
Nonparametric Inference for Median Costs with Censored Data

Hongwei Zhao1,*, Chen Zuo2, Shuai Chen3, and Heejung Bang4

1Department of Epidemiology and Biostatistics, Texas A&M Health Science Center, College
Station, Texas 77843, U.S.A.
2Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin 53792, U.S.A.
3Department of Statistics, Texas A&M University, College Station, Texas 77843, U.S.A.
4Division of Biostatistics, University of California, Davis, California 95616, U.S.A.

Summary
Increasingly, estimations of health care costs are used to evaluate competing treatments or to
assess the expected expenditures associated with certain diseases. In health policy and economics,
the primary focus of these estimations has been on the mean cost, because the total cost can be
derived directly from the mean cost, and because information about total resources utilized is
highly relevant for policymakers. Yet, the median cost also could be important, both as an
intuitive measure of central tendency in cost distribution and as a subject of interest to payers and
consumers. In many prospective studies, cost data collection is sometimes incomplete for some
subjects due to right censoring, which typically is caused by loss to follow-up or by limited study
duration. Censoring poses a unique challenge for cost data analysis because of so-called induced
informative censoring, in that traditional methods suited for survival data generally are invalid in
censored cost estimation. In this article, we propose methods for estimating the median cost and its
confidence interval (CI) when data are subject to right censoring. We also consider the estimation
of the ratio and difference of two median costs and their CIs. These methods can be extended to
the estimation of other quantiles and other informatively censored data. We conduct simulation
and real data analysis in order to examine the performance of the proposed methods.
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1. Introduction
Estimations of medical costs have become a widely used tool for evaluating the economic
implications of competing treatments. Because resources are limited in a society, it is
important that new treatments are developed with the proper cost considerations. The mean
(average) cost has been the predominant summary measure of cost data in the health policy
and economics fields, since it relates directly to the total cost, which then reflects the
economic burden on society. However, it is well known that the cost distribution is highly
skewed in general and that the mean could be influenced greatly by outliers or erroneous
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data. Therefore, in some situations the mean alone may offer incomplete information. The
median cost could better represent typical costs paid or expected for a majority of
individuals, and could provide additional information unrevealed by the mean. While
median costs have not yet been adopted into health policy decision making, the estimation of
median costs and the comparison of these among different groups (e.g., use of
nonparametric tests such as the Wilcoxon test) have been topics of interest to health
researchers (Kapur et al., 1999; Thomson et al., 2002; Taira et al., 2003). The median, along
with other quantiles, has long been used for characterizing monetary data such as housing
price, mortgage, income, and quantile-based methods have been studied extensively in the
econometrics literature, see Koenker (2005). A quantile-based analysis can provide more
specific and comprehensive information than one based on the mean. For example, it is not
uncommon to see the highest 10 percentiles show a significantly increasing trend over time,
while the lowest 10 percentiles show constant or decreasing trends. In such cases, use of a
single summary measure such as the mean alone could be limiting or even misleading
(DeNavas-Walt, Proctor, and Mills, 2004).

Today, cost data are collected increasingly through clinical trials and observational studies
(Ramsey et al., 2005; Faries et al., 2010). Similar to survival data, the cost data collected
from these studies can be censored due to incomplete follow-up before the clinical event of
interest (e.g., death) is reached. Although it is often reasonable to assume that the time of
event and the time of censoring are independent or conditionally independent, the
assumption of independence generally does not hold for the associated costs. That is, cost at
event and cost at censoring are no longer independent. This censoring mechanism is called
“induced informative censoring,” as noted by Lin et al. (1997). Since a person who
accumulates cost slowly would have smaller costs at both censoring time and event time, the
censored total cost and the uncensored total cost tend to be positively correlated. Therefore,
the analysis of censored cost data faces a special challenge, one that invalidates most of the
standard statistical methods developed for censored survival data (e.g., the Kaplan–Meier
estimator, the Cox model, the log-rank test). Over the past decade, we have seen various
methods developed to address this challenge in different statistical settings. In particular, the
task of estimating the mean cost with censored data has been studied by Lin et al. (1997),
Bang and Tsiatis (2000), Zhao and Tian (2001), O'Hagan and Stevens (2004), Raikou and
McGuire (2004), Young (2005), Zhao et al. (2007), Pan and Zeng (2011), among others. As
for quantile-based methods for censored cost, the median regression model was developed
by Bang and Tsiatis (2002). To our knowledge, however, to date there has been no method
proposed for the estimation and inference of the median or other quantiles of costs with
censored data.

