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Translational research applies basic science discoveries in clinical and com-

munity settings. Implementation research is often limited by tremendous

variability among settings; therefore, generalization of findings may be limited.

Adoption of a novel procedure in a community practice is usually a local decision

guided by setting-specific knowledge. The conventional statistical framework

that aims to produce generalizable knowledge is inappropriate for local quality

improvement investigations. We propose an analytic framework based on

cost-effectiveness of the implementation study design, taking into account prior

knowledge from local experts. When prior knowledge does not indicate a clear

preference between the new and standard procedures, local investigation

should guide the choice. The proposed approach requires substantially smaller

sample sizes than the conventional approach. Sample size formulae and general

guidance are provided. (Am J Public Health. 2014;104:e23–e30. doi:10.2105/

AJPH.2013.301579)

It is common in implementation studies to
adapt existing procedures, or to improvise
new procedures, to accommodate local con-
ditions in a specific community care setting.
From an evidence-based principle, these de-
cisions can often be informed by conducting
a local investigation or quality improvement
study to evaluate the pros and cons for viable
options under consideration. For example,
within the primary care setting and emerging
medical home practices, primary care clinics
may implement focused procedures to engage
high-risk, high-complexity patients with emo-
tional and medical conditions such as depres-
sion and diabetes. Such procedures might
include focused physical and emotional health
screening and multidisciplinary health care
delivery procedures. Before replacing the
existing intake and care delivery procedures,
the clinic may benefit from pilot testing the
new procedure to examine its potential utility
and impact on patient care. The results of
this pilot investigation can then be used to
inform the decision (which intake procedure
to use) for future patients including a broader
“roll-out” of the successful procedures.

The primary purpose of these local investi-
gations is to produce local knowledge (such as
which intake procedure is more effective for

the specific clinic) to inform local implemen-
tation decisions. The pilot testing of these
procedures is not intended to produce gener-
alizable knowledge that can be applied uni-
versally to other care settings. This underlines
the difference between implementation sci-
ence that aims to produce generalizable
knowledge1 and quality improvement projects
that aim to produce local knowledge with
a focus on an organization’s own delivery
system and process.2 As such, quality im-
provement projects for local knowledge do not
meet the criterion for human participants
research as defined by the Office for Human
Research Protections, the federal agency with
oversight over human participants protection
and institutional review boards. Research
means a systematic investigation, including
research development, testing, and evaluation,
designed to develop or contribute to general-
izable knowledge.3

To avoid the confusion with human partic-
ipants research that aims to produce general-
izable knowledge, we use the term local
investigation to highlight the distinction, and
also to suggest that those investigations might
qualify for exemptions from certain human
participants regulations. Local investigations
often deal with components (“nuts and bolts,”

such as a specific intake procedure) of an
overall implementation program. Making ap-
propriate nuts-and-bolts decisions is important
for the successful assemblage of the overall
implementation “engine.” A specific imple-
mentation engine might consist of numerous
nuts and bolts. Therefore, it is conceivable that
multiple local investigations might be con-
ducted in an implementation program for
a specific care setting, each addressing the
needs for a specific component of the engine.

A variety of designs can be used for local
investigations, including randomized designs
and nonrandomized quasiexperimental de-
signs.4 To illustrate the difference between
local investigations that aim primarily to pro-
duce local knowledge, and the usual research
studies that aim primarily to produce general-
izable knowledge, we focused on randomized
designs for this type of quality improvement
project.

CONVENTIONAL DESIGN
FRAMEWORK

Research studies are usually designed to
achieve a prespecified statistical accuracy, such
as a 5% type I error rate and an 80% power.
For example, when one is comparing the health
outcomes of a new treatment against the
standard by using a 2-sided t test, the required
sample size to detect a standardized effect size
of 0.25 is 500, with 250 randomized to each
arm. This conventional approach is inappro-
priate for quality improvement projects for
various reasons.

