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Abstract
This paper compares numerical predictions of turbulence intensity with in vivo measurement.
Magnetic resonance imaging (MRI) was carried out on a 60-year-old female with a restenosed
aortic coarctation. Time-resolved three-directional phase-contrast (PC) MRI data was acquired to
enable turbulence intensity estimation. A contrast-enhanced MR angiography (MRA) and a time-
resolved 2D PCMRI measurement were also performed to acquire data needed to perform
subsequent image-based computational fluid dynamics (CFD) modeling. A 3D model of the aortic
coarctation and surrounding vasculature was constructed from the MRA data, and physiologic
boundary conditions were modeled to match 2D PCMRI and pressure pulse measurements. Blood
flow velocity data was subsequently obtained by numerical simulation. Turbulent kinetic energy
(TKE) was computed from the resulting CFD data. Results indicate relative agreement (error
≈10%) between the in vivo measurements and the CFD predictions of TKE. The discrepancies in
modeled vs. measured TKE values were within expectations due to modeling and measurement
errors.
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INTRODUCTION
It is widely accepted that adverse hemodynamics can lead to the development and
progression of common cardiovascular diseases.25,29 Adverse hemodynamics conditions are
often characterized by disturbed or transiently turbulent flow, leading to abnormal flow
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patterns and bio-mechanical forces that can result in thrombosis, vessel wall degradation, or
inefficient local or systemic transport. Due to the Reynolds numbers typically encountered
in the cardiovascular system, such complex flow patterns mainly develop in larger vessels,
at bifurcations, sharp bends or locations altered from acquired or congenital disease. Not
surprisingly, since disturbed flow strongly influences vascular pathogenesis, and vice versa,
flow information can be highly useful for diagnostic purposes. Indeed, the audible signatures
of turbulence have long been used to detect common cardiovascular diseases, e.g., carotid
artery disease and murmurs resulting from a host of pathological conditions in, or near to,
the heart. Diagnostic decisions are shifting to more direct and detailed data regarding flow
conditions as advances in imaging, computation and data processing enable greater
capabilities to obtain patient-specific blood flow information. Additionally, proper
characterization of flow in large vessels has strong potential to aide in treatment planning.
Specifically, since most cardiovascular interventions intend to restore normal, or improved,
flow in cases of acquired or congenital disease, detailed knowledge of pre-operative flow
conditions, or the capability to predict post-operative flow conditions resulting from a
particular intervention, can have dramatic clinical impact.34

The ability to obtain high-resolution, patient-specific blood flow data is becoming prevalent
with recent technological advances. Using an image-based flow modeling paradigm,
computational fluid dynamics (CFD) has become a powerful tool in evaluating patient-
specific hemodynamics; see e.g.,35,37 for recent reviews. This framework utilizes in vivo
image data, derived from magnetic resonance imaging (MRI) or computed tomography
(CT), to construct 3D patient-specific geometric models of vascular anatomy. These models
can subsequently be used as computational domains for CFD solvers to model blood flow
through particular regions of the vasculature to nearly arbitrary level of detail. These
techniques continue to evolve, becoming increasingly sophisticated in the handling of
boundary conditions and vessel wall dynamics to incorporate increasing realism and patient-
specific information.

Alternatively, imaging techniques to non-invasively measure flow conditions in vivo
continue to gain traction in evaluating patient-specific hemodynamics. MRI currently offers
the most versatile tool for blood flow quantification. Notably, multidimensional phase-
contrast (PC) MRI7,39 is capable of providing three-directional (3D), time-resolved flow
information at any location in the body with current spatial and temporal resolutions of
about 1–3 mm and 30–70 ms, respectively.