In this article, we propose estimation and inference procedures for the median and other
quantiles of medical costs subject to right censoring, by extending the techniques developed
for the median survival time (Brookmeyer and Crowley, 1982; Gardiner, Susarla, and Ryzin,
1986). In addition, we develop inference procedures for the ratio and difference of two
median costs. We consider the ratio measure as a natural and intuitive extension of the
difference measure, similar to the risk difference and the risk ratio which are commonly
considered together in clinical and epidemiologic research. In fact, the ratio could be a more
meaningful measure when comparing different quantiles between the groups, or when
comparing results from studies conducted at different time periods since it is scale invariant.
Because of censoring, it is virtually impossible to consider the costs accumulated over a
person's lifetime without introducing some assumptions that are unverifiable. Hence, we
consider costs accumulated over a limited time L (e.g., 3 or 5 years), where L is often chosen
to be the time so that a reasonable amount of data are still available at L. In general, the
same time restriction is also required for the estimation of the mean cost, without making
further assumptions about the distribution for the survival time and the cost (Huang, 2009).
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This article is organized as follows. In Section 2, we explain how to estimate the median and
its confidence interval (CI) (one sample problem) and then extend the methods to the ratio
and difference of the medians (two sample problems). We propose inefficient and efficient
estimators. Section 3 presents simulation studies, where we examine sample properties of
the proposed methods numerically. We apply our methods to a cardiovascular clinical trial
and summarize our results in Section 4. Finally, we conclude with discussions in Section 5.

2. Methods
2.1 Notation

We adopt a set of standard notations for survival analysis, denoting the time to event by Ti
and the time of right censoring by Ci, for the ith subject (i = 1, . . . , n). We also assume that
the subject is accumulating cost over time, and cumulative cost at time u is denoted by
Mi(u). The variable C is independent of both the event time T and the cost accumulation
process M(·). This assumption could be reasonable in well-conducted clinical trials where
most censoring occurs due to staggered entry and study termination. It is adopted in most
survival data analyses (Kalbfleisch and Prentice, 2002). We denote the associated survivor
function for T by ST (u) = Pr(T > u) and the survival function for C by K(u) = Pr(C > u).

As we noted in the Introduction, due to the presence of censoring, it is generally impossible
to estimate costs over the entire health history without making some distributional
assumptions. Therefore, we concentrate on the costs accumulated up to a prespecified time
limit, denoted by L, where one has a reasonable amount of complete data available over the

time period [0, L]. As a result, the survival time Ti will be replaced by , but

for notational convenience, we will use Ti instead of  throughout the manuscript.

Typically, observed data are the random vectors of

where Xi = min(Ti, Ci), Δi = I(Ti ≤ Ci), and the cost history data Mi(u) are ascertained in
discrete fashion (e.g., monthly or daily). We further define the observed total medical costs
for the ith subject by Mi = Mi(Xi).

In the following subsections, we propose methods for the estimation and inference of the
median cost as in the one sample problem, and of the ratio (or difference) of two median
costs as in the two sample problem. Define the survival distribution of total medical costs as
S(x) = Pr{Mi(Ti) > x}, the median cost can be written as

In addition, if we define the median costs from groups 1 and 2 as τ1 and τ2, the ratio and the
difference of the two medians are denoted, respectively, as

We will consider the inference problem for τ, γ, and d, when only final cost data are
available for each subject (i.e., Mi(Xi), one observation per subject), and when longitudinal
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cost history data are also available (i.e., Mi(u) : 0 ≤ u ≤ Xi, multiple observations per
subject).