First, research studies are usually designed
under the assumption of a very large patient
horizon (the total number of patients eligible
for the treatment decision being studied—
i.e., the population size).5,6 Usually, if a new
pharmaceutical product is found to be effica-
cious and safe, and receives approval from the
Food and Drug Administration, there are
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millions of patients eligible for the new treat-
ment. Therefore, the stake is enormous and
calls for a high level of accuracy in the research
studies to protect the welfare for future pa-
tients. Because the number of future patients
usually dominates the number of patients
participating in a research study, even for
a large phase 3 trial, the emphasis is usually
placed on the welfare for future patients. The
ethical cost to the trial participants (such as the
chance to be assigned to the inferior treatment
option) is usually small compared with the
improved outcomes for future patients.

The statistical framework is very different
for quality improvement investigations that aim
primarily to produce local knowledge for local
consumption. For a primary care clinic with
a total of 500 patients comorbid with depres-
sion and diabetes, a conventional design with
5% type I error and 80% power will need to
enroll the entire patient population into the
trial, leaving no patients to “consume” the
findings from the trial. For a quality improve-
ment program that aims to optimize the welfare
for the 500 patients in the local clinic, this
conventional design is obviously inappropriate.
The finite nature of the patient horizon needs
to be taken into account in the design of these
local investigations to achieve the optimal
welfare for the entire patient population at the
local clinic. In particular, unlike in the usual
research studies, the ethical cost to the trial
participants is no longer small compared with
the welfare for future patients from the same
clinic, and needs to be taken into consideration
explicitly, along with improved outcomes for
future patients from the same clinic. This aspect
is in line with the patient-centered approach in
quality improvement.7

Second, local experts in the specific setting
may have prior knowledge about the specific
procedures under consideration. To reach ap-
propriate decisions, it is important to take this
prior knowledge into consideration. It is con-
ceivable that sometimes the prior knowledge is
strong enough to indicate that an empirical
investigation is not necessary—say, if the local
experts have compelling reasons to believe that
the new intake procedure is far superior to the
standard intake procedure. At the same time, it
is also important to identify the situations with
ambivalent prior knowledge, so that an appro-
priately designed local investigation will lead to

better patient welfare than relying on the prior
knowledge alone.

Third, the novel procedure under investiga-
tion is expected to lead to improved health
outcome, but the cost of the procedure is not
usually taken into account in the design of the
usual research studies. For example, a slightly
less effective but much cheaper procedure may
allow the community to compensate through
the cost saved. Conversely, a more expensive or
labor-intensive procedure may prove to be
cost-effective if the outcome is far superior and
worth the extra cost.

Finally, new procedures may emerge on
a regular basis, either from local sources such
as new innovations, or from external sources
such as state and federal agencies. Therefore, it
is important to take into account the “shelf life”
for a new procedure. It is imperative that local
investigations be conducted over a short period
of time to stay relevant, before the shelf life for
the procedures under investigation runs out.8

A timely process, along with a patient-oriented
approach, is in fact one of the aims for quality
improvement projects in accordance with the
Institute of Medicine.7

In light of these considerations, the purpose
of this article is to revisit the fundamental issues
of sample size considerations for local investi-
gations with a finite patient horizon (i.e., a
population with a finite number of patients
available for treatments in the local clinical
setting).5,6,9 Our specific goal is to introduce
a cost-effectiveness framework for quality im-
provement. The consideration of cost-
effectiveness in sample size determination is
not new10—12; however, the recent works are
motivated by designing studies that assume
a large, or essentially infinite, patient horizon.
Meanwhile, few consider statistical methods
for comparative studies in a finite patient
horizon,13,14 but none considers cost-
effectiveness analysis in the context of finite
horizon studies.

AN EFFECTIVENESS–
COST-EFFECTIVENESS
FRAMEWORK

We describe an effectiveness---cost-
effectiveness framework for the design for
quality improvement studies. We begin with
a cost-effectiveness framework, of which

the effectiveness framework is a special
case.

The cost-effectiveness consideration pro-
vides a useful framework to formulate the
statistical issues involved in designing local
investigations for implementation studies.
Decision-making based on a cost-effectiveness
analysis depends on 3 parameters. The first
parameter, defining the effectiveness compo-
nent, is the effect size (denoted by d ) of the new
procedure (relative to the standard procedure)
on patient health outcome, such as the mean
difference of depression symptoms (e.g.,
Patient Health Questionnaire-9) between
cognitive---behavioral therapy supplemented
with enhanced care management and
cognitive---behavioral therapy with standard
delivery.15

Two other parameters define the cost
components—specifically, the additional cost
(denoted by c) of the new procedure relative
to the standard and the value (denoted by b)
per unit increase in the health outcome. With
these 3 parameters, the incremental net ben-
efit (INB) of the novel procedure is defined as
INB = bd – c, where the term bd represents the
value attributable to the effectiveness d;
therefore, the difference, bd --- c, represents
the net benefit that adjusts the value of the
effectiveness, bd, by the cost, c, needed to
produce the effectiveness. The new procedure
is defined to be more cost-effective than the
standard procedure if the INB is positive.

The value parameter b can often be ap-
proximated by the cost reduction because of
reductions in the subsequent hospitalization
and other expensive medical procedures,
by using secondary data sources in a deci-
sion analysis model.16 The procedure cost
parameter c can often be assessed prospec-
tively with existing information about
the level of efforts required for the novel
procedure.

We assume that the value parameter b is
known to be positive (i.e., b > 0) on the basis of
the interpretation that the improved health
outcome has a positive value. We do not
impose any restrictions on the procedure cost
parameter c, allowing all possible scenarios:
c > 0; c < 0; and c = 0.

In the first scenario, the novel procedure
enhances the standard procedure for an extra
cost. Under this scenario, the value of the
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improved health outcome, bd, needs to offset
the positive procedure cost, c, for the new
procedure to be cost-effective compared with
the standard procedure. Under the second
scenario, the procedure cost is negative
(i.e., the novel procedure might be a way to
streamline the standard procedure to simplify
its delivery and save cost). This scenario may
occur in the context of noninferiority studies
where the goal is to show a new, less
expensive approach is not much inferior
than the existing approach (e.g., group ther-
apy vs individual therapy). Under this sce-
nario, the effectiveness parameter d can be
slightly negative (i.e., the new procedure can
be slightly less effective than the standard
procedure) and the new procedure still re-
mains cost-effective compared with the
standard procedure if the negative health
benefit, bd, is smaller in magnitude than the
cost savings, c.

This cost-effectiveness framework sim-
plifies to an effectiveness framework when
the procedure cost parameter c is zero. This
scenario can be interpreted in 2 ways. First,
in the cost-effectiveness framework, this
scenario assumes that the procedure cost is
neutral between the new and standard pro-
cedures: the 2 procedures are equivalent in
cost; therefore, the cost-effectiveness is de-
termined by the value of the improved
health outcome, bd. Alternatively, this sce-
nario can be interpreted as an effectiveness
framework, in which we only consider ef-
fectiveness, and ignore any difference in
procedure costs.

For most purposes, the design of the local
investigation depends on the cost parameters
b and c only through the cost-to-benefit ratio,
k : = c/b, which measures the procedure cost
parameter c relative to the value parameter b.
In other words, the design remains invariant if
both b and c are multiplied or divided by
the same constant, say, when the unit of cost
and value is changed from US dollar to British
pound.

The primary objective of the local investi-
gation is to assess the effect size d of the new
procedure compared with that of the standard
procedure.We assume in the next section that the
cost parameters b and c are known a priori. It is of
course possible to address the uncertainty about
the cost parameters with sensitivity analysis.

EVIDENCE-BASED ADOPTION OF
NOVEL PROCEDURES

In practice, the adoption of new procedures
within individual clinics often depends on
subjective judgment and varies from commu-
nity to community. Some clinics always stay
with the standard approach (often described as
late adopters), whereas some always adopt the
novel procedure (early adopters). As an alter-
native, we propose an evidence-based adoption
(EBA) strategy specified as follows. Suppose in
a community with a patient horizon N, we
conduct a local investigation and randomize n
patients to the new procedure and n patients to
the standard procedure, and perform a statisti-
cal test for the null hypothesis, H0 : INB £ 0,
versus the alternative hypothesis, HA : INB > 0,
by using a 1-sided t test. More specifically, let
Dn denote the mean health outcome in the n
patients in the experimental arm minus that of
the standard arm. Then the null hypothesis is
rejected if

ð1Þ Tn ¼
ffiffiffi
n

p
Dn � kð Þffiffiffi
2

p
Sn

> za

where za is the upper a-critical value from the
standard normal distribution (e.g., za = 1.96
when a= 0.025) and Sn is the pooled sample
standard deviation of the observed health
outcomes. If H0 is rejected, the new procedure
will be adopted for the remaining N --- 2n
patients.