As image-based blood flow modeling, or MRI-based velocity imaging, enters clinical
decision making, it is critical to know how well the derived flow data matches reality, since
both approaches contain respective modeling, measurement, and numerical errors.
Determining the true error of these techniques is often not possible, thus comparison of
experimental and computational results is regarded as the bench-mark for validation.
Relatively few results have been published comparing patient-specific hemodynamics
computations with in vivo measurements. Validation studies have primarily used in vitro
models. MRI and particle image velocimetry (PIV) in vitro validations of numerical blood
flow studies were performed by Ford et al.,9 Hoi et al.,12 Marshall et al.,23 and
Papathanasopoulou et al.26; these studies used relatively idealized models and mostly
laminar flow. Ku et al.16 considered moderately higher Reynolds numbers in comparing
numerical simulation and PCMRI measurements of a stenotic vessel with an in vitro bypass
model. In an effort to incorporate more physiologic morphology and boundary conditions,
Kung et al.18 compared CFD simulations with in vitro PCMRI measurements from a
patient-specific abdominal aortic aneurysm (AAA) phantom that incorporated a physical
Windkessel module to model physiologic downstream conditions at the outlets. Kung et
al.17 also used similar boundary conditions to compare vessel wall motion and pulse
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propagation in a deformable tube with computational results. Regarding in vivo validation,
Ford et al.,8 compared virtual angiography using image-based CFD with angiograms, Ku et
al.15 compared flow rates in arterial bypass grafts in porcine models and Rayz et al.28

compared CFD simulations to in vivo measurements in cerebral aneurysms, including
investigation of the influence of different inflow rates on the model. These studies primarily
reported on integrated flow behavior. More detailed spatial field information was considered
by Boussel et al.,1 who compared CFD data and in vivo MRI measurements in patient-
specific intracranial aneurysms. They reported favorable agreement for flow patterns and
velocities, but poor agreement for wall shear stress due to the incapability of MRI to capture
near-wall velocity gradients.

None of the above studies dealt with direct quantification of turbulence, or more generally
highly disturbed flow conditions. The objective of the present study is to provide a
comparison between in vivo and numerical estimates of turbulence intensity in a patient-
specific model. In “Methods” section we discuss how turbulence intensity was estimated in
vivo and from CFD. Comparison of the results is presented in third section and discussed in
fourth section. Our findings suggest generally good agreement between the in vivo MRI
measurements and the CFD predictions of turbulence intensity. Due to the complex
spatiotemporal variability of turbulent flow, point-wise comparison of in vivo and CFD data
is not expected to provide a reasonable comparison, and this was confirmed in our findings.
Arguably, characteristics that are eventually most useful in a clinical setting, e.g., maximum
levels of fluctuation intensity and regions of elevated intensity, were relatively consistent
between in vivo MRI measurement and CFD predictions.

METHODS
This study used an aortic coarctation model. Aortic coarctation is a congenital disease where
the aorta contains a local narrowing that hinders the passage of blood. This condition can
lead to significant pressure loss across the coarctation, turbulent flow downstream, and
hypertension in the proximal circulation. LaDisa et al.20 reviewed recent developments in
the treatment of this disease, and investigated the hemodynamic variations between
untreated and treated patients using image-based flow modeling. The coarctation model was
chosen because: it is clinically important, it enables validation of flow conditions that are
close to the limit of complexity encountered in vivo, and the aorta is large enough to enable
sufficient spatial resolution using clinical MRI scanners for comparison with CFD results.

PCMRI
In Vivo MRI Measurements—MR imaging was carried out on a 60-year-old female 46
years post-aortic coarctation repair with end-to-end anastomosis with a restenosis in the
anastomitic area distal to the left subclavian artery (Fig. 1). In addition to the coarctation, the
patient presented with an abnormal, minimally obstructive membrane in the left ventricular
outflow tract. The study was approved by the regional ethics committee for human research
at Linkoping University and informed consent was obtained prior to the MRI study. All MRI
measurements were carried out on a clinical 1.5 Tesla scanner (Philips Achieva, Philips
Medical Systems, Best, The Netherlands). The study consisted of a 3D contrast-enhanced
MR angiography (MRA) to obtain high resolution data of the aortic geometry, a time-
resolved 2D PCMRI velocity measurement acquired in the ascending aorta to provide inlet
boundary conditions for the subsequent CFD modeling, and two time-resolved 3D PCMRI
measurements to obtain velocity and turbulence intensity information, respectively, in the
whole aorta.