2.2 Estimating the Survival Function of Costs with Censored Data
In order to estimate the median cost and its CI, we first need to estimate the survival
distribution of the cost, denoted by Ŝ(x), and to establish its asymptotic properties. Although
the survival function for the failure time T under random censoring mechanism has been
proposed by Kaplan and Meier (1958), the same technique cannot be used validly for the
survival function of medical costs due to the induced informative censoring mechanism as
we explained earlier. We will use, instead, a method based on the inverse probability
weighting scheme which was originally proposed by Horvitz and Thompson (1952) for
analyzing survey data, and later employed extensively for handling various statistical
problems in biostatistics, including censored data, missing data, and causal inference.

A simple weighted estimator for S(x) can be obtained by

(1)

where K ̂(Ti) is the Kaplan–Meier estimator for the survival function of the censoring time
variable C, K(u) = Pr(C > u), evaluated at Ti. The underlying idea of this weighting scheme
is that one uncensored/complete observation Ti represents 1/K(Ti) observations that might
have been observed if censoring had not occurred.

Following similar arguments used in Zhao and Tsiatis (1997), and based on the theory of
counting processes and the general theory for missing data problems (Fleming and
Harrington, 1991; Robins and Rotnitzky, 1992; Robins, Rotnitzky, and Zhao, 1994; Tsiatis,
2006), we can show that this simple weighted estimator is consistent and asymptotically
normal:

(2)

with the asymptotic variance  that can be estimated by

(3)

where

with Bj = I(Mj > x) and ŜT (Ci) being the Kaplan–Meier estimator for ST (u) = Pr(T > u)
evaluated at time Ci.

This simple weighted estimator is easy to use and well suited for the case where only the
final cost is available from each patient. However, it is destined to be inefficient, because
censored cost data and cost history are not utilized in estimation. If data on the cost history
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are available for each subject, additional information contained in the history can be used
and may lead us to more efficient estimators.

One effective way to improve efficiency is to redefine the endpoint for each person,
adapting the approach used in the estimation of quality-adjusted lifetime (Zhao and Tsiatis,
1997) as follows: For a fixed x, if Mi exceeds x, then this would be known at any time s such
that s ≥ si(x), where si(x) = inf{s : Mi(s) ≥ x}. Then redefine ,

, and  so that a more efficient estimator
can be formulated as

(4)

where  is the Kaplan–Meier estimator for the survival function of the censoring
time variable C, evaluated at , based on data .

Using similar techniques as Zhao and Tsiatis (1997), we can show that this efficient
estimator is consistent and asymptotically normal,

(5)

where the variance for this estimator can be obtained in a similar fashion as in (3), but using
redefined  and  for each x and corresponding ŜT*(·) and K̂*(·) in places of Ti and
Δi, ŜT (·), and K̂(·), i.e.,

(6)

where

with Bj = I(Mj > x).

Note that for a fixed x, this efficient estimator uses cost information not only from those
complete observations, but also from the censored observations whose accumulated costs
are larger than x. Therefore, in many practical situations where censoring rate is high, this
estimator would be more efficient than the simple weighted estimator. This effect is
demonstrated in our simulation studies and the cardiovascular example considered later on.

2.3 Estimating the Median Costs and CIs: One Sample Problem
After we have an estimator for the survival distribution of the medical cost Mi, Ŝ(x), using
either the simple weighted ŜS W (x), or the more efficient estimator ŜE F (x), the median cost
estimator, , can be obtained from solving the following equation:

(7)
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For obtaining the CI of the median cost, we avoid a direct (e.g., Wald-type) method based
on the large sample distribution of the median estimator , since this usually involves
estimating the density function of the cost distribution, which can be difficult or unstable.
Instead, we consider an alternative approach, similar to the idea of Brookmeyer and Crowley
(1982) who considered the problem of obtaining a CI for the median survival time.