Conversely, if H0 is accepted, the remaining
N --- 2n patients will receive the standard
procedure.

This EBA strategy can be viewed as
a 2-stage procedure, with the 2n study patients
being the trial stage and the remaining N --- 2n
patients being the “consumption” stage where
the local knowledge obtained from the trial
stage is consumed. We assume that the 2n
study patients are sampled randomly from the
pool of N eligible patients in the specific clinic.
For some procedures, it is possible to select
study patients randomly from the roster of
patients eligible for the procedure by using
electronic health records. For some proce-
dures, patient selection might be made by
selecting consecutive patients who present at
the clinic. In this situation, we need to make an

additional assumption of stationarity (i.e., the
order in which patients present at the clinic is
random); therefore, patients who present early
(and are thus enrolled into the local investiga-
tion) are representative of patients who present
late (and are thus reserved for the “consump-
tion” phase).

To assess the relative merits of various
strategies, we take the late-adopter as the
reference, and compare other decision strate-
gies to this benchmark. The total net gain for
the late-adopter is thus defined to be G0 = 0, as
there is no difference in the total net gain when
one compares the late adopter to itself as the
reference. For the early adopter, the total net
gain relative to late adopter is G1 = N(bd – c).

Although the effect size d is unknown, some
prior knowledge about d is usually available,
based on the intimate knowledge of local
experts about the community. We assume that
the prior knowledge about d, and the uncer-
tainty in the prior knowledge, are represented
in the form of a normal distribution with mean
d0 and variance s2. The elicitation of personal
belief has received much attention in the
Bayesian literature since the seminal work of
Savage17 with accelerating research in clinical
trials.18—20 In the current setting, the hyper-
parameters d0 and s2 can be interpreted as the
mean and variance of the prior belief about d
among local experts. After the values of d0 and
s2 are elicited, the expected net gain of the
early adopter will be evaluated as E(G1) =
N(bd0 – c).

If the only options are to choose between the
early adopter and the late adopter, the early
adopter is justified if E(G1) > 0; and conversely
for the late-adopter if E(G1) < 0. As such, we
define the cost-effectiveness equipoise to hold
if bd0 – c = 0 (i.e., d0= k).

Under cost-effectiveness equipoise, there is
no preference among the local experts between
early adoption and late adoption, because
E(G1) = E(G0) = 0. The incremental benefit of
the new procedure (bd0) is offset by the in-
cremental cost (c). The cost-effectiveness equi-
poise defined here simplifies to the usual
equipoise based only on the consideration of
effectiveness, d0 ¼ 0; when the cost parameter
c is zero.

The 2-stage EBA strategy can outperform
both the early adopter and late adopter,
indicating that the local investigation is
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informative and leads to better decisions than
relying entirely on the local experts’ prior
knowledge. To be more precise, if the effect
size d were known, the total net gain for the
evidence-based adopter (relative to the
late-adopt strategy) would be equal to

ð2Þ G2 ¼ n þ N � 2nð Þb dð Þf g bd0 � cð Þ
¼ b n þ N � 2nð Þb dð Þf g d0 � kð Þ;

where �(d) is the power function of the t test
given in equation 1 under the effect size d and
is an increasing function of d. With a normal
prior distribution for d, the expected net gain of
the EBA strategy is given by

ð3Þ E G2ð Þ ¼ b n þ N � 2nð ÞPf g d0 � kð Þ
þ N � 2nð ÞbsQ;

where

ð4Þ P ¼ U
m1k1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ 1

q
0
B@

1
CA

and

ð5Þ Q ¼ k21 þ 1
� ��1=2

u
m1k1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ 1

q
0
B@

1
CA

with

ð6Þ m1 ¼
ffiffiffi
n

p
d0 � kð Þffiffiffi
2

p
r

� za

and

ð7Þ k1 ¼
ffiffiffi
2

p
rffiffiffi

n
p

s
;

r is the standard deviation of the health out-
come, and U and u respectively denote the
distribution function and density function of
the standard normal distribution. (The deriva-
tion for equation 3 is given in the technical
appendix, available as a supplement to the
online version of this article at http://www.
ajph.org.)