The 3D MRA data was acquired with a resolution of 0.98 × 1.71 × 4.00 mm3 during a
breathhold after gadolinium injection using a gradient-echo sequence with randomly
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segmented central k-space ordering (CENTRA). The three-dimensional MRA data were
reconstructed to a resolution of 0.5 × 0.5 × 1.0 mm3. The two-dimensional through-plane
PCMRI measurement was performed in the ascending aorta using a segmented gradient-
echo pulse sequence. Imaging parameters included aliasing/velocity encoding (VENC) = 2
m/s, temporal resolution = 34 ms, pixel size = 2.78 × 2.84 mm2, reconstructed pixel size =
1.6 × 1.6 mm2, and slab thickness = 7 mm. Time-resolved three-directional PCMRI data
were acquired during free breathing using a respiratory navigator-gated gradient-echo pulse
sequence.4 To enable turbulence intensity estimation, the motion encoding scheme included
a reference flow encoding segment with nulled motion sensitivity. Two scans with different
motion encoding strengths were prescribed to acquire velocity (VENC = 3.5 m/s) and
turbulence intensity (VENC = 1.4 m/s) data. Turbulence intensity data were acquired with
isotropic spatial resolution of 3 × 3 × 3 mm3 and a temporal resolution of 81 ms, and
velocity data with a spatial resolution of 3.4 × 3.4 × 3mm3 and a temporal resolution of 65
ms. On the scanner, all velocity data were reconstructed into 40 time frames per cardiac
cycle with the same spatial resolution as acquired.

MRI estimation of turbulence intensity is achieved by exploiting the fact that the presence of
multiple velocities within a voxel decreases the MRI signal amplitude under the influence of
a bipolar magnetic field gradient.4–6,10 The MRI approach used in the present study is
described in detail in Dyverfeldt and co-workers.3–5 While conventional experimental fluid
dynamics methods measure turbulence intensity by sampling velocities at a small spatial
area over time, the MRI signal is built up by ~1 M water protons (spins) present within an
image volume element (voxel). The voxel has a specific spatial extent and is sampled at
several hundred points in time during the MRI acquisition. The spatial sampling of the
turbulence scales is determined by the spatial extent of the voxel, which captures space
scales smaller than the voxel size. The effect of the temporal sampling is more complex as
the samples (k-space line) represent different spatial frequencies of the image. However, the
key feature is that subsequent samples are separated by between 20 ms and one cardiac
cycle, during which the larger turbulence scales have time to evolve. In this way, each
sample corresponds to a new representation of the flow field. Thus the sampling of MRI
data over time is expected to be beneficial in terms of resolving scales larger than the spatial
extent of the voxel. The actual motion encoding is performed by bipolar magnetic field
gradients that take about 0.0005 s to apply per lobe; eddies are considered stationary during
this short period of time.

By assuming that intravoxel velocity distributions are normally distributed in transitional
and turbulent flows, the data needed to estimate turbulence intensity can be obtained from a
standard PCMRI experiment acquired with asymmetric flow encoding, in a way similar to
how mean velocity is estimated. The complex-valued MRI signal of a voxel can be written
as

(1)

where C is a complex-valued constant affected by water proton density, relaxation effects,
etc., s(u) is the velocity distribution within the voxel,  and kv describes the amount
of applied motion sensitivity. The mean velocity component in each direction is estimated
based on the phase difference between two MRI signals acquired with different motion
sensitivity in the considered direction
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(2)

Similarly, the standard deviation of the velocity distribution within a voxel (assumed here to
be the turbulence intensity, σ) can be obtained using the relationship