Denoting the true median cost by τ0, from (2) and (5), we have, asymptotically,

(8)

so that an approximate α-level test for testing the null hypothesis, H0 : τ = τ0, is not to reject
the null hypothesis whenever

where cα satisfies . Hence, an asymptotic 1 – α confidence region Rα for the
median can be obtained as the set of all parameter values meeting the condition of

(9)

where Ŝ(x) can be obtained by either the simple weighted estimator (1) or the efficient

estimator (4), and  can be obtained by corresponding variance estimators (3) or (6).
Since Ŝ(x) is a step function, the identification of the lower and upper bound of the CI can be
achieved by searching for the lowest and highest values of x at those places of jumps where
the chi-square statistics are smaller than the critical value cα.

2.4 Estimating the Ratio (or Difference) of the Median Costs and Their CIs: Two Sample
Problem

Here, we suppose that we have cost data from two groups and we want to compare their
medians via the ratio or difference. We consider the ratio first. After obtaining the estimators
of the median costs for each group,  and , where the subscript denotes the group
indicator, using the methods outlined in Section 2.3 (either the simple weighted or efficient
estimator), the ratio of the two medians can be estimated by

Then our goal is to obtain the CI for γ.

Let Sk (x) be the survival function for medical costs for each group k (k = 1, 2) and Ŝk (x) be
its estimator, which can be obtained using the methods from Section 2.2 (equations (1) and

(4)), and let  be an estimator of  (equations (3) and (6)). Since it
is generally difficult to study asymptotic properties of a ratio statistic directly, we consider
an approach similar to the one used in Su and Wei (1993) concerning the ratio of two
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median survival times, which is based on the distribution of the minimum dispersion test
statistic (Basawa and Koul, 1988). Define

(10)

where γ0 is the true ratio. Since τ1 is a nuisance parameter here, we minimize W(γ0, τ1) with
respect to τ1 so that we have

In the Web Appendices A and B, we first establish that our median cost estimator  is a
consistent estimator of the true median τ, and then we show that G(γ0) has a chi-square
distribution with 1 degree of freedom asymptotically, under the null hypothesis that the true
ratio is γ0. Therefore, an asymptotic 1 – α confidence region Rα for γ can be formulated
from

where cα is a value such that . Since both Ŝ1(x) and Ŝ2(x) are step functions,
the Wstatistic is also a step function. The lower and upper bounds of the CI for γ can be
identified by the smallest and largest ratios among all the pairs formed by all the jump
places from each of the two groups, while keeping the W statistic below the critical value cα.

Using similar strategies, the difference of the two medians, d = τ2 – τ1, can be estimated by

An asymptotic (1 – α) confidence region Rα for d can be formulated from

where

and

(11)

2.5 Extension to Other Quantiles
It is straightforward to extend the methods above to other quantiles of cost data, such as the
lower (25%) and upper (75%) quartiles. If we denote the pth percentile as τp such that
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then the general formula for estimating τp would be

The CI for τp can be obtained by replacing 0.5 with 1 – p/100 in (9). Similarly, the CI for the
ratio or difference of the pth percentiles (γp = τ2p/τ1p, or dp = τ2p – τ1p) can be obtained by
substituting 0.5 for 1 – p/100 in (10) or (11), respectively.

3. Simulation Studies
Here, we conduct simulation experiments to evaluate the finite sample properties for our
proposed methods. We assume the event of interest is death so that T is survival time. The
cost data are generated as follows: The total cost for each individual consists of the
diagnostic cost incurred at the beginning of the study, the fixed annual cost, the random
annual cost that varies from year to year, and the terminal death cost incurred during the
final year of life. In group 1, the diagnostic cost, fixed annual cost, random annual cost, and
final year cost are log normally distributed with parameters (9, 0.2452), (6.5, 0.2452), (4,
0.2452), and (9, 0.6322), respectively. In group 2, the cost is generated similarly except the
initial cost is log normal (10, 0.2452), and the fixed cost is log normal (6, 0.2452). Compared
to group 1, group 2 has higher initial costs, but smaller fixed annual costs. We consider two
types of distributions for survival times: (1) a uniform distribution on [0, 11.5] years for
group 1 and a uniform distribution on [0, 12] for group 2; and (2) an exponential distribution
with mean of 8 years for group 1 and an exponential distribution with mean of 10 years for
group 2. Simulations based on a log normal distribution for the survival time have been
conducted and conclusions are similar to those based on uniform or exponential distribution.
The true median costs are 19,912 and 32,393 for groups 1 and 2 for uniform distributions,
and 17,679 and 30,241 for groups 1 and 2 for exponential distributions.