Note that the expected net gain (equation 3)
depends on the prior mean d0 via its relative
location to k, i.e., d0 - k. It is also important to

note that Q> 0. Therefore, under cost-
effectiveness equipoise (i.e., d0 = k), the
evidence-based adopter outperforms both the
early adopter and the late adopter in terms of
expected net gain:

ð8Þ E G2ð Þ ¼ N � 2nð Þb sQ > E G1ð Þ
¼ E G0ð Þ ¼ 0:

In other words, under equipoise, some local
investigation (regardless of the sample size n) is
always better than no local investigation, in
terms of the cost-effectiveness of the overall
strategy. This finding is consistent with the
intuition that, under equipoise, the prior
knowledge does not provide an obvious way to
choose between the new procedure and the
standard procedure, therefore suggesting that
a local investigation should be conducted to
guide the choice.

GENERAL DESIGN GUIDELINES

The 2-stage EBA strategy is specified by 2
design parameters, the sample size n and the
critical value za. The conventional statistical
approach usually determines these 2 parame-
ters with respect to a type I error rate of 2.5%
or 5%, and a power of 80%. However, as
illustrated earlier, this design may lead to an
inappropriate sample size for local investiga-
tions. We propose a design approach to de-
termine n and za jointly so as to maximize the
expected net gain E(G2) defined in equation 3
for the EBA strategy, in comparison with the
expected net gain E(G0) and E(G1) for the late
and early adopter. Our main results follow.

Result 1

For any given n, the critical value that
maximizes E(G2) is given by

ð9Þ z� ¼
ffiffiffi
2

p
r k� d0ð Þffiffiffi
n

p
s2

(The derivation for result 1 is given in the
technical appendix, available as a supplement
to the online version of this article at http://
www.ajph.org.)

It is noteworthy that, under equipoise, the
optimal critical value z* equals 0 and corre-
sponds to a 50% 1-sided type I error rate. This

stands in stark contrast with the conventionally
conservative hypothesis testing approach.

Alternatively, if the local experts have
a slight optimism about the cost-effectiveness of
the new procedure in that the previous INB is
positive, d0 --- k> 0, then, the optimal z* is
negative, corresponding to a 1-sided type I
error rate larger than 50%. Intuitively, because
the local experts are already in favor of the new
procedure, they need only to confirm their
prior knowledge in the local investigation.

On the other hand, if the local experts have
a slight pessimism about the new procedure
(i.e., d0 --- k< 0), then the optimal z* is positive,
corresponding to a 1-sided type I error rate
smaller than 50%. This is reasonable as the
previous pessimism indicates that the study
needs to show stronger evidence against the
null hypothesis than the evidence required
under equipoise to overcome the initial pessi-
mistic assumption. The usual design with a 5%
type I error rate corresponds to a rather strong
pessimism, which might not be consistent
with the prior knowledge for the local experts.

Result 2

Under cost-effectiveness equipoise (i.e.,
bd0 --- c = 0), the sample size that maximizes
E(G2) can be evaluated as

ð10Þ n� ¼ Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4R

p þ 3

where R =N s2 /(2 r2). (The derivation for
result 2 is given in the technical appendix,
available as a supplement to the online version
of this article at http://www.ajph.org.)

As a simple consequence to the fact that R>0,
the optimal sample size n* is less than N/6. In
other words, a general design guideline is not to
randomize more than one third of the patients
during the trial phase.

Furthermore, it is an easy consequence to
result 2 that the optimal expected net gain is
equal to

ð11Þ E� G2ð Þ ¼ffiffiffiffi
R

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4R

p þ 1
� �

Nbsu 0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4R

p þ 3
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 4R
p þ 3þ R

p :

Note that E*(G2) approaches zero when R
approaches zero. In other words, if there is
a strong prior knowledge (small s) or if the
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empirical observations are uninformative
(large r), the potential gain of the local in-
vestigation is small, albeit positive. Conversely,
if there is a weak prior knowledge (large s) or if
the empirical observations are highly informa-
tive (small r), the potential net gain can be
substantial.