(3)

for each direction. A three-directional PCMRI experiment can be used to estimate σi in three
mutually perpendicular directions i = 1, 2, 3; and thus the MRI measured turbulent kinetic
energy (TKE) is obtained by

(4)

Image-Based CFD Modeling
A 3D patient-specific computer model of an aortic coarctation was constructed from the
MRA data shown in Fig. 1. The model started near the aortic root and continued through the
thoracic aorta, including the left subclavian, left common carotid, brachiocephalic, right
subclavian, and right common carotid arteries, see Fig. 1. The model surface represents the
lumenal surface of the arteries, which was obtained from the image data using a 2D levelset
segmentation method.40 The segmentations were lofted to create a unified geometric model
and the vessel bifurcations were blended for smooth transitions that matched the image data.
The geometric model was subsequently used to create a volumetric computational mesh of
tetrahedral elements.

The blood flow was modeled by the Navier–Stokes equations, which approximates blood as
a homogeneous, Newtonian fluid with constant density ρ = 1.06 g/cm3 and viscosity μ =
0.04 P. The Newtonian fluid approximation is considered reasonable in large vessels.25 The
vessels were assumed to be rigid with a no slip condition at the walls. While vessels are
nominally compliant, the compliance was incorporated into the patient-specific boundary
conditions since tissue properties and external tissue support were unknown. Boundary
conditions are further discussed below.

Direct numerical simulation (DNS) was performed to solve the Navier–Stokes equations
using a second-order accurate, stabilized finite element method13,36; this solver has been
used extensively for image-based blood flow modeling. DNS was chosen because
turbulence models are difficult to apply in cardiovascular flows since most models assume
developed turbulence, however cardiovascular flows (at most) fluctuate between laminar
and transitional states, and, moreover, the flow remains laminar in large portions of the
domain. The mesh was anisotropic. The maximum edge size in the descending aorta, where
disturbed conditions prevailed, was 250 μm. At this resolution the results appeared
converged. The Kolmogorov microscale in this region based on peak Reynolds number was
≈100 and ≈200 μm based on average Reynolds number. The simulation time step size was
0.00083 s.
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Boundary Conditions—In vivo volumetric flow rate data from the 2D PCMRI
acquisition was used to prescribe inflow boundary conditions at the ascending aorta using a
plug profile. The plug profile matches reasonably to in vivo experiments30 and is typical of
simulations originating at the aortic root.24 To reproduce the physiologic influence of the
arterial beds distal to the outlets, three-element Windkessel models were used and coupled
to the computational domain using the method described in Vignon-Clementel et al.38 While
outlet volumetric flow rates were determined by the Windkessel models, the augmented
Lagrangian method14 was used to constrain outlet profiles to be near parabolic for purposes
of numerical stability. It has been shown that this method only affects the velocity field in
close proximity to the constrained outlet.14

The three-element Windkessel model requires specification of a proximal resistance (Rp), a
terminal resistance (Rt), and an arterial capacitance (C). The first step in the determination of
these parameters involves knowledge of the mean flow rates at each outlet, which was
estimated by the method of Zamir et al.,41 who proposed a power law relation between
diameter and flow, and in particular that the relation for the first few branches of the arterial
tree is governed by the square law

(5)

where D and Q are the diameter and volumetric flow rate at the aortic root, and di and qi are
the diameter and the flow rate at the location of interest, i.e., outlet i. To solve Eq. (5) for qi,
diameters di and D were obtained from the MRA and Q was obtained from the 2D PCMRI
measurement. The terminal resistance Rt at each outlet was obtained by dividing the mean
blood pressure by the outlet’s flow rate.