We also consider two scenarios for the distribution of the censoring variable C: (1) Ci is
uniform on [0, 22] years and (2) Ci is uniform on [0, 15] years, independent of all other
variables. The first setting is referred to as light censoring, resulting in 25–29% censoring,
and the latter is referred to as heavy censoring, corresponding to 37–44% censoring for two
different survival time distributions. The sample size varies from 100 to 300 for each group,
and the number of simulations is 1000. Our interest is to estimate the median, 25% and 75%
quantiles, for costs accumulated over 10 years, and their CIs for each group, as well as the
ratios of the quantiles from the two groups and their CIs. We also examine the median
lengths of the CIs. We consider the following methods based on different estimators for
survival functions of cost: (1) the Kaplan–Meier estimator (KM) that treats cost data as
survival data; (2) the empirical survival estimator that uses only complete/uncensored data
(CP); (3) the empirical survival estimator that uses both censored and uncensored costs
ignoring censoring status (AL); (4) the simple weighted estimator (SW); and (5) the efficient
estimator (EF). Approaches (1) to (3) can be regarded as naive estimators, whereas (4) and
(5) would provide consistent estimators. Here an empirical survival estimator simply
calculates the percentage of subjects that have costs greater than a given number.

Table 1 shows the empirical coverage probabilities of the 95% CIs for the median, 25% and
75% quantiles along with the median lengths of the estimated 95% CIs, for different sample
sizes, levels of censoring and distributions of the survival times for group 2.
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It is clear that the naive approaches using the Kaplan–Meier estimator (KM) or all data (AL)
yield incorrect coverage probabilities for the 95% CIs for the median or other quartiles of
costs. The coverage probabilities do not improve with increased sample sizes. The complete
data only (CP) method seems to produce reasonable coverage probabilities for many
scenarios in these simulations. However, one drawback we notice is that the coverage
probability deteriorates when the sample size increases from 100 to 300 for the exponential
survival distribution, heavy censoring case. Since this estimator uses only the complete
observations, which tend to consist of those with short survival times, these costs can be
biased downward (or upward) when people with shorter survival times have smaller (or
larger) costs. Additional simulations we performed indicate that if we simply decrease the
initial costs and terminal costs for the uniform survival distribution scenario considered here,
the coverage probability can become as low as 0.515. Since, in general, the failure time and
the total costs are correlated, we should avoid using this estimator, as advised in the case of
estimating the mean cost (Lin et al., 1997; Bang and Tsiatis, 2000).

The proposed approaches using the simple weighted (SW) estimator and the more efficient
estimator (EF) produce coverage probabilities that are close to the nominal value. This is
true for the median, upper, and lower quartiles, for different survival distributions, and for
both light and heavy censoring cases. The coverage probability improves, and the median
length of the CI becomes shorter as the sample size increases from 100 to 300. We also note
that the median lengths of the CIs for the efficient estimator generally are shorter than those
for the simple weight estimator, and the difference becomes more pronounced when the
censoring is heavier. Hence it would be advantageous to use the efficient estimator when the
censoring is heavy and cost history data are available.

Table 2 shows the results for the ratios and the differences of the medians, lower and upper
quartiles of costs between group 2 and group 1, for the two valid methods—the simple
weighted estimator and the efficient estimator.

We observe that the coverage probabilities stay above 95% under all scenarios, indicating
that the CIs tend to be conservative. Similar results are reported for the median estimation of
survival time as well (Su and Wei, 1993). The coverage probabilities are closer to the
nominal level when the sample size increases from 100 to 300. This is observed consistently
for estimating different quantiles, using different survival distribution, and with both light
and heavy censoring. As predicted by theory, the median length of the CIs decreases as the
sample size increases, and the efficient method produces shorter CIs, compared to the simple
weighted estimator.

