzyme Q10 binding site of complex III [50], or reverse
electron flow through complex II [51].

Recent work has shown that the flavoprotein subunit of complex II (SDHA) is capable of
generating physiologically relevant levels of ROS in isolated mitochondria when
concentrations of succinate were low (400μM) and the inner-membrane pool of co-enzyme
Q10 was mostly in its reduced form (i.e. complex I and III were inhibited). The authors
determined that complex II was capable of generating ROS either from forward flow of
succinate to fumarate or from the reverse reaction from reduced co-enzyme Q10. It has been
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demonstrated that complex II was capable of reducing much smaller pools of co-enzyme
Q10 than any of the other respiratory complexes, and that complex II was fully active upon
reduction of the respiratory chain and in the presence of ATP [6,52]. This suggested that the
main function of complex II is maintenance of the reduced co-enzyme Q10 pool. Fully
reduced co-enzyme Q10 serves as an antioxidant and helps protect mitochondria from free
radicals, whereas the semi-reduced form is a pro-oxidant and is actually a generator of free
radicals [53]. Overall, these results suggest that both the succinate signaling and the ROS
generating mechanisms, potentially linking complex II dysfunction and diabetes, are not
mutually exclusive. For further review see: [5,32,54].

2.3 Neurodegenerative diseases
Rare instances exist where loss of function mutations in SDHA result in paragangliomas,
however such mutations more commonly result in a neurodegenerative disease known as
Leigh’s syndrome [55]. Leigh’s syndrome develops in early infancy and is characterized by
centers of necrotic cells in the brain stem and other regions of the central nervous system.
SDH activity has been shown to be reduced by 25–50% relative to normal tissue.
Interestingly another common neurodegenerative disease, Huntington’s, has also been linked
to dysfunctional SDHA [56]. Huntington’s Disease (HD) is an autosomal dominant
neurodegenerative disease that affects the striatum and cerebral cortex. People affected with
HD typically show behavior symptoms including loss of coordination, decline of cognitive
faculties, dystonia, and the involuntary movement disorder chorea [57]. Patients with HD
have shown reduced mitochondrial complex II and III activities [58,59], and decreases in the
levels of SDHA and SDHB have been observed in the striatum [60]. Tissue from
postmortem HD patents has increased oxidative damage indicative of increased ROS
(reviewed in [61]). Additionally systematic treatment of animal models with complex II
specific inhibitors 3-nitroproponic acid or malonate cause phenotypes similar to HD, further
supporting a link between complex II and HD [62,63].

Finally, another neurological condition in which complex II may play a role is Down
syndrome (trisomy 21). It is now recognized that at least some of the robust nature of Down
syndrome individuals (e.g., resistance to trauma) may originate from their having higher
levels of the cytoprotective gas hydrogen sulfide (H2S), since the H2S generating enzyme
cystathionine β synthase is encoded on chromosome 21 [64]. Notably, SDH has been
identified as a potential site of inhibition by H2S [65], such that prolonged elevation of H2S
may lead to neurodegenerative effects [66] possibly mediated by complex II inhibition.

2.4 Aging
A commonly held theory is that oxidative damage caused in part by ROS from
mitochondrial respiration contributes to aging, however this model has been questioned
recently, as roles for ROS as protective signaling molecules have been documented [67].
Furthermore, recent evidence in the nematode C. elegans indicates that removal of ROS
detoxification enzymes has little effect on worm lifespan [68,69]. Similar results have
recently been reported in mammals [70].

A mild decrease in mitochondrial respiration can extend lifespan in many model organisms,
including worms [71–73], and this effect is conserved in mice [74,75]. In particular,
mutations in complex I and III subunits as well as in the clk-1 gene which encodes a protein
involved in ubiquinone synthesis confer longevity [76]. Interestingly, while the ubiquinone
product of the CLK-1 protein can transfer electrons between complexes I–III or between
complexes II–III, the I–III transfer is specifically inhibited in the mutant [77]. Not
coincidentally, complexes I and III are classically thought to be the main sites of ROS
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production in the respiratory chain, and ROS production is critical for lifespan extension in
the mutants [78].

Furthermore, lifespan is sensitive to oxygen concentration and may be HIF dependent
[79,80], though other signaling pathways appear to respond to mitochondrial dysfunction as
well [78,81–84]. The interface between these pathways may ultimately determine the rate of
aging. In concert these results argue that ROS produced by complexes I and III as a result of
decreased respiration can act as a signal that promotes longevity.