Specification of the capacitances involved the knowledge of the total arterial compliance.
The pulse pressure method32 was used to estimate total arterial compliance, as this method
neither require zero flow in diastole nor information about the complete pressure waveform.
This method was extended to the three-element Windkessel model, as in LaDisa et al.19 An
optimization algorithm that takes the pulse pressure and mean aortic flow rate as inputs was
developed to find the total arterial compliance that best matched the desired pressure pulse.
In this algorithm the value of the proximal resistance Rp was set by assuming a characteristic
total resistance ratio of 6%,21 i.e.,

(6)

The characteristic total resistance ratio was varied to verify that 6% was optimal. This total
arterial compliance was then distributed among the outlets in proportion to their mean flow
rates in accordance to Stergiopulos et al.33 With the compliance known for each outlet, the
proximal resistance Rp was determined by repeating the same algorithm but this time
varying the characteristic total resistance ratio to replicate the pressure pulse.

Turbulent Kinetic Energy
Recall that by Reynolds decomposition, the velocity field u(x, t) is decomposed into a mean
〈u〉 and a fluctuating ū component
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(7)

where ū is assumed to arise due to turbulence. The TKE is defined as the kinetic energy of
the fluctuating component, which on a per volume basis is given by

(8)

and provides a direction-independent measurement of turbulence intensity. Traditionally, ū
is defined by ū = u − 〈u〉 after appropriately defining the mean velocity 〈u〉. The traditional
approach to defining 〈u〉 is to perform averaging over many realizations of an experiment.
This is currently impractical for CFD simulations of the scale/complexity considered herein,
and essentially impossible for in vivo MRI measurement. Alternatively since turbulence
manifests in velocity fluctuations in space and time, it is common to the employ a spatial or,
more commonly, temporal averaging to estimate 〈u〉.

Due to the idiosyncrasies of MR measurement, derivation of TKE is not obtained from a
direct velocity field decomposition per se, but rather from the MRI signal, which is
influenced by both spatial and temporal variations in the velocity field. It is difficult to
reproduce this methodology for CFD, however, to enable validation we considered a 〈u〉
derived from a spatiotemporal average that is heuristically similar to the averaging
performed by the MRI method. We also performed temporal and spatial fluctuation intensity
computations separately for comparison.

Spatiotemporal Fluctuation Intensity Definitions—A spatiotemporal mean velocity
field was derived from the CFD data by performing spatial and temporal (cycle-based)
averaging. Let T denote the period of the cardiac cycle and n denote the number of cardiac
cycles of computed velocity data. For notational ease, assume this data starts from t = 0 so
that t ∈ [0, nT).1 Voxels of the same size (3a mm3) and (approximately same) location as the
PCMRI voxels were superimposed on the computational domain and nodes of the
computational grid located inside each voxel were used for computing spatial averages and
fluctuations. That is, a spatiotemporal mean 〈·〉st velocity field was computed as

(9)

where xv is the center of voxel v, τ ∈ [0, T),  is the set of indices of the CFD grid nodes
located in voxel v, and Nv is number of CFD grid nodes in voxel v. The inner sum considers
spatial velocity variations, whereas the outer sum considers cycle-to-cycle velocity
variations. It follows that the spatiotemporal mean squared velocity fluctuation components
were defined as

(10)

where i = 1, 2, 3 denotes vector components. Finally, the spatiotemporal velocity fluctuation
kinetic energy per unit volume was defined as

1Data was considered only after the solution had sufficiently converged.
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(11)

which is also referred to herein as the spatiotemporal fluctuation intensity.

Temporal Fluctuation Intensity Definitions—Since the inflow is periodic, a cycle-to-
cycle temporal mean 〈·〉t of the velocity field was computed at each node of the
computational grid xj as

(12)

where τ ∈ [0, T); this is essentially Eq. (9) without spatial averaging. Therefore, the
temporal mean squared of the velocity fluctuation components were defined as

(13)

The cycle-to-cycle temporal velocity fluctuation kinetic energy per unit volume was defined
by

(14)

which is also referred to herein as the temporal fluctuation intensity.