4. Example
The Multicenter Automatic Defibrillator Implantation Trial II (MADIT-II) was a multicenter
clinical trial designed to evaluate the potential survival benefit of a prophylactically
implanted defibrillator in patients with a prior myocardial infarction and other selection
criteria (Moss et al., 2002). Patients were recruited into the study over time and were
randomized into either the implantable cardiac defibrillator (ICD) arm or the conventional
therapy arm (CONV), with a allocation ratio of 2:1. After the trial was completed, it was
shown (Moss et al., 2002) that the ICD arm has a survival advantage with an estimated
hazard ratio of 0.69 (95% CI: 0.51–0.93; p = 0.016).

Due to the high cost associated with the defibrillator and the implantation process, a
subsequent economic evaluation was done to elucidate the cost implications of the new
treatment (Zwanziger et al., 2006). The cost-effectiveness analysis was based on patients
from the US centers, with 664 patients in the ICD arm and 431 in the CONV arm. The
average follow-up time for this subpopulation was 22 months. We will examine costs

Zhao et al. Page 9

Biometrics. Author manuscript; available in PMC 2014 January 03.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



accumulated over L = 3.5 years, or equivalently 1278 days, as in the original paper
(Zwanziger et al., 2006). As a result, 77.3% of subjects from the ICD group and 74.2%
subjects from the CONV arm were censored. The probability of survival for each treatment
arm is presented in Figure 1.

Detailed information about the cost structure and components was provided in table 2 of
Zwanziger et al. (2006), e.g., the average initial cost for the ICD group is $32,578, which
includes the device costs and implantation costs; the average monthly cost is $1,357 for the
CONV arm and $1,489 for the ICD arm; the cost associated with death is estimated to be
$6,706 for the CONV arm and $8,477 for the ICD arm.

Figure 2 displays the estimated survival functions for costs, for both the ICD and the CONV
groups, using the simple weighted estimator, where the median cost estimates for each group
are marked on the plot. It is clear that the ICD group is associated with much higher costs,
compared to the CONV arm. Due to the high initial cost in the ICD group, the survival line
is flat near the baseline. This is also what we assumed in our simulation setting.

The estimated median, upper, and lower quartiles of costs for each group, and their 95% CIs,
using the proposed estimators, are shown in Table 3. Also shown are the ratios of these
quantiles, and their 95% CIs.

On the whole, the efficient estimator produces tighter CIs than does the simple weighted
one. In contrast to the mean costs of $44,900 and $84,100 for the CONV and ICD groups
(Zwanziger et al., 2006), the corresponding median estimates using the efficient estimator
are much smaller, $28,000 and $63,500, respectively. The estimates for the lower 25%
percentile are $15,100 and $48,700 respectively, which means that 25% of the patients have
medical costs less than or equal to $15,100 in the CONV group, and $48,700 in the ICD
group. The estimates for the upper 25% percentile are $56,100 and $100,700 respectively.
The ratio of the mean costs for the ICD versus CONV arm is 1.9, while the ratio of the
median costs for the two groups is 2.3. The ratio of the lower quartiles is larger than the ratio
of the medians, whereas the ratio of the upper quartiles is smaller than the median ratio. The
quantile measures and the mean together would provide a more complete picture for the
costs incurred during the MADIT-II study.

5. Discussion
This article considers a problem of nonparametric inferences for medical costs when data are
subject to right censoring. Looking at the entire distribution by estimating various quantiles
is customary in the analysis of national income data and some other economic data. A
similar approach could be useful in medical cost analysis as well. We propose methods for
estimating medians and other quantiles and for obtaining their CIs. We also propose
methods for estimating the ratios and differences of these quantile measures and for
obtaining their CIs. These methods could provide valuable tools for economic evaluations of
treatments, especially when the data are subject to censoring, as is common in prospective
studies.