Colton13 derived the same expression as
equation10 under effectiveness-only equipoise

with c = 0. Result 2 thus extends Colton’s result
to the general cost-effectiveness framework. As
there is no closed-form expression for the
optimal sample size when the prior knowledge
deviates from cost-effectiveness equipoise, we
provide numerical illustrations in the next
section to demonstrate that the optimal sample
size n* decreases as the prior knowledge de-
viates from equipoise.

NUMERICAL ILLUSTRATIONS

Consider a community with N = 500 pa-
tients. The sample size per arm of the local
investigation can range from n = 0 (indicating
no local investigation) to n = 250 (placing all
eligible patients into the trial without a con-
sumption stage). We assume that b = 1 and c =
0.1, so that the cost-to-benefit ratio k= 0.1, and
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Note. The gray solid horizontal line indicates the expected net gain for late adopter E(G0); the gray dotted line for early adopter E(G1).

FIGURE 1—Expected net gain for the evidence-based adoption strategy E(G2) versus sample size at optimal z* under a variety of prior mean d0.
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that s= 0.2 and r = 1. Figure 1 plots the
expected net gain for the EBA strategy, E(G2) in
equation 3, for each possible sample size n and
the corresponding optimal critical value z*
defined in equation 9 under a variety of prior
mean d0. For comparison, we also show the
expected net gain for the late-adopter, E(G0)= 0,
and that for the early adopter E(G1).

Figure 1a plots the expected net gain of the
EBA plan against sample size under cost-
effectiveness equipoise, d0= 0.1 = k. This fig-
ure shows that the EBA strategy has a positive
expected net gain for all n, and is thus superior
to both the late-adopt strategy and the early-
adopt strategy (shown as the gray solid line and
the gray dotted line, which coincide on the
bottom of this plot). The figure also shows that
the expected gain attains its maximum of 22.6
when n*= 50, with z* = 0 and a* = 50%
according to the formula in equation 9. It thus
provides a concrete recommendation of sample
size for the local investigation, placing 100

patients into the trial, with 50 in each arm, and
leaves 400 patients to consume the local
knowledge gained from the trial.

Figure 1b presents results for a slightly
optimistic scenario with d0= 0.15 > k, under
which the early adopter (gray dotted line) is
preferable to late-adopter (gray solid line) with
an expected net gain of 25. The EBA strategy
provides further gain if designed properly,
namely, it achieves a net gain of 36.5 when
n* = 46, with z* = –0.26 and a* = 60%.
However, the 2- stage EBA strategy with
a large trial stage (precisely, n > 164) is less
cost-effective than the early adopter. This
example illustrates that some local investigation
is preferred to no investigation when the local
experts have a belief slightly more favorable
than the equipoise. In contrast, Figure 1c de-
picts a scenario in which the local experts
have a strong opinion for the new procedure
with d0= 0.25 > >k. Under this scenario,
E(G1) > E(G2) for all n, indicating that the new

procedure should be adopted outright without
a local investigation.

Figure 1d presents results for a pessimistic
scenario with d0 = 0< k; that is, the new pro-
cedure is not expected to improve the health
outcome over the standard procedure. With
this pessimistic prior assumption, the figure
suggests that some investigation may still be
better than no investigation, although the
magnitude of the net gain is small (at 3.4 when
n*= 36, with z* = 0.59 and a* = 28%). In
situations where there is a fixed cost for con-
ducting the local investigation, such a small
expected net gain may not warrant the local
investigation. Figure 1e presents a scenario
where the prior knowledge is strongly pessi-
mistic (with d0 = –0.05 < < k); under this
scenario, the EBA strategy is uniformly inferior
to the late-adopt strategy and, therefore, the
standard procedure should be adopted outright
without a local investigation.

These scenarios illustrate that the use of the
expected net gain (equation 3) provides a con-
cise quantitative criterion as to whether a local
investigation should be carried out, as well as
the optimal sample size n* and the critical
value z* for the local investigation if indicated.
Figure 2a plots the optimal sample size versus
d0 and shows that the maximum sample size is
indicated under equipoise (with n = 50; Figure
1a). This illustrates that the formula in equation
10 serves as an upper bound for sample size
required in a local investigation regardless of
the previous mean, d0. As d0 moves away from
the equipoise value k=0.1, the optimal sample
size decreases and reaches 0 when d 0 £ –0.04
or ‡ 0.24. An optimal n = 0 implies that the
optimal decision is not to conduct a local in-
vestigation, but rather to act in accordance with
the prior knowledge. In Figures 2b and 2c, we
show that the gain of the EBA strategy relative
to the better of the late adopter and early
adopter strategies ranges from 0 to 22.6. This
set of illustrations considers a fairly informative
prior knowledge with s/r= 0.2. As suggested
by equation 11, the magnitude of net gain will
increase with larger s to r ratios (less infor-
mative prior knowledge).