In dramatic contrast to the life-extending effects of mutations in complex I and III subunits,
the mev-1 mutation in the SDHC subunit of C. elegans complex II also results in increased
ROS production, but decreases lifespan [85]. This association between complex II
dysfunction and reduced lifespan was strengthened by the finding that independent mutation
of sdhb-1 (SDHB) resulted in an phenotype that was indistinguishable from mev-1,
including increased ROS production [86]. Many aspects of the mev-1 mutant phenotype are
recapitulated in Drosophila [87], and introducing the mev-1 mutant into mouse SDHC
results in excessive apoptosis, low birth weight and neonatal growth retardation due to ROS
overproduction and mitochondrial stress [88]. Although more apoptosis occurs in the mev-1
model through activation of the canonical pathway, there is also premature accumulation of
aging biomarkers, suggesting that it is not merely inappropriately timed death occurring, but
rather accelerated aging.

There are also unique metabolic signatures that differentiate complex II mutants from those
in complexes I and III, and it has been suggested that long-lived mit mutants utilize a novel
metabolism normally seen under hypoxic conditions [89]. However, mutations in ucp-4 that
decrease succinate-driven complex II respiration suppress shortened lifespan in mev-1
mutants [90], suggesting that it is the physical act of respiring through the mutant complex II
that is damaging. Taken together, these results support the idea that ROS production from
complex II differs in either quantity or quality from that generated by complexes I and III.
For example, one possibility is that the amount of superoxide produced by complex II is
much greater than I or III, and merely overwhelms the detoxification processes. Another
possibility is that the ROS from complex II is distributed in a way that it is less easily
detoxified or more easily creates molecular damage. A third possibility is that the ROS
arising from complex II function (or dysfunction) may not be able to elicit adaptive
responses through similar signaling pathways as ROS from complexes I and III.

Regardless, there appears to be an evolutionary bias toward protecting complex II function.
For example, Drosophila that have been adapted to live under otherwise lethal hypoxia
exhibit nearly a two-fold decrease in complex II activity, with only mild changes to the other
respiratory complexes and consequently less superoxide leakage occurring during
mitochondrial respiration [91]. With respect to mitochondrial disease, for nearly all the other
complexes (esp. complexes I and IV), there exist age-dependent correlations for mutations
in the complex and in particular the mtDNA encoded subunits, which are acutely subject to
mitochondrial ROS. However, complex II is entirely nuclear-encoded, which may be a kind
of a safe-haven, removed from the ROS onslaught that the other mtDNA encoded
complexes are bombarded with, and protected by nuclear DNA damage repair enzymes. It is
intriguing to speculate that this is because the effects of complex II dysfunction are so
detrimental.

A recent study on mitochondrial biochemistry in the developing mouse heart reported on a
preference for complex II over complex I as the electron entry point in the respiratory chain
at embryonic day 9.5, which switches to a preference for complex I by embryonic day 13.5
[92]. A second interesting finding of this paper is that cellular ROS levels rose at the time
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complex II was the preferred electron entry point [92]. This work provides evidence that
complex II is important in early development as well as aging.

3. Ischemia reperfusion (IR) injury and ischemic preconditioning (IPC)
Complex II and ROS are implicated in the acute pathology of ischemia reperfusion (IR)
injury and the following sections are focused on the cardiac model. Key hallmarks of IR
injury are a loss of oxygen and substrate supply, acidification, mitochondrial Ca2+ overload,
loss of adenine nucleotides, permeability pore transition opening, and the overproduction of
ROS [93]. One mechanism of protecting the heart from stress is ischemic preconditioning
(IPC), whereby brief periods of ischemia prior to a longer ischemic insult provide protection
against IR injury [94]. Mitochondria have emerged as a critical component of the signaling
mechanisms involved in IPC [95–97]. The precise mechanism of IPC is elusive but involves
an array of signaling cascades activated by a mild increase in ROS [98–100]. Many of these
signaling events converge on the mitochondrion and the protection of IPC can be mimicked
via the administration of pharmacological agents that act on the mitochondrion; in particular,
complex II and the mitochondrial ATP-sensitive K+ channel (mKATP) are targets of
protective compounds [96].

3.1 complex II and IPC
IPC is known to inhibit mitochondrial electron transport and not surprisingly mimicking this
reduction in activity with mitochondrial respiratory inhibitors is cardioprotective [97]. IPC
reversibly inhibits complex II [101,102]; however, the mechanism remains unclear. One
potential mechanism involves formation of endogenous complex II inhibitors. ROS are an
important component in IPC signaling, and under conditions of oxidative stress the complex
II inhibitor malonate can be generated [102] via the non-enzymatic decarboxylation reaction
between H2O2 and oxaloacetate (OAA) [103]. The competitive inhibitor malonate is also
cardioprotective [102,104].