In our simulation, we demonstrate that the naive methods that either ignore censoring or fail
to account for it properly (by using either uncensored data only, treating censored data as if
they were not censored, or using the Kaplan–Meier estimator on cost estimation assuming
censoring is random) produce biased results. Use of these methods should be avoided in the
analysis of censored cost data. For valid estimation and inference, we produce two
estimators—simple weighted and efficient estimators. The simple weighted estimator can be
useful and convenient when we have only the total costs for each subject. In contrast, when
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cost history data are available, we recommend the efficient estimator, especially when the
censoring rate is high.

In this article, we propose one efficient estimator. However, additional approaches to
improve efficiency could be devised, for example, based on the ideas employed in Zhao and
Tian (2001), Robins (1996), and Tsiatis (2006). The methods proposed here can be applied
to other informatively censored data (Huang and Louis, 1998). Future research can be
directed to investigate these problems further.
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Figure 1.
Kaplan–Meier survival curves for the MADIT-II study.
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Figure 2.
Estimated survival function for medical costs for the MADIT-II study.
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Table 1

Empirical coverage probabilities (median lengths) of the 95% confidence intervals for different quantiles of
cost for group 2

Light censoring Heavy censoring

Quantile Sample size Method Uniform survival Exponential survival Uniform survival Exponential survival

25% 100 KM 0.923 (4065) 0.795 (3901) 0.868 (4404) 0.568 (4306)

CP 0.937 (4201) 0.948 (4025) 0.932 (4772) 0.952 (4660)

AL 0.188 (3807) 0.495 (3407) 0.020 (3725) 0.149 (3319)

SW 0.950 (4226) 0.936 (4052) 0.935 (4889) 0.951 (4952)

EF 0.946 (4172) 0.939 (3887) 0.944 (4693) 0.962 (4339)

300 KM 0.817 (2367) 0.429 (2259) 0.448 (2515) 0.088 (2550)

CP 0.944 (2414) 0.944 (2328) 0.945 (2690) 0.932 (2674)

AL 0.006 (2174) 0.080 (1924) 0.000 (2066) 0.001 (1886)

SW 0.950 (2459) 0.960 (2348) 0.950 (2806) 0.958 (2786)

EF 0.946 (2395) 0.964 (2201) 0.943 (2650) 0.958 (2443)

50% 100 KM 0.905 (4628) 0.729 (4601) 0.775 (5046) 0.490 (5090)

CP 0.944 (4571) 0.939 (4540) 0.947 (5121) 0.940 (5180)

AL 0.373 (4047) 0.572 (3716) 0.140 (3994) 0.271 (3660)

SW 0.965 (4724) 0.941 (4583) 0.942 (5375) 0.952 (5325)

EF 0.957 (4588) 0.940 (4361) 0.948 (5006) 0.958 (4750)

300 KM 0.820 (2633) 0.372 (2607) 0.381 (2897) 0.058 (2989)

CP 0.921 (2653) 0.949 (2642) 0.946 (2943) 0.931 (2966)

AL 0.022 (2353) 0.148 (2176) 0.000 (2286) 0.007 (2142)

SW 0.944 (2733) 0.957 (2651) 0.944 (3105) 0.947 (3116)

EF 0.948 (2638) 0.957 (2500) 0.945 (2943) 0.952 (2740)

75% 100 KM 0.883 (6685) 0.755(6659) 0.803 (7594) 0.591 (7969)

CP 0.956 (6286) 0.936 (6279) 0.949 (7044) 0.930 (7501)

AL 0.756 (5500) 0.810 (5280) 0.467 (5503) 0.623 (5286)

SW 0.944 (6434) 0.964 (6309) 0.952 (7312) 0.953 (7245)

EF 0.942 (6320) 0.961 (5984) 0.948 (7027) 0.962 (6597)

300 KM 0.795 (3638) 0.466 (3728) 0.663 (4113) 0.131 (4361)

CP 0.950 (3594) 0.936 (3592) 0.931 (3930) 0.916 (3983)

AL 0.285 (3062) 0.457 (2933) 0.027 (3061) 0.121 (2898)

SW 0.949 (3626) 0.951 (3490) 0.943 (4185) 0.951 (4150)