Spatial Fluctuation Intensity Definitions—An arbitrary cycle could be chosen to
quantify spatial fluctuations in the flow field. However, to eliminate any bias resulting from
this choice, we instead considered the temporal averaged flow field 〈ui〉t(xj, τ) defined by
Eq. (12) to factor out cycle-to-cycle variations. To define the spatial mean, 〈ui〉t(xj, τ) was
spatially averaged over each PCMRI voxel. This led to an identical mean velocity field as
defined by Eq. (9), however, only spatial fluctuations were considered for defining the
spatial fluctuation intensity. That is, defining

(15)

the spatial velocity fluctuation kinetic energy per unit volume was defined as

(16)

which is also referred to herein as the spatial fluctuation intensity.
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RESULTS
The fluctuation intensity fields were computed using the methods described above for the
PCMRI and CFD data, and the fields were plotted as volume renders using Paraview
(Kitware, Clifton Park, NY). All fields varied smoothly over time, with maximum
turbulence appearing shortly after peak systole for each case, and decreasing to near zero
during the diastolic phase. Figure 2 shows the fluctuation intensity volume renders shortly
after peak systole, at a time instant most representative of when all fields where
approximately maximized, which was 0.17 s from the start of the systole (the cardiac cycle
length was 1.162 s). A consistent color map was used in Fig. 2 to facilitate comparison. It
should be noted that the mesh type and resolution for the volume render of the temporal
fluctuation intensity field were different than for the rest of the renders, which may have
resulted in variations in the rendering. Notably, the temporal fluctuation intensity field was
unstructured (vs. Cartesian for the others), and had a 12-fold greater spatial resolution in
each direction (or 12 3 = 1728-fold overall).

Table 1 summarizes the maximum level of fluctuation intensity over space and time
observed for each method and the time this value occurred. Up to the temporal resolution of
the PCMRI data, the time of maximum fluctuation intensity between the PCMRI and
temporal fields was the same. However, quantitatively defining the time instant of maximum
fluctuation intensity is subject to how maximum intensity is defined. For example, if defined
as the maximum of the field over both space and time, the time of maximum intensity in
each case is given by the parenthetical times shown in Table 1. Alternatively, if the
maximum is defined as the maximum over time of the spatial integral of the fluctuation
intensity field, then the time of maximum intensity for each case is given by the time each
curve in Fig. 4 peaks. Visually, all fields appeared maximum around the time instant shown
in Fig. 2.

For quantitative comparison, Fig. 3 compares the percentage of the descending aorta that
was exposed to fluctuation intensity over a certain threshold, as the threshold varied,
between the PCMRI and CFD data. This comparison was done at the time instant shown in
Fig. 2, which aligned most closely to the time of peak fluctuation intensity for the PCMRI
and temporal fluctuation data. As an alternative, to compare the fluctuation intensity results
over time, the fluctuation intensity fields were integrated over the descending aorta at
several times in the cardiac cycle and are plotted in Fig. 4.

Convergence of the results was tested in several regards: the computational mesh size, the
simulation time step size, the number of cardiac cycles used for temporal averaging, and the
voxel size used for spatial averaging. Convergence of the velocity data was established
using a nominal element size of 250 μm and time step of 0.00083 s. Results derived from the
spatiotemporal and temporal fluctuation intensity fields showed little change once the
number of cardiac cycles used for temporal averaging reached approximately 8. This was
consistent with a previous aortic turbulence study involving abdominal aortic aneurysms.22

The size of the voxel used for spatial averaging was established by the PCMRI resolution for
validation reasons. However, it was noticed that the spatiotemporal field did vary (<10%
difference) when the voxel volume was decreased by a factor of 2 in each direction, or 8-
fold overall.

Since velocity data was also obtained during the MRI sequencing, estimates for the total
kinetic energy in the model were possible. Peak levels of estimated TKE for this flow were
close to 23% of the peak estimated total KE. Specifically, for the CFD data the maximum
KE occurring at peak systole was computed to be 5100 J/m3, from the peak observed
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velocity of 3.1 m/s in the model. For the PCMRI data, the maximum observed total KE was
4460 J/m3, corresponding to a peak observed velocity of around 2.9 m/s.