While both malonate and OAA are inhibitors of complex II, malonate-mediated inhibition is
more readily reversed. Thus, a malonate-occupied complex II would be desirable at
reperfusion [97]. However, the removal of malonate from complex II requires ATP [105],
which is not immediately available in early reperfusion. This suggests that malonate removal
and reversal of complex II inhibition following ischemia may be a gradual process. As such,
malonate may be considered an appropriate inhibitor, since it is easy to remove at the right
time. Furthermore, malonate formation from OAA may offer additional benefit since a
decrease in the concentration of OAA would prevent rapid re-introduction of acetyl-CoA
into the Krebs cycle at reperfusion. Effectively, malonate formation supports a “gradual
wake-up” of the respiratory chain from ischemia/reperfusion, thereby providing
cardioprotection [97].

In addition to an ROS-mediated mechanism of complex II inhibition during IPC, reactive
nitrogen species (RNS) may also participate. For example, nitro-linoleate is generated
during IPC, is cardioprotective [106,107] and inhibits complex II [108]. Also, nitroxyl
(HNO) inhibits complex II [108,109] and is cardioprotective [108,110]. These compounds
react with important thiols in complex II and suggest that complex II may act as a redox
sensor. Notably, complex II can also be glutathionylated on the SDHA subunit, resulting in
an increase in activity [111]. In IR injury, SDHA becomes deglutathionylated, resulting in
impaired activity [111]. It is currently unknown if protective interventions such as IPC are
capable of modulating the degree of complex II de-gluathionylation that occurs in
subsequent IR injury. If so, this would provide another mechanism of control over complex
II during the critical early reperfusion phase.
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Finally, while the modulation of complex II by endogenous inhibitors may provide
protection, it has recently become apparent that more potent and specific complex II
inhibitors such as 3-nitropropionic acid [112,113] and atpenin A5, [104,114] are
cardioprotective, opening the door for complex II as a therapeutic target in IR injury.

3.2 complex II and the mitochondrial ATP-sensitive K+ channel (mKATP)
The mechanism of complex II inhibition and how it is protective remains unclear, but is
thought to involve the mitochondrial ATP-sensitive potassium channel (mKATP). The
mKATP is a central component of IPC-mediated protection, such that channel openers can
mimic IPC [115,116] and channel blockers block IPC [117–119]. The mitochondrial K+

cycle plays an established role in regulating mitochondrial volume and function [120,121].
The precise mechanism of protection elicited by the mKATP remains elusive but may
involve the regulation of mitochondrial matrix volume and adenine nucleotide status, as well
as the prevention of mitochondrial Ca2+ overload and the overproduction of ROS [122,123].

Despite the central role of the mKATP in protecting the heart, the molecular composition of
the channel remains debated (see Figure 3). Similarities in pharmacologic agents and
channel characteristics suggest that the mKATP may be related to the well-defined surface
KATP channel. However, mKATP specific agents (e.g., diazoxide and 5-HD) which are used
to distinguish the channel from the surface KATP [115] suggest a variation in structure.
Furthermore, the mKATP specific opener diazoxide inhibits complex II activity, and other
complex II inhibitors open mKATP [102,104,104,108,113]. While the relationship between
complex II inhibitors and the mKATP has been alluded to, this relationship remains to be
fully characterized.

The combination of a lack of a consensus structure and ‘off-target’ effects of channel
modulators has led to the hypothesis that the mKATP may be composed of known
mitochondrial components such as complex II, rather than canonical KATP subunits. The
evidence for each hypothesis is provided in the following sections, with current models for
mKATP shown in Figure 3.

3.3 Molecular composition of the mKATP

3.3.1 Canonical Kir6.x/SUR composition?—A canonical surface KATP channel is
made of a pore-forming inwardly rectifying K+ channel subunit (Kir6.1 or Kir6.2) coupled
with an auxiliary sulfonylurea receptor (SUR1, SUR2A or SUR2B) subunit [124], in an
octomeric conformation (Figure 3). Agents which inhibit (e.g., glyburide) or activate (e.g.,
pinacidil and nicorandil) the surface KATP also affect the mKATP, and following the
discovery of ATP-sensitive K+ currents in mitochondria [125] efforts were focused on
ascribing a Kir6.x/SURx composition to the channel. However, Kir6.x/SURx are not found
in mitochondrial proteome databases [126] and they lack canonical mitochondrial targeting
sequences [127]. It has therefore been proposed that other mechanisms that involve
structural features such as protein folding [128] or post-translational modification [129] may
target these proteins to the mitochondrion.

Previous approaches to identify the mKATP have relied heavily on immunologic techniques
and yield a complicated outlook, with reports of Kir6.1 [130–132], Kir6.2 [133], both [134–
136] or neither [137] in mitochondria. Moreover two widely used anti-Kir6.1 antibodies
have been shown to recognize mitochondrial proteins not related to a Kir subunit [138].
Trafficking of a Kir6.x subunit to the cell surface requires its association with a SURx and
suggests that if a Kir6.x subunit exists in the mitochondrion, it would be associated with
SURx. Recently, a splice variant of SUR2 was found to localize to mitochondria, however it
did not contribute to mKATP activity [139].
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The mKATP is central to IPC-mediated protection, and while knockout mice for Kir6.1,
Kir6.2, SUR1 and SUR2 [140–142] exist, confounding vascular effects preclude definitive
evidence for the role of Kir6.x/SURx in IPC [140,143–145]. A key example is that many of
these KATP channel mice exhibit diabetes, which is known to diminish the response to IPC
[144]. Previous measurements of mKATP activity relied on flavoprotein fluorescence as an
indicator of channel activity and found that the loss of Kir6.1 or Kir6.2 in mice does not
affect flavoprotein fluorescence [146,147].

More recent studies suggest an alternative mKATP composition, hypothesizing that a variant
of Kir1.1 (the canonical renal outer medullary K+ channel, ROMK) may be the pore-
forming subunit of the mKATP [148]. However, reconciliation of several inconsistencies
would help to validate this claim. For example, the ATP sensitivity of ROMK is much
higher (K1/2 = 2.3 mM) [149] than that measured for the mKATP (1–25 μM) [150,151].
Furthermore, the tricyclic antidepressant drug fluoxetine (Prozac) is known to inhibit both
the mKATP (IC50 2.4 μM) and IPC [151], but Kir1.1 is insensitive to fluoxetine [152,153].
Direct measurements of mKATP activity from genetic models (e.g., ROMK knockout mice),
which are currently lacking, may be necessary to designate mKATP channel status to Kir1.1.
Therefore, while Kir1.1 may indeed be present in mitochondria, its role in IPC remains to be
fully elucidated.

The mKATP channel activity is conserved across a range of species and cross-species
comparisons may help to identify or rule out certain candidate genes. For example, while the
mammalian genome codes for 15 Kir isoforms, the C. elegans Kir family contains only three
genes, irk-1, irk-2, and irk-3. Using the power of worm genetics, we recently showed that a
triple knockout irk-1/2/3 worm exhibited perfectly normal mKATP activity and
preconditioning [154]. These data demonstrate that at least in C. elegans, the mKATP is not
derived from the Kir family. While more work is needed to fully elucidate the role of
canonical Kir/SUR subunits in the mammalian mitochondrion, these results suggest that
non-Kir proteins should also be considered as candidates for the mKATP. In this regard, the
lack of consensus regarding off-target effects of KATP agents (described below) has led to
the hypothesis that the mKATP is composed of known mitochondrial proteins, including
complex II.

3.3.2. Alternative hypothesis: a complex II composition for mKATP?—The notion
that the mKATP resembles the surface KATP was largely built on the use of small molecules.
Inhibitors and activators of the defined surface KATP had expected effects on isolated
mitochondria K+ fluxes. However, most of these molecules have off-target effects on
mitochondrial function (reviewed in [155]). For example, glyburide is a sulfonylurea used to
treat type 2 diabetes. Via its interaction with the SUR (140–180 kDa), glyburide inhibits
KATP channels [156]. Glyburide also prevents the protective effects of mKATP activation.
Studies using labeled glyburide found that it binds to a 28 kDa protein in heart [157] and a
64 kDa in brain mitochondria [158]. These weights are significantly smaller than the
apparent molecular weight of the surface KATP channel, and they may represent a
mitochondrial targeted splice variant [139] or a SUR-independent target. In this regard,
glyburide at high doses inhibits respiration [159,160] and molecular modeling demonstrates
that it may interact with the adenine nucleotide translocator (ANT) [161]. Work in our
laboratory (unpublished) has found that a BODIPY conjugate of glyburide binds to intact
complexes I and V on clear-native electrophoresis gels.

Perhaps the most widely used tool related to mKATP studies is diazoxide. While diazoxide is
a general KATP opener, it is more potent at opening the mKATP and is considered a mKATP
specific agonist [115]. However, diazoxide has off-target mitochondrial effects, such as
mitochondrial uncoupling at high concentrations, and inhibition of complex II. It is
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important to note that while diazoxide does implicate a relationship between complex II and
the mKATP, other channel openers such as cromakalim do not affect complex II activity.
This suggests that complex II is not the sole component of the channel and may represent an
important regulator. Nonetheless, these effects of diazoxide on complex II are interesting
when viewed alongside another characteristic of complex II – namely the fact that ATP
allosterically activates complex II activity [102,162]. This suggests an inverse relationship
between complex II and mKATP activities.