It is also instructive to evaluate the operating
characteristics of the proposed sample size n*
and significance threshold z* by using the
conventional criteria. Figure 3a plots the power
function of a local investigation with n = 50

-0.1 0.0 0.1 0.2 0.3

0

10

20

30

40

50

0

N
um

be
r

a

-0.1 0.0 0.1 0.2 0.3

0

20

40

60

80

100

0

M
ax

im
um

 E
xp

ec
te

d 
N

et
 G

ai
n

b

-0.1 0.0 0.1 0.2 0.3

0

5

10

15

20

0

E(
G

2)
 - 

m
ax

{E
(G

0)
, E

(G
1)

}

c
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and za = 0 (1-sided a= 0.50) over the range of
nonnegative ds. This design will achieve an
80% power only when the true effect size d is
substantially larger than d0 (greater than 0.26
to be precise). Figure 3b depicts similar per-
formance: high false-positive under small d and
relatively modest power at large effect size.
With 1-sided a ‡ 0.50 and power often under
80%, these designs are very different from the
conventional designs used in the usual research
studies based on the assumption of very large
patient horizons. These examples illustrate the
needs to rethink how we design local investi-
gations when the patient horizon is limited.

CONCLUSIONS

The statistical formulation for medical trials
in a finite patient horizon can be traced back
to 1960s.5,9,13 There was little follow-up work
in the literature since, perhaps because of the
fact that clinical trials in the past half century
focused on drug and device development
for the broad general patient population.
However, the recent interest in conducting

implementation studies calls for further re-
search in this area.

We propose using a cost-effectiveness
framework to assess the merits of local in-
vestigations, and provide guidelines on sample
size determination for such investigations. In
general, if the local experts do not have strong
prior knowledge regarding the procedures un-
der consideration, an appropriately designed
local investigation should be conducted to
guide the choice. On the other hand, if the local
experts have strong prior knowledge that de-
viates substantially from equipoise, a local in-
vestigation is not warranted and the decision
can be made according to the local experts’
prior knowledge.

The proposed sample size formula appears
to yield subpar accuracy than the conventional
approach (Figure 3). However, as discussed
previously, accuracy bears practical relevance
only when there is a large number of patients
(an essentially infinite patient horizon) to ben-
efit from the knowledge learned. For local
investigations conducted to inform local de-
cisions, the conventional design approach is not

appropriate. This, of course, presumes the
philosophy that we do not reward learning for
the sake of learning if the knowledge obtained
does not benefit patients. In this sense, a local
investigation is not a research study, but rather
an attempt to improve the quality of care.
Conversely, it is also important not to over-
interpret the results in a local investigation and
make a generalizable statement based on the
study finding.

It is of course possible that some local
investigations might yield generalizable
knowledge that can be applied to other care
settings. However, we assume that the primary
objective for the local investigation is quality
improvement for the local patients; the knowl-
edge produced is meant to be applied locally
first and foremost. Any incidental application of
this local knowledge to other care settings is
a byproduct, not the primary objective to be relied
upon for the design of the local investigation.

A potential difficulty in local investigation is
the determination of the population size N,
which may not be known accurately or may be
drifting over a period of time. Although result 2
indicates that the optimal sample size n* in the
trial stage is a function of N, it also suggests that
it may be adequate to randomize about one
third of an underestimate of N during the trial
stage. A promising approach is the use of
adaptive designs that accrue patients sequen-
tially and adjust the sample size calculation
throughout; adaptive designs in clinical trials
for infinite patient horizon (e.g., stroke) have
been increasingly used21 and regulated.22 For
finite patient horizon, some simulation results
in the literature14 suggest that adaptive ran-
domization can mitigate the lack of precise
knowledge about N, although theoretical be-
haviors of these methodologies warrant further
investigation. j
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