DISCUSSION
Our general finding was that TKE predictions based on CFD modeling were relatively
consistent with those obtained by PCMRI, with errors between the two estimates of around
10% in the quantitative comparisons made. The fields themselves also compared
qualitatively well in both time and space, as shown Fig. 2. While the averaging methods
used to obtain TKE estimates from the CFD data did not exactly replicate the PCMRI TKE
derivation, the PCMRI and CFD velocity data compared similarly, suggesting that modeling
and measurement errors inherent in both methods were as significant a factor in observed
differences.

A traditional measure of turbulence intensity based on several realizations of the experiment
was not possible, nor could modeling and measurement errors have been completely
avoided. Hence it was not possible to quantify in a precise manner how close any estimate
was to the true TKE for this flow. For fully developed turbulence, that is, isotropic and
homogeneous, the ergodic assumption2 implies that velocity fluctuations are statistically
stationary in space/time/ensemble. This assumption is questionable for the flow considered
herein, nonetheless, it is reasonable to assume statistical properties do not change from cycle
to cycle since the inflow to the model was periodic. That is, cycle-to-cycle fluctuations were
assumed to be due to turbulence once the solution converged numerically. In this sense, the
CFD temporal fluctuation intensity measure may be considered the baseline estimate for the
true TKE (in the absence of modeling, measurement, and numerical errors). Using PCMRI,
the TKE is not obtained from a direct velocity field decomposition per se, but rather from
the MRI signal, which is influenced by both spatial and temporal variations in the velocity
field. To enable validation, we computed a spatiotemporal fluctuation intensity, and
temporal and spatial fluctuation intensity separately for comparison. It is interesting to note
that in nearly all comparisons, the differences between the PCMRI and CFD temporal
fluctuation intensity fields were smaller than the differences between the CFD
spatiotemporal and temporal fluctuation intensity fields. Furthermore, in most cases the
PCMRI results fell between the spatiotemporal and temporal CFD results. This may indicate
that the spatiotemporal averaging did not perfectly model the PCMRI measurement and that
the PCMRI estimate of TKE seems to be more dominated by temporal fluctuations than the
spatiotemporal average used.

Comparison of the CFD results, e.g., Figs. 2c and 2d confirms that the spatial fluctuations
are influenced by turbulence, but also are influenced by strong laminar gradients in the flow.
High spatial fluctuation intensity was observed at the throat of the coarctation, even though
no cycle-to-cycle variation in the velocity field was observed there. Therefore, the spatial
fluctuation field is likely not a reliable estimate of TKE, which is why it was excluded from
Figs. 3 and 4. The effect of the spatial fluctuations on the spatiotemporal fluctuation
intensity measure seemed to be moderate, however, and the PCMRI method appeared more
robust to this possible skewing.

Figure 3 demonstrates that near the time instant of peak TKE, the relative levels of
fluctuation intensity in each case are consistent. Figure 4 shows that the integrated TKE for
all methods coincide in the later part of systole, but showed greater difference in early and
peak systole, with the integrated spatiotemporal and PCMRI fluctuation intensities being
higher than the integrated temporal fluctuation intensity. This may suggest that in late
systole, turbulence dominates the fluctuation intensity measures, whereas in early and peak
systole (when turbulence has not yet fully developed) large laminar gradients may tend to
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elevate the spatiotemporal and PCMRI fluctuation intensity fields due to the spatial
averaging inherent in both methods. Based on the above observations, it appears that the
PCMRI estimate is closer to the true TKE for this flow than the spatiotemporal TKE
estimate. Nonetheless, the maximum TKE estimates (cf. Table 1), which perhaps is of
clinical significance, obtained from the PCMRI, temporal, and spatiotemporal methods were
all within 5%.

Possible Error Sources
The PCMRI data demonstrated turbulence shed from the aortic valve, most likely caused by
the subvalvular membrane. In the CFD modeling, a (laminar) plug profile was imposed at
the aortic root. Nonetheless, PCMRI data indicated no appreciable elevated fluctuation
intensities immediately proximal to the coarctation, suggesting that the flow relaminarizes
upon reaching the coarctation. Furthermore, the throat of the coarctation itself should also
filter disturbances introduced by the aortic valve that were not modeled by the inlet
boundary condition.

There was a slight ambiguity on exactly where to superimpose the voxels on the
computational model for spatial averaging. We were unable to obtain a common point of
reference a posteriori between the PCMRI TKE data and the MRA data used to build the
CFD model. Therefore, the voxels used for spatial averaging of the CFD data were likely
offset from PCMRI voxels. While this makes point-wise comparison of the data difficult, on
a more fundamental level it is typically unrealistic to perform point-wise comparison of
turbulent flows due to the inherent chaoticness of the fields.

Discrepancies may be attributed to several other reasons. On the MRI side, helical flow
patterns that are present in our model may lead to characteristic distortions of PCMRI
measurements.31 In MRI, accelerating and fluctuating flows can cause spatial
misregistration errors due to phase-shifts from higher order motion, flow related signal loss
due to intravoxel phase-dispersion, and ghosting due to view-to-view variations.11,31 The
effects of these artifacts on PCMRI velocity and TKE mapping were recently studied by
Petersson et al.27 for a jet flow similar to that present in the coarctation studied here. Their
results indicate that artifacts caused by disturbed flows can increase the uncertainty of the
measurements but that the accuracy is generally maintained. On the CFD side, several
modeling assumptions went into the analysis, including rigid walls, Newtonian rheology,
and boundary conditions as well as uncertainties in model parameters. Errors introduced by
these assumptions have been previously explored (usually not by in vivo validation, but
rather strictly computationally), see e.g.,37 and references therein, and errors due
uncertainties in model construction, inflow waveform, and boundary conditions have been
reported to result in (peak) flow field differences of 10–50%. In this light, the differences
between measured and modeled peak and integrated TKE values observed in this study were
favorable.

CONCLUSION
Proper identification and quantification of large and varying disturbances in flow resulting
from turbulence, whether through PCMRI or image-based flow modeling, have important
clinical significance, including implications to atherosclerosis, intimal hyperplasia, and
platelet activation. To the best of our knowledge, this is one of the first studies to validate
realistic patient-specific numerical computations of turbulence against in vivo experimental
measurements. We observed overall good agreement between image-based CFD predictions
of fluctuation intensities to those measured in vivo with PCMRI using an aortic coarctation
model, including agreement in both range and distribution. Differences in results were well
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within those expected due to modeling and measurement errors, indicating a relative
robustness of the TKE estimation.
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FIGURE 1.
MRA data and derived geometric model used for CFD analysis: (a) maximum intensity
projection and (b) 3D computer model.
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FIGURE 2.
Fluctuation intensity fields for each method (0.17 s after the start of systole). Note that the
mesh type and resolution for the volume render of the temporal fluctuation intensity field
were different than for the rest of the renders: (a) PCMRI, (b) spatiotemporal, (c) temporal,
and (d) spatial.
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FIGURE 3.
Percentage of the descending aorta (boxed region) with fluctuation intensity above various
thresholds values at time 0.17 s after the start of systole.
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FIGURE 4.
Integral of the fluctuation intensity field over the descending aorta vs. time.
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TABLE 1

Maximum TKE comparison (time maximum TKE occurred).

Spatiotemporal Spatial Temporal PCMRI

1053 J/m3 (0.13 s) 1125 J/m3 (0.13 s) 1096 J/m3 (0.17 s) 1089 J/m3 (0.17 s)
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