Rather than serving as the mKATP channel alone, it has been proposed that complex II may
form a complex with other known mitochondrial proteins, to elicit mKATP channel activity
[137]. This complex includes the phosphate carrier, mitochondrial ATP-binding cassette
protein-1, the ANT, and respiratory complex V [137]. These proteins were purified as a
fraction from mitochondria, and while the fraction contained over twenty proteins
identifiable by silver staining, these 5 proteins were the majority components [137]. The
purification and reconstitution of these proteins into proteoliposomes reproduced the
pharmacologic characteristics of the mKATP channel [137], including the ability of complex
II inhibitors to stimulate K+ flux. Thus, it was suggested that these proteins may exist in a
super-complex comprising the mKATP channel. There is a precedence for super-complexes
in the respiratory chain [163] and evidence for coupling between complex II and complex V
deficiencies in humans [164]. It has also been suggested that diazoxide interacts with
complex V, facilitating the binding of its endogenous inhibitor to the F(1) subunit [165] and
reversibly inhibiting ATP hydrolysis.

A shortcoming of this proposed mKATP super-complex is the lack of an actual K+

transporting protein in its composition [137]. All known K+ channels contain the consensus
sequence GYG in their pore region, providing a selectivity filter for potassium. There is
some evidence that the ANT can transport K+ [166,167], and molecular modeling suggests
that the KATP blockers glyburide and 5-HD can interact with the ANT [168], but ANT does
not have a GYG motif. Thus the possibility remains that a low abundance [169] bona fide
K+ channel subunit may be present in the super-complex, to confer mKATP activity.

The functional and pharmacologic evidence supporting the hypothesis that complex II is a
component or regulator of the mKATP channel is summarized as follows: 1) complex II
inhibition is observed in IPC [101,102], 2) mKATP inhibitors stimulate complex II
[102,162,170], 3) mKATP openers inhibit complex II [102,104,170,171], 4) complex II
inhibitors open mKATP and are cardioprotective in a manner sensitive to mKATP blockade
[104,108,113]. The array of structurally distinct complex II inhibitors capable of protecting
by opening mKATP range from endogenously generated (e.g., malonate) to potent and
specific (e.g., atpenin A5). These inhibitors interact with complex II at different sites and all
elicit mKATP activity.

One unique aspect that has arisen from these studies is that, like diazoxide, the amount of
inhibitor required for maximal mKATP activity is much lower than that required for the
enzymatic inhibition of complex II. For example, atpenin A5 has an IC50 for complex II
activity of 10 nM, while 1 nM yields maximal mKATP activity. Taking advantage of the
potency of atpenin A5, the relationship between complex II and mKATP activity was
quantified, with the finding that only 0.4% of complex II molecules were necessary to elicit
maximal mKATP activity [169]. Not only does this account for the low abundance of the
channel [172] it also demonstrates that bulk complex II activity is not affected by the
presence of the inhibitor. These results imply that the specificity of diazoxide for the mKATP
vs. the surface KATP may reside at the level of complex II [169]. Finally, it is notable that all
known complex II inhibitors can activate the mKATP channel even when mitochondria are
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respiring on complex I linked substrates (e.g. pyruvate plus malate). This suggests that
complex II does not need to be enzymatically active to participate in the mKATP.

4. What is the endogenous physiologic role of the complex II – mKATP

channel interaction?
As discussed in the preceding sections, a role for both complex II and mKATP channels in
IPC has been well established. However, these proteins clearly did not evolve for this
purpose. Therefore, how do they interact under normal conditions, and what is their
baseline/endogenous physiologic role in the absence of a stress signal such as IPC?

4.1 A ROS signal?
A key question in the mKATP field is how complex II transmits a signal to induce
mitochondrial K+ uptake, and the physiologic relevance of this phenomenon. One proposed
mechanism is that, independent from direct complex II ROS generation [173], complex II
inhibition may trigger ROS formation by a different part of the respiratory chain (complex
III), and this is responsible for subsequent protective signaling [174]. In brief, the reduction
state of the co-enzyme Q10 pool can influence complex III ROS production, especially when
complex III is inhibited with antimycin [32]. When electrons are supplied via complex II,
inhibitors of complex II can stimulate antimycin-induced ROS production in a bell-shaped
response, as a consequence of the redox state of the co-enzyme Q10 pool [175,176] (recently
reviewed in [177]). Since mild ROS generation is a critical component of IPC, this
mechanism was hypothesized to mediate the protective effect of complex II inhibitors and
diazoxide, completely independent of any role for the mKATP channel [174]. However,
several pieces of evidence suggest this ROS phenomenon is independent of complex II’s
role in the mKATP or in IPC. These will now be discussed in detail:

i. The increase in ROS is dependent on succinate: The increase in ROS with complex
II inhibitors was only observed when mitochondria respired on succinate and not
present when complex I or complex III were used as electron sources [174,178]. On
the contrary, complex II inhibitors can open the mKATP even when mitochondria
respire on complex I or complex IV linked substrates [102,104,104,169], or when
channel components are reconstituted in proteoliposomes or lipid bilayers [137]
(reviewed in [179]).

ii. ROS generation requires the presence of antimycin A: In the absence of antimycin,
complex II inhibitors did not increase ROS formation, rather the addition of
inhibitors resulted in a decrease in ROS [174,176]. Another study demonstrated a
decrease in ROS formation with complex II inhibitors in the presence of succinate,
rotenone and myxothiazol [173]. Furthermore, modulation of the co-enzyme Q10
pool redox state by cyanide [176] or loss of cytochrome c does not increase
complex III ROS [180]. Thus, the increase in ROS induced by complex II
inhibitors appears unique to antimycin. Contrastingly, studies demonstrating
mitochondrial K+ flux induced by complex II inhibitors did not have antimycin
present [102,104,108,137,151,169,181].

iii. ROS generation is independent of K+, or mKATP inhibitors: A hallmark of mKATP
activity is its sensitivity to K+. In this regard, both mitochondrial K+ fluxes and the
protective effects of complex II inhibition are K+ sensitive
[102,104,108,113,137,151], while antimycin induced ROS generation was
insensitive to loss of K+ [174,178]. Similarly, both mitochondrial K+ fluxes and the
protective effects of complex II inhibition are sensitive to mKATP channel
inhibitors [102,104,108,113,137,151,182], while antimycin-induced ROS
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generation is not [174,178]. These findings highlight that ROS generation in
response to complex II modulation is completely independent from mKATP and
mitochondrial K+ flux.

iv. ROS generation via this mechanism requires higher concentrations of complex II
inhibitors than required to activate the mKATP channel [174]: Diazoxide at high
concentrations (>100μM) may result in uncoupling or activate surface KATP
channels. When used at appropriate concentrations (10–30 μM) diazoxide displays
mKATP specificity [115]. Recently we demonstrated that a low concentration of the
complex II inhibitor atpenin A5 activates mKATP activity in isolated mitochondria
and results in mKATP-sensitive cardioprotection [104]. Moreover, this
concentration (1 nM) is without effect on bulk complex II enzymatic activity [169].
However, the antimycin-induced ROS generation was only seen at atpenin A5
concentrations (5–50 nM) that would influence complex II activity and
subsequently the state of the co-enzyme Q10 pool.

Together, these findings suggest that the mKATP activity and cardioprotection mediated by
complex II inhibition are independent of antimycin-induced ROS generation. The currently
available evidence does not favor ROS generation as an intermediate signal between
complex II, mKATP, and cardioprotection/IPC.

4.2 Energy sensing
The mKATP has been described in humans, rats, mice, plants, amoeba, T. cruzi and C.
elegans [125,133,183–186]. Although the primary research interest in the mKATP field is
cardioprotection, most of these species do not have a heart or suffer from any cardiac
disease, suggesting that the channel may have an evolutionarily conserved physiologic role.
If the mKATP is a super-complex of complex II, the phosphate carrier, mitochondrial ATP-
binding cassette protein-1, ANT, and complex V, this may suggest a relationship between
mitochondrial K+ fluxes and bioenergetics. This view is compatible with the energy-sensing
capabilities of the canonical surface KATP channel. While other metabolic sensing pathways
such as mTOR [187], SIRT3 [188] and AMPK [189] may involve changes in complex II
[190–192], they integrate more long term changes in metabolic state. In contrast, the
complex II/mKATP system may respond more rapidly to energetic status. Since regulation of
metabolism is known to be a strategy for protecting the heart against ischemia [97,193], any
component which can regulate metabolism or the energetic status of the mitochondrion (e.g.
mKATP) may also be a critical component of a cell’s cardioprotective machinery.

The complex II/mKATP complex is hypothesized herein to exert control over metabolism in
addition to “classical” respiratory control (i.e., state 3 / state 4), to meet the cell’s energy
demand. These mechanisms are shown in Figure 4. First, the introduction of electrons into
the respiratory chain is competitive, such that the oxidation of succinate at complex II
inhibits the oxidation of NADH at complex I [52]. Since complex II does not pump protons,
the H+/e− stoichiometry is lower when electrons enter at complex II. Thus, the ratio of
electron entry between complex II vs. I can lead to changes in the overall efficiency of Ox-
Phos. This becomes an important mechanism of regulating metabolism, when coupled with
the fact that complex II is activated by ATP. Under conditions of high ATP, complex II is
active, thus inhibiting complex I, and lowering H+/e−, leading to inefficient Ox-Phos.
Alternatively, when ATP is low, complex II activity is also low, so more electrons enter at
complex I, and H+/e− rises to meet the demand for more ATP [52].

In a second novel mechanism of control, regulation of mitochondrial matrix volume by the
mKATP channel may serve as a coupling link between ATP levels and the activity of the Ox-
Phos machinery. Mitochondrial K+ uptake is followed by osmotically obliged water,
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resulting in matrix swelling [120]. Matrix volume controls efficient energy transfer (via the
creatine kinase (CK) shuttle system), and controls the activity of matrix enzymes necessary
for ATP production, and is critical to the regulation of energy metabolism [121,172,194–
200]. As such, when ATP levels are high, the mKATP is inhibited, the matrix shrinks, and
the resulting loss of inner/outer membrane contacts decreases the efficiency of the CK
shuttle system. In contrast, low ATP levels facilitate K+ influx via mKATP, leading to matrix
swelling, which enhances inner/outer membrane contact and stimulates efficient shuttling of
high energy phosphates.

As depicted in Figure 4, the combination of the influence of K+ on mitochondrial volume
and metabolism, with complex II activity and energy sensing capabilities, suggest that these
phenomena may be components of a concerted mechanism to modulate Ox-Phos to meet
energy demands. This proposed physiologic role of the mKATP also makes the channel an
important component of how the cell responds to pathologic conditions (e.g., IR injury).

4.3 Mitochondrial Fission/Fusion?
Recently however, an intriguing link has been proposed between a super-complex type
mKATP channel (see section 3.3.2) and Charcot-Marie-Tooth disease type 2A [181].
Typically, this disease is associated with mutations in mitofusin 2 (MFN2), which is an
important regulator of both mitochondrial fusion [201] and membrane potential [202].
Notably, the study found that a mouse model carrying an MFN2 mutation had a defect in
both complex II (40% reduction) and complex V (30% reduction) [181]. Interestingly, the
lost enzymatic activities were reversed by the mKATP inhibitor 5-HD. Furthermore, the
phenotype could be mimicked by the mKATP channel opener diazoxide [181]. What remains
unclear, is how a mutation in MFN2 (an outer membrane protein with the bulk of its
structure facing the cytosol) communicates with complex II and V in the inner membrane.
However, this study highlighted a role for complex II (and complex V) and the mKATP in
disease. Further studies are needed to investigate the link between mitochondrial K+ flux
and fission/fusion.

5. Conclusions and Future Directions
Complex II inhibition plays a dual role in biology, being both a destructive force in many
disease states and also a protective mediator in others. Complex II “the destroyer” is capable
of generating ROS in a manner that may be different in quantity or quality from complexes I
and III. The genes encoding complex II are protected in the nucleus and may represent a
mechanism to protect the cell from devastating ROS production resulting from mutated
complex II. Complex II “the protector” connects mitochondrial volume regulation and
metabolism via the mKATP channel. Despite a role for mKATP in both physiological and
pathological conditions, the underlying molecular structure of this channel and why it is
evolutionarily conserved remains unknown. Since the phenomenon of the mKATP has been
described in a range of organisms from plants to mammals, comparative genomics may
yield promising candidates, as was recently applied to the identification of the mitochondrial
calcium uniporter [203,204]. However, if the mKATP is composed of known mitochondrial
components (e.g. complex II) this approach may not be successful. Pharmacologic evidence
has suggested that the channel is molecularly related to the surface KATP, and while a
significant pharmacologic overlap made this hypothesis attractive, model organism
genomics has shown that a Kir subunit is not necessary for mKATP channel activity or
protection against stress [154]. On the other hand, complex II (and other components in the
super-complex) are implicated not only in energy sensing but also mitochondrial K+ fluxes.

Despite recent reports [148], the quest for the precise molecular identity of the mKATP and
the role of complex II in regulating it continue. In particular, although knockout mice for the
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mKATP candidate gene ROMK are available, these mice exhibit renal pathology [205] which
could the interpretation of experiments on cardioprotection. Clearly, a cardiac-specific
ROMK−/− mouse would be a useful tool to elucidate the role of ROMK in cardioprotection.
Furthermore, newly discovered inhibitors or activators of ROMK and other members of the
inward rectifying K+ channel family [206] will be useful tools, and (in the case of activators)
potential therapeutics.

Although the complete loss of complex II in mammalian models is lethal [207], the
generation of inducible tissue-specific knockout models may provide the tools necessary to
address the role of complex II in cytoprotection. In such models, an acute loss of complex II
activity in adulthood would be necessary, to avoid the contribution of developmental and
metabolic affects associated with long term loss of function. Alternatively, microRNA
regulation of complex II (e.g., by miR-210 [208]) may be a promising avenue to influence
complex II levels, and is worthy of pursuit not only from a mechanistic angle, but also due
to the increasing interest in miRNAs as therapeutic targets.

Finally, although complex II inhibitors are prevalent (Table 2), there is currently only one
allosteric activator of complex II activity, namely ATP. Clearly such activators could have
both therapeutic and investigational value, and the search for more such molecules should be
encouraged.
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Figure 1.
Complex II: Complex II is the succinate dehydrogenase enzyme of the TCA cycle oxidizing
succinate to fumarate. The succinate ubiquinone oxidoreductase enzymatic activity transfers
electrons from succinate through the FAD moiety of SDHA to three iron sulfur centers of
SDHB and finally to Coenzyme Q10 via SDHC/D. Although the enzyme containe a heme
iron, its role in electron transfer is uncertain. Complex II acts to increase the pool of reduced
Coenzyme Q10 (QH2) in the mitochondrial inner membrane. Reduced Coenzyme Q10 then
transfer electrons to complex III.
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Figure 2.
Metabolic and cancer related consequences of mutations in the SDH complex: 1) wild-type
SDH subunits form a functional complex II. Succinate is oxidized to fumarate keeping
cellular succinate levels low. Electrons are transferred to Coenzyme Q10 which can act as an
antioxidant maintaining low levels of ROS. 2) Mutations in any of the four SDH subunits
inhibit or impair normal election flow. Left: Increased succinate enters the cytosol where it
inhibits prolyl hydroxylase (PHD) mediated degradation of HIF-1α, resulting in
translocation of HIF-1α to the nucleus and increased transcription of genes for tumor
survival. Right: Disrupted electron flow through complex II leads to increased ROS (either
directly or via less scavenging by reduced Co-enzyme Q10). ROS can act directly as a
mutagenic agent on DNA or as a signaling molecule activating p53. p53 responds to ROS by
increasing genes responsible for inhibiting glycolysis and ROS scavenging and decreasing
genes involved in stimulating Ox-Phos. Loss of p53 in conjunction with mutations in
complex II can result in dysregulation of these genes.
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Figure 3.
Current models for the mKATP: 1) The mKATP mayo be composed of a Kir/SUR octamer.
Evidence is based on the composition of known KATP channels from cell membranes and
immunoreactivity of mitochondrial inner membrane fractions to anti-Kir and anti-SUR
antibodies. 2) The mKATP may be composed of a super complex of known inner membrane
proteins adenine nucleotide transporter, phosphate carrier, mitochondrial ATP binding
cassette protein 1, complex II and complex V. This hypothesis is based on detection of
mKATP activity in reconstituted proteo-liposomes containing these five proteins [137]. 3)
The mKATP is proposed to be composed of a tetramer of the Kir1.1 protein (renoal outer
medullary potassium channel, ROMK) [148].
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Figure 4.
Complex II/mKATP interaction in energy sensing: “Classical” respiratory coupling is shown
in the center, in which mitochondria transition between quiescent (state 4) and
phosphorylating (state 3) conditions depending on availability of ADP. Additional levels of
control are shown in outer circuits, including: (i) ATP is a complex II activator, so low ATP
leads to preferred electron entry via complex I, which in turn increases the efficiency/
stoichiometry of Ox-Phos (H+/e− ratio), increasing ATP synthesis (right side). The reverse is
true when ATP is high (left side). (ii) Low ATP dis-inhibits (opens) the mKATP channel,
leading to K+ and water entry and swelling of the matrix (right side). This leads to greater
contact between the inner and outer membranes (IM/OM), enhancing the creatine kinase
shuttle and ATP availability for the cell. When ATP is low, the cycle reverses, as ATP
closes the mKATP channel, the matrix shrinks, and IM/OM contact decreases, lowering ATP
transport to the cytosol (left side).
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Table 2

Complex II modulators.

Reagent Conc. Effects mKATP effect

ATP mM Activate [102,162] Inhibit [102,182,198]

Atpenin A5 nM Inhibit [104,114,173,174] Activate [104]

Diazoxide μM Inhibit [171] Activate [102,115,182,198]

HNO μM Inhibit [108,109] Activate [108]

LNO2 μM Inhibit [108] Activate [108]

Malonate mM Inhibit [137] Activate [102,104,137,181]

3-nitropropionate mM Inhibit [236,237] Activate [113,137]

Oxaloacetate μM Inhibit [52,102,238,239]

Harzianopyridone nM Inhibit [114]

carboxin μM Inhibit [114]

HQNO μM Inhibit [114]

TTFA μM Inhibit [114]

Legend. HQNO, 2-heptyl-4-hydroxyquinoline N-oxide; TTFA, 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione
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