EF 0.953 (3567) 0.947 (3360) 0.940 (4035) 0.960 (3797)
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Table 2

Empirical coverage probabilities (median lengths) of the 95% confidence intervals for the ratio (Part A) and
the difference (Part B) of different quantiles of cost between two groups

Part A: Ratios of quantiles

Light censoring Heavy censoring

Quantile Sample size Method Uniform survival Exponential survival Uniform survival Exponential survival

25% 100 SW 0.975 (0.490) 0.976 (0.492) 0.980 (0.554) 0.980 (0.592)

EF 0.973 (0.489) 0.978 (0.474) 0.986 (0.554) 0.988 (0.546)

300 SW 0.967 (0.266) 0.960 (0.267) 0.975 (0.305) 0.977 (0.320)

EF 0.967 (0.263) 0.972 (0.257) 0.979 (0.297) 0.976 (0.292)

50% 100 SW 0.974 (0.418) 0.976 (0.454) 0.971 (0.486) 0.976 (0.538)

EF 0.973 (0.415) 0.983 (0.437) 0.976 (0.477) 0.982 (0.498)

300 SW 0.967 (0.240) 0.970 (0.252) 0.969 (0.273) 0.971 (0.297)

EF 0.971 (0.236) 0.975 (0.242) 0.974 (0.265) 0.973 (0.276)

75% 100 SW 0.978 (0.489) 0.975 (0.531) 0.978 (0.567) 0.977 (0.624)

EF 0.981 (0.480) 0.973 (0.518) 0.977 (0.554) 0.979 (0.591)

300 SW 0.966 (0.266) 0.968 (0.297) 0.967 (0.310) 0.971 (0.339)

EF 0.964 (0.261) 0.968 (0.291) 0.967 (0.303) 0.974 (0.326)

Part B: Differences of quantiles

Light censoring Heavy censoring

Quantile Sample size Method Uniform survival Exponential survival Uniform survival Exponential survival

25% 100 SW 0.974 (6013) 0.970 (5518) 0.973 (6857) 0.976 (6641)

EF 0.977 (5984) 0.972 (5266) 0.979 (6756) 0.985 (6111)

300 SW 0.963 (3366) 0.969 (3069) 0.970 (3880) 0.960 (3653)

EF 0.965 (3286) 0.971 (2903) 0.967 (3736) 0.967 (3327)

50% 100 SW 0.973 (6769) 0.986 (6304) 0.967 (7695) 0.977 (7416)

EF 0.973 (6620) 0.980 (5999) 0.977 (7424) 0.977 (6794)

300 SW 0.955 (3754) 0.967 (3472) 0.958 (4286) 0.968 (4124)

EF 0.957 (3664) 0.961 (3333) 0.958 (4084) 0.974 (3780)

75% 100 SW 0.979 (9797) 0.977 (9381) 0.976 (11375) 0.976 (11115)

EF 0.979 (9539) 0.977 (9148) 0.980 (11014) 0.976 (10463)

300 SW 0.965 (5280) 0.974 (5167) 0.977 (6045) 0.977 (5907)

EF 0.964 (5197) 0.975 (5021) 0.977 (5859) 0.980 (5574)
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Table 3

Quantile estimation (and 95% confidence intervals) in $1000 for the MADIT-II study

Group

Quantile Method CONV ICD Ratio

25% SW 17.7 (9.0,26.1) 49.8 (44.5,53.4) 2.8 (1.8,5.6)

EF 15.1 (11.4,20.6) 48.7 (44.5,51.0) 3.2 (2.2,4.3)

50% SW 34.7 (26.9,53.8) 63.8 (58.2,75.8) 1.8 (1.2,2.5)

EF 28.0 (22.4,34.7) 63.5 (60.0,66.6) 2.3 (1.8,2.9)

75% SW 62.0 (55.6,80.9) 100.7 (89.2,114.0) 1.6 (1.2,1.9)

EF 56.1 (41.5,65.0) 100.7 (89.2,109.0) 1.8 (1.5,2.6)
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