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Abstract——Computer-aided drug discovery/design
methods have played a major role in the development
of therapeutically important small molecules for over
three decades. These methods are broadly classified
as either structure-based or ligand-based methods.
Structure-based methods are in principle analogous
to high-throughput screening in that both target and
ligand structure information is imperative. Structure-
based approaches include ligand docking, pharma-
cophore, and ligand design methods. The article
discusses theory behind the most important methods
and recent successful applications. Ligand-based
methods use only ligand information for predicting

activity depending on its similarity/dissimilarity to
previously known active ligands. We review widely
used ligand-based methods such as ligand-based phar-
macophores, molecular descriptors, and quantitative
structure-activity relationships. In addition, important
tools such as target/ligand data bases, homology
modeling, ligand fingerprint methods, etc., necessary
for successful implementation of various computer-aided
drug discovery/design methods in a drug discovery
campaign are discussed. Finally, computational methods
for toxicity prediction and optimization for favorable
physiologic properties are discussed with successful
examples from literature.

I. Introduction

On October 5, 1981, Fortune magazine published a
cover article entitled the “Next Industrial Revolution:
Designing Drugs by Computer at Merck” (Van Drie,
2007). Some have credited this as being the start of
intense interest in the potential for computer-aided
drug design (CADD). Although progress was being made
in CADD, the potential for high-throughput screening
(HTS) had begun to take precedence as a means for
finding novel therapeutics. This brute force approach
relies on automation to screen high numbers of mole-
cules in search of those that elicit the desired biologic
response. The method has the advantage of requiring
minimal compound design or prior knowledge, and
technologies required to screen large libraries have
become more efficient. However, although traditional
HTS often results in multiple hit compounds, some of
which are capable of being modified into a lead and
later a novel therapeutic, the hit rate for HTS is often
extremely low. This low hit rate has limited the usage
of HTS to research programs capable of screening large
compound libraries. In the past decade, CADD has
reemerged as a way to significantly decrease the num-
ber of compounds necessary to screen while retaining
the same level of lead compound discovery. Many com-
pounds predicted to be inactive can be skipped, and
those predicted to be active can be prioritized. This
reduces the cost and workload of a full HTS screen
without compromising lead discovery. Additionally,

traditional HTS assays often require extensive develop-
ment and validation before they can be used. Because
CADD requires significantly less preparation time, ex-
perimenters can perform CADD studies while the tra-
ditional HTS assay is being prepared. The fact that both
of these tools can be used in parallel provides an ad-
ditional benefit for CADD in a drug discovery project.

For example, researchers at Pharmacia (now part of
Pfizer) used CADD tools to screen for inhibitors of
tyrosine phosphatase-1B, an enzyme implicated in dia-
betes. Their virtual screen yielded 365 compounds, 127
of which showed effective inhibition, a hit rate of nearly
35%. Simultaneously, this group performed a tradi-
tional HTS against the same target. Of the 400,000
compounds tested, 81 showed inhibition, producing a hit
rate of only 0.021%. This comparative case effectively
displays the power of CADD (Doman et al., 2002).
CADD has already been used in the discovery of com-
pounds that have passed clinical trials and become novel
therapeutics in the treatment of a variety of diseases.
Some of the earliest examples of approved drugs that
owe their discovery in large part to the tools of CADD
include the following: carbonic anhydrase inhibitor
dorzolamide, approved in 1995 (Vijayakrishnan 2009);
the angiotensin-converting enzyme (ACE) inhibitor
captopril, approved in 1981 as an antihypertensive drug
(Talele et al., 2010); three therapeutics for the treatment of
human immunodeficiency virus (HIV): saquinavir (ap-
proved in 1995), ritonavir, and indinavir (both approved
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in 1996) (Van Drie 2007); and tirofiban, a fibrinogen
antagonist approved in 1998 (Hartman et al., 1992).
One of the most striking examples of the possibilities

presented from CADD occurred in 2003 with the search
for novel transforming growth factor-b1 receptor kinase
inhibitors. One group at Eli Lilly used a traditional HTS
to identify a lead compound that was subsequently im-
proved by examination of structure-activity relationship
using in vitro assays (Sawyer et al., 2003), whereas a
group at Biogen Idec used a CADD approach involving
virtual HTS based on the structural interactions bet-
ween a weak inhibitor and transforming growth factor-
b1 receptor kinase (Singh et al., 2003a). Upon the
virtual screening of compounds, the group at Biogen Idec
identified 87 hits, the best hit being identical in structure
to the lead compound discovered through the traditional
HTS approach at Eli Lilly (Shekhar 2008). In this si-
tuation, CADD, a method involving reduced cost and
workload, was capable of producing the same lead as a
full-scale HTS (Fig. 1) (Sawyer et al., 2003).

A. Position of Computer-Aided Drug Design in the
Drug Discovery Pipeline

CADD is capable of increasing the hit rate of novel
drug compounds because it uses a much more targeted
search than traditional HTS and combinatorial chem-
istry. It not only aims to explain the molecular basis of
therapeutic activity but also to predict possible deriva-
tives that would improve activity. In a drug discovery
campaign, CADD is usually used for three major pur-
poses: (1) filter large compound libraries into smaller
sets of predicted active compounds that can be tested
experimentally; (2) guide the optimization of lead

compounds, whether to increase its affinity or optimize
drug metabolism and pharmacokinetics (DMPK) proper-
ties including absorption, distribution, metabolism, ex-
cretion, and the potential for toxicity (ADMET); (3) design
novel compounds, either by "growing" starting molecules
one functional group at a time or by piecing together
fragments into novel chemotypes. Figure 2 illustrates the
position of CADD in drug discovery pipeline.

CADD can be classified into two general categories:
structure-based and ligand-based. Structure-based
CADD relies on the knowledge of the target protein
structure to calculate interaction energies for all com-
pounds tested, whereas ligand-based CADD exploits the
knowledge of known active and inactive molecules
through chemical similarity searches or construction of
predictive, quantitative structure-activity relation (QSAR)
models (Kalyaanamoorthy and Chen, 2011). Structure-
based CADD is generally preferred where high-resolution
structural data of the target protein are available, i.e., for
soluble proteins that can readily be crystallized. Ligand-
based CADD is generally preferred when no or little
structural information is available, often for mem-
brane protein targets. The central goal of structure-
based CADD is to design compounds that bind tightly to
the target, i.e., with large reduction in free energy, im-
proved DMPK/ADMET properties, and are target specific,
i.e., have reduced off-target effects (Jorgensen, 2010). A
successful application of these methods will result in
a compound that has been validated in vitro and in vivo
and its binding location has been confirmed, ideally
through a cocrystal structure.

One of the most common uses in CADD is the
screening of virtual compound libraries, also known as

Fig. 1. Identical lead compounds are discovered in a traditional high-throughput screen and structure-based virtual high-throughput screen. I, X-ray
crystal structures of 1 and 18 bound to the ATP-binding site of the TbR-I kinase domain discovered using traditional high-throughput screening.
Compound 1, shown as the thinner wire-frame is the original hit from the HTS and is identical to that which was discovered using virtual screening.
Compound 18 is a higher affinity compound after lead optimization. II, X-ray crystal structure of compound HTS466284 bound to the TbRI active site.
This compound is identical to compound 1 in I but was discovered using structure-based virtual high-throughput screening.

Computational Methods in Drug Discovery 337



virtual high-throughput screening (vHTS). This allows
experimentalists to focus resources on testing com-
pounds likely to have any activity of interest. In this
way, a researcher can identify an equal number of hits
while screening significantly less compounds, because
compounds predicted to be inactive with high confi-
dence may be skipped. Avoiding a large population of
inactive compounds saves money and time, because the
size of the experimental HTS is significantly reduced
without sacrificing a large degree of hits. Ripphausen
et al. (2010) note that the first mention of vHTS was in
1997 (Horvath, 1997) and chart an increasing rate of
publication for the application of vHTS between 1997 and
2010. They also found that the largest fraction of hits has
been obtained for G-protein-coupled receptors (GPCRs)
followed by kinases (Ripphausen et al., 2010).
vHTS comes in many forms, including chemical sim-

ilarity searches by fingerprints or topology, selecting
compounds by predicted biologic activity through QSAR
models or pharmacophore mapping, and virtual docking
of compounds into target of interest, known as structure-
based docking (Enyedy and Egan, 2008). These methods
allow the ranking of “hits” from the virtual compound
library for acquisition. The ranking can reflect a property
of interest such as percent similarity to a query

compound or predicted biologic activity, or in the case
of docking, the lowest energy scoring poses for each
ligand bound to the target of interest (Joffe, 1991).
Often initial hits are rescored and ranked using higher
level computational techniques that are too time
consuming to be applied to full-scale vHTS. It is im-
portant to note that vHTS does not aim to identify
a drug compound that is ready for clinical testing, but
rather to find leads with chemotypes that have not
previously been associated with a target. This is not
unlike a traditional HTS where a compound is gen-
erally considered a hit if its activity is close to 10 mM.
Through iterative rounds of chemical synthesis and
in vitro testing, a compound is first developed into a
“lead” with higher affinity, some understanding of
its structure-activity-relation, and initial tests for DMPK/
ADMET properties. Only after further iterative rounds of
lead-to-drug optimization and in vivo testing does a
compound reach a clinically appropriate potency and
acceptable DMPK/ADMET properties (Jorgensen,
2004). For example, the literature survey performed
by Ripphausen et al. (2010) revealed that a majority of
successful vHTS applications identified a small number of
hits that are usually active in the micromolar range, and
hits with low nanomolar potency are only rarely identified.

Fig. 2. CADD in drug discovery/design pipeline. A therapeutic target is identified against which a drug has to be developed. Depending on the
availability of structure information, a structure-based approach or a ligand-based approach is used. A successful CADD campaign will allow
identification of multiple lead compounds. Lead identification is often followed by several cycles of lead optimization and subsequent lead identification
using CADD. Lead compounds are tested in vivo to identify drug candidates .
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The cost benefit of using computational tools in the
lead optimization phase of drug development is sub-
stantial. Development of new drugs can cost anywhere in
the range of 400 million to 2 billion dollars, with syn-
thesis and testing of lead analogs being a large contrib-
utor to that sum (Basak, 2012). Therefore, it is beneficial
to apply computational tools in hit-to-lead optimization
to cover a wider chemical space while reducing the num-
ber of compounds that must be synthesized and tested in
vitro. The computational optimization of a hit compound
can involve a structure-based analysis of docking poses
and energy profiles for hit analogs, ligand-based screen-
ing for compounds with similar chemical structure or
improved predicted biologic activity, or prediction of fav-
orable DMPK/ADMET properties. The comparably low
cost of CADD compared with chemical synthesis and
biologic characterization of compounds make these
methods attractive to focus, reduce, and diversify the
chemical space that is explored (Enyedy and Egan, 2008).
De novo drug design is another tool in CADDmethods,

but rather than screening libraries of previously synthe-
sized compounds, it involves the design of novel com-
pounds. A structure generator is needed to sample
the space of chemicals. Given the size of the search
space (more than 1060 molecules) (Bohacek et al., 1996)
heuristics are used to focus these algorithms on mo-
lecules that are predicted to be highly active, readily
synthesizable, devoid of undesirable properties, often
derived from a starting scaffold with demonstrated
activity, etc. Additionally, effective sampling strat-
egies are used while dealing with large search spaces
such as evolutionary algorithms, metropolis search,
or simulated annealing (Schneider et al., 2009). The
construction algorithms are generally defined as either
linking or growing techniques. Linking algorithms
involve docking of small fragments or functional groups
such as rings, acetyl groups, esters, etc., to particular
binding sites followed by linking fragments from
adjacent sites. Growing algorithms, on the other hand,
begin from a single fragment placed in the binding site
to which fragments are added, removed, and changed to
improve activity. Similar to vHTS, the role of de novo
drug design is not to design the single compound with
nanomolar activity and acceptable DMPK/ADMET prop-
erties but rather to design a lead compound that can be
subsequently improved.

B. Ligand Databases for Computer-Aided
Drug Design

Virtual HTS uses high-performance computing to
screen large chemical data bases and prioritize com-
pounds for synthesis. Current hardware and algorithms
allow structure-based screening of up to 100,000 mole-
cules per day using parallel processing clusters (Agarwal
and Fishwick, 2010). To perform a virtual screen, how-
ever, a virtual library must be available for screening.
Virtual libraries can be acquired in a variety of sizes and

designs including general libraries that can be used to
screen against any target, focused libraries that are de-
signed for a family of related targets, and targeted
libraries that are specifically designed for a single
target (Takahashi et al., 2011).

General libraries can be constructed using a variety
of computational and combinatorial tools. Early systems
used molecular formula as the only constraint for
structure generation, resulting in all possible structures
for a predetermined limit in the number of atoms. As
comprehensive computational enumeration of all chemical
space is and will remain infeasible, additional restrict-
ions are applied. Typically, chemical entities difficult to
synthesize or known/expected to cause unfavorable
DMPK/ADMET properties are excluded. Fink et al. pro-
posed a generation method for the construction of virtual
libraries that involved the use of connected graphs
populated with C, N, O, and F atoms and pruned based
on molecular structure constraints and the removal of
unstable structures. The final data base proposed with
this method is called the GDB (Generated a DataBase)
and contains 26.4 million chemical structures that have
been used for vHTS (Fink et al., 2005; Fink and
Reymond, 2007). A more recent variation of this data
base called GDB-13 includes atoms C, N, O, S, and Cl (F
is not included in this variation to accelerate computa-
tion) and contains 970 million compounds (Blum and
Reymond, 2009).

Most frequently, vHTS focuses on drug-like molecules
that have been synthesized or can be easily derived from
already available starting material. For this purpose
several small molecule data bases are available that
provide a variety of information including known/available
chemical compounds, drugs, carbohydrates, enzymes,
reactants, and natural products (Ortholand and Ganesan,
2004; Song et al., 2009). Some widely used data bases are
listed in Table 1.

1. Preparation of Ligand Libraries for Computer-
Aided Drug Design. Ligand libraries are often con-
structed by enriching ligands for drug likeness or certain
desirable physiochemical properties suitable for the
target of interest. Even with rapid docking algorithms,
docking millions of compounds requires considerable
resources, and time can be saved through the elimination
of non-drug like, unstable, or unfavorable compounds.
Drug likeness is commonly evaluated using Lipinski’s
rule of five (Lipinski et al., 2001), which states that in
general, an orally active drug should have no more
than one violation of the following criteria: (1) max-
imum of five hydrogen bond donors, (2) no more than
10 oxygen and nitrogen atoms; (3) molecular mass of
less than 500 Da; and (4) an octanol-water partition
coefficient of not greater than five. If two or more of
the conditions are violated, poor adsorption can be ex-
pected. Similarly, polar molecular surface is also used as
a determinant for oral absorption and brain penetration
(Kelder et al., 1999). It is a common practice to filter

Computational Methods in Drug Discovery 339



molecules based on predicted DMPK/ADMET properties
before initializing a vHTS campaign. Ligand-based meth-
ods to predict DMPK/ADMET properties use statistical
and learning approaches, molecular descriptors, and ex-
perimental data to model biologic processes such as oral
bioavailability, intestinal absorption/permeability, half-
life time, distribution in human blood plasma, etc.
Compound libraries are often enriched for a particular

target or family of targets. Physiochemical filters de-
rived from observed ligand-target complexes are used for
enriching a library with compounds that satisfy specific
geometric or physicochemical constraints. Such libraries
are prepared by searching for ligands that are similar
to known active ligands (Orry et al., 2006; Harris
et al., 2011). Several target-specific libraries exist
in Cambridge Structure Data base like the kinase-
biased, GPCR-biased, ion channel-biased sets, etc. In
addition, a small molecule library requires prepara-
tions such as conformational sampling and assigning
proper stereo isometric and protonation state (Cavasotto
and Phatak, 2011; Anderson, 2012). Molecules are
flexible in solvent environment and hence represen-
tation of conformational flexibility is an important
aspect of molecular recognition. Often conformations
of protein and ligand are precomputed using simula-
tion or knowledge-based methods (Liwo et al., 2008;
Foloppe and Chen, 2009).
2. Representation of Small Molecules as “SMILES”.

Development and efficient use of ligand data bases
require universally applicable methods for the virtual
representation of small molecules. SMILES (Simplified
Molecular Input Line System) (Wiswesser, 1985) was
developed as an unambiguous and reproducible method
for computationally representing molecules. It was
developed as an improvement over the Wiswesser Line
Notation (Wiswesser, 1954), which had a cumbersome
set of rules, but was a preferred method due to the re-
presentation of molecular structure as a linear string of
symbols that could be efficiently read and stored by
computer systems.
Commonly, SMILES does not explicitly encode

hydrogen atoms (hydrogen-suppressed graph) and

conventionally assumes that hydrogens make up the
remainder of an atom’s lowest normal valence. All non-
hydrogen atoms are represented by their atomic sym-
bols enclosed in square brackets. Atoms may also be
listed without square brackets, implying the presence of
hydrogens. Formal charges are specifically assigned as
+ or 2 followed by an optional digit inside the ap-
propriate brackets. Aromatic atoms are specified using
the lowercase atomic symbols. Single bonds, double
bonds, triple bonds, and aromatic bonds are denoted by
“-,” “=,” “#,” and “:,” respectively. Branched systems are
specified by enclosing them in parentheses. Cyclic struc-
tures are represented by breaking a ring at a single or
aromatic bond and numbering the atoms on either side of
the break with a number. For example, cyclohexane is
represented with the SMILES string C1CCCCC1. Dis-
connected compounds are separated by a period, and ionic
bonds are considered disconnected structures with com-
plimentary formal charges (Weininger, 1988).

SMILES algorithms are capable of detecting most
aromatic compounds with an extended version of Huckel’s
rule (all atoms in the ring must be sp2 hybridized and
the number of available p electrons must satisfy 4N + 2)
(Weininger and Stermitz, 1984). Therefore, aromaticity
does not necessarily need to be defined beforehand. How-
ever, tautomeric structures must be explicitly specified
as separate SMILES strings. There are no SMILES
definitions for tautomeric bonds or mobile hydrogens.
SMILES was designed to have good human readability
as a molecular file format. However, there are usually
many different but equally valid SMILES descriptions
for the same structure. It is most commonly used for
storage and retrieval of compounds across multiple
computer platforms.

SMARTS (SMILES ARbitrary Target Specification)
is an extension of SMILES that allows for variability
within the represented molecular structures. This pro-
vides substructure search functionality to SMILES. In
addition to the SMILES naming conventions, SMARTS
includes logical operators, such as "AND" (&), "OR" (,),
and "NOT" (!), and special atomic and bond symbols
that provide a level of flexibility to chemical names. For

TABLE 1
Widely used chemical compound repositories along with content information about class of compounds they host and the size of repositories

Database Type Size

PubChem (Wheeler et al., 2006) Biologic activities of small molecules ;40,000,000
Accelrys Available Chemicals Directory (ACD)

(Accelrys, 2012)
Consolidated catalog from major chemical suppliers ;7,000,000

PDBeChem (Dimitropoulos, 2006) Ligands and small molecules referred in PDB 14,572
Zinc (Irwin and Shoichet, 2005) Annotated commercially available compounds ;21,000,000
LIGAND (Goto et al., 2002) Chemical compounds with target and reactions data 16,838
DrugBank (Wishart et al., 2006) Detailed drug data with comprehensive drug target

information
6711

ChemDB (Chen et al., 2005, 2007) Annotated commercially available molecules ;5,000,000
WOMBAT Data base (World of Molecular BioAcTivity)

(Ekins et al., 2007; Hristozov et al., 2007)
Bioactivity data for compounds reported in medicinal

chemistry journals
331,872

MDDR (MDL Drug Data Report)
(Hristozov et al., 2007)

Drugs under development or released; descriptions of
therapeutic

180,000

3D MIND (Mandal et al., 2009). Molecules with target interaction and tumor cell line
screen data

100,000
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example, in SMARTS notation, [C,N] represents an atom
that can be either an aliphatic carbon or an aliphatic ni-
trogen, and the symbol ";" will match any bond type
(Daylight Chemical Information Systems, 2008).
3. Small Molecule Representations for Modern

Search Engines: InChIKey. InChI (International
Chemical Identifier) was released in 2005 as an open
source structure representation algorithm that is meant
to unify searches across multiple chemical data bases
using modern internet search engines. It is maintained
by the InChI Trust (http://www.inchi-trust.org) and
currently supports chemical elements up to 112
(InChITRUST, 2013). The purpose of InChI and the
hash-key version InChIKey is to provide a nonpropri-
etary machine-readable code unique for all chemical
structures that can be indexed by major search engines
such as Google without any alteration. By use of this
protocol, researchers can search for chemicals in
a routine and straightforward manner. Before the
development of INChI, chemical searches spanning
multiple data bases using typical search engines
were unreliable. Different systems have their own
proprietary identification method for indexing chem-
icals, SMILES-based searches are also insufficient,
because different data bases have adopted their own
unique SMILES.
InChI is made up of several layers that represent

different classes of structural information. The first
two layers contain only general information, including
the chemical formula and connections. More specific
conformational information such as stereochemistry,
tautomerism, and isotopic information is represented
in additional optional layers. Bonds between atoms can
be partitioned into up to three sublayers depending on
the level of specification desired. These layers represent
all bonds to nonbridging hydrogen atoms, immobile hy-
drogen atoms, and mobile hydrogen atoms, respectively.
The InChI algorithm includes six normalization rules
that apply qualities such as variable protonation and
identification of tautomeric patterns and resonances to
achieve a unique and consistent chemical representa-
tion (InChITRUST, 2013).
InChIKey is a hash-key version of InChI that generates

two blocks using a truncated SHA-256 cryptographic hash
function. This allows the keys to contain a fixed length of
27 characters with high collision resistance (minimal
chance of two different molecules having the same hash
key). Use of InChIKeys to search multiple data base with
typical search engines was tested, and the incidence of
false-positive hits was low (Southan, 2013). Publically
available web applets are available that allow chemists
to draw molecules and automatically search the web
using an automatically calculated InChIKey (http://www.
chemspider.com/StructureSearch.aspx).

C. Target Data Bases for Computer-Aided
Drug Discovery/Design

The knowledge of the structure of the target protein
is required for structure-based CADD. The Protein
Data Bank (PDB) (2013), established in 1971 at the
Brookhaven National Laboratory, and the Cambridge
Crystallographic Data Center, are among the most com-
monly used data bases for protein structure. PDB cur-
rently houses more than 81,000 protein structures, the
majority of which have been determined using X-ray
crystallography and a smaller set determined using
NMR spectroscopy. When an experimentally deter-
mined structure of a protein is not available, it is often
possible to create a comparative model based on the ex-
perimental structure of a related protein. Most fre-
quently the relation is based in evolution that introduced
the term "homology model." The Swiss-Model server is
one of the most widely used web-based tools for homology
modeling (Arnold et al., 2006). Initially, static protein
structures were used for all structure-based design
methods. However, proteins are not static structures
but rather exist as ensembles of different conforma-
tional states. The protein fluctuates through this
ensemble depending on the relative free energies of
each of these states, spending more time in conforma-
tions of lower free energy. Ligands are thought to
interact with some conformations but not others, thus
stabilizing conformational populations in the ensem-
ble. Therefore, docking compounds into a static protein
structure can be misleading, as the chosen conformation
may not be representative of the conformation capable
of binding the ligand. Recently, it has become state of
the art to use additional computational tools such as
molecular dynamics and molecular mechanics to simu-
late and evaluate a protein’s conformational space. Con-
formational sampling provides a collection of snapshots
that can be used in place of a single structure that re-
flect the breadth of fluctuations the ligand may encounter
in vivo. This approach was proven to be invaluable in
CADD by Schames et al. (2004) in the 2004 identification
of novel HIV integrase inhibitors (Durrant and McCam-
mon, 2010). Some methods, such as ROSETTALIGAND
(Meiler and Baker, 2006), are capable of incorporating
protein flexibility during the actual docking procedure,
omitting the need for snapshot ensembles.

The collection of events that occurs when a ligand binds
a receptor extends far beyond the noncovalent interac-
tions between ligand and protein. Desolvation of ligand
and binding pocket, shifts in the ligand and protein con-
formational ensembles, and reordering of water molecules
in the binding site all contribute to binding free energies.
Consideration of water molecules as an integral part of
binding sites is necessary for key mechanistic steps and
binding (Levitt and Park, 1993; Ball, 2008). These water
molecules shift the free energy change of ligand binding
by either facilitating certain noncovalent interactions
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between the ligand and protein or by being displaced
into more favorable direct interactions between the
ligand and protein, causing an overall change in free
energy upon binding (Ladbury, 1996; Li and Lazaridis,
2007). Improvements in computational resources allow
inclusion of better representations of physiochemical
interactions in computational methods to increase their
accuracies (de Beer et al., 2010).

D. Benchmarking Techniques of Computer-Aided
Drug Design

Effective benchmarks are essential for assessment of
performance and accuracy of CADD algorithms. Design
of the benchmark in terms of number and type of target
proteins, size, and composition of active and inactive
chemicals, and selection of quality measures play a
key role when comparing new CADD methods with
existing ones. Scientific benchmarks usually involve
screening a library of compounds that include a subset
of known actives combined with known inactive com-
pounds and then evaluating the number of known
actives that were identified by the CADD technique
used (Stumpfe et al., 2012).
Performance is commonly reported by correlating pre-

dicted activities with experimentally observed activities
through the use of receiver operating characteristic
curves. These curves plot the number of true positive
predictions on the y-axis versus the false-positive pre-
dictions on the x-axis. A random predictor would result
in a plot of a line with a slope of 1, whereas curves with
high initial slopes above this line represent increasing
performance scores for the method tested (Cleves and
Jain, 2006; Hristozov et al., 2007). Receiver operating
characteristic curves are therefore analyzed by de-
termining the area under the curve, positive predictive
value—the ratio of true positives in a subset selected in
a vHTS screen, or enrichment—a benchmark that nor-
malizes positive predictive value by the background
ratio of positives in the dataset.
For structure-based CADD, it is now common also to

include decoy molecules that further test a technique’s
ability to discern actives from inactives at high resolu-
tion. Irwin et al. (2008) created the Directory of Useful
Decoys (DUD) dataset designed for high-resolution bench-
marking. It includes experimental data for approximately
3000 ligands covering up to 40 different targets and a set
of carefully chosen decoys (Huang et al., 2006). These
decoys were designed to resemble positive ligands
physically but not topologically (Irwin, 2008). These
decoys, however, are not experimentally validated and
are only postulated to be “inactive” against the targets.
Good and Oprea (2008) developed clustered versions of
DUDwith added datasets from sources such asWOMBAT
to avoid challenges in enrichment comparisons between
methods due to different parameters and limited di-
versity (Good and Oprea, 2008).

The present review covers various established
structure-based and ligand-based CADD methods fol-
lowed by a section on CADD methods in ADMET profile
prediction. The applications of various methods discussed
in the manuscript are illustrated with recent studies.
We prioritize studies that concluded in compounds
that were at least tested in vivo and often entered
clinical trials.

II. Structure-Based Computer-Aided
Drug Design

Structure-based computer-aided drug design (SB-
CADD) relies on the ability to determine and analyze
3D structures of biologic molecules. The core hypothesis
of this approach is that a molecule’s ability to interact
with a specific protein and exert a desired biologic effect
depends on its ability to favorably interact with a
particular binding site on that protein. Molecules that
share those favorable interactions will exert similar bio-
logic effects. Therefore, novel compounds can be eluci-
dated through the careful analysis of a protein’s binding
site. Structural information about the target is a pre-
requisite for any SB-CADD project. Scientists have been
using a target protein’s structure to aid in drug discovery
since the early 1980s (NIH-structure based). Since then,
SB-CADD has become a commonly used drug discovery
technique thanks to advances in genomics and proteo-
mics that have led to the discovery of a large number of
candidate drug targets (Bambini and Rappuoli, 2009;
Lundstrom, 2011). Extensive use of biophysical techni-
ques such as X-ray crystallography and NMR spectros-
copy has led to the elucidation of a number of 3D
structures of human and pathogenic proteins. For ex-
ample, the PDB has over 81,000 protein structures,
whereas data bases such as PDBBIND (Wang et al.,
2004) and protein ligand data base house 5,671 and 129
(as of 2003) ligand-protein cocrystal structures, respec-
tively. Drug discovery campaigns leveraging target struc-
ture information have sped up the discovery process and
have led to the development of several clinical drugs. A
prerequisite for the drug discovery process is the ability
to rapidly determine potential binders to the target of
biologic interest. Computational methods in drug dis-
covery allow rapid screening of a large compound library
and determination of potential binders through
modeling/simulation and visualization techniques.

A. Preparation of a Target Structure

A target structure experimentally determined through
X-ray crystallography or NMR techniques and deposited
in the PDB is the ideal starting point for docking.
Structural genomics has accelerated the rate at which
target structures are being determined. In the absence
of experimentally determined structures, several suc-
cessful virtual screening campaigns have been reported
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based on comparative models of target proteins (Becker
et al., 2006; Warner et al., 2006; Budzik et al., 2010).
Efforts have also been made to incorporate information
about binding properties of known ligands back into com-
parative modeling process (Evers et al., 2003; Evers and
Klebe, 2004).
Success of virtual screening is dependent upon the

amount and quality of structural information known
about both the target and the small molecules being
docked. The first step is to evaluate the target for the
presence of an appropriate binding pocket (Hajduk et al.,
2005; Fauman et al., 2011). This is usually done through
the analysis of known target-ligand cocrystal structures
or using in silico methods to identify novel binding sites
(Laurie and Jackson, 2006).
1. Comparative Modeling. Advances in biophysical

techniques. such as X-ray crystallography and NMR
techniques. have led to increasing availability of protein
structures. This has allowed use of structural infor-
mation to guide drug discovery. In the absence of ex-
perimental structures, computational methods are used
to predict the 3D structure of target proteins. Compar-
ative modeling is used to predict target structure based
on a template with a similar sequence, leveraging that
protein structure is better conserved than sequence,
i.e., proteins with similar sequences have similar
structures. Homology modeling is a specific type of com-
parative modeling in which the template and target
proteins share the same evolutionary origin. Compara-
tive modeling involves the following steps: (1) identifica-
tion of related proteins to serve as template structures,
(2) sequence alignment of the target and template
proteins, (3) copying coordinates for confidently aligned
regions, (4) constructing missing atom coordinates of
target structure, and (5) model refinement and evalu-
ation. Figure 3 illustrates the steps involved in com-
parative modeling. Several computer programs and web
servers exist that automate the comparative modeling
process e.g., PSIPRED (Buchan et al., 2010) and
MODELER (Marti-Renom et al., 2000).
a. Template identification and alignment. In the

first step, the target sequence is used as a query for the
identification of template structures in the PDB.
Templates with high sequence similarity can be deter-
mined by a straightforward PDB-BLAST search (Altschul
et al., 1990). More sophisticated fold recognition methods
are available if PDB-BLAST does not yield any hits
(Kelley and Sternberg, 2009; Soding and Remmert, 2011).
Search for template structure is followed by sequence
alignment using methods like ClustalW (Thompson et al.,
1994), which is a multiple sequence alignment tool. For
closely related protein structures, structurally conserved
regions are identified and used to build the comparative
model. Construction and evaluation of multiple compar-
ative models from multiple good-scoring sequence align-
ments improve the quality of the comparative model
(Chivian and Baker, 2006; Misura et al., 2006). It has

been demonstrated that combination of multiple tem-
plates can improve comparative models by leveraging
well-determined regions that are mutually exclusive
(Rai and Fiser, 2006). Template selection is key for suc-
cessful homology modeling. Careful consideration should
be given to alignment length, sequence identity, resolution
of template structure, and consistency of secondary
structure between target and templates.

b. Model building. Gaps or insertions in the original
sequence alignment occur most frequently outside sec-
ondary structure elements and lead to chain breaks
(gaps and insertions) and missing residues (gaps) in the
initial target protein model. Modeling these missing re-
gions involves connecting the anchor residues, which
are the N- or C-terminal residues of protein segments on
either side of the missing region. Two broad classes of
loop-modeling methods exist: (1) knowledge-based meth-
ods and (2) de novo methods. Knowledge-based methods
use loops from protein structures that have approxi-
mately the same anchors as found in target models.
Loops from such structures are applied to the target
structure. De novo methods generate a large number
of loop conformations and use energy functions to judge
the quality of predicted loops (Hillisch et al., 2004). Both
methods, however, solve the “loop closure” problem,
i.e., identifying low-energy loop conformations from a
large conformational sample space that justify the struc-
tural restraint of connecting the two anchor points. Cyclic
coordinate descent (Canutescu and Dunbrack, 2003) and
kinematic closure (KIC) (Mandell et al., 2009) algorithms
optimally search for conformations that satisfy con-
straints for loop closure in a target structure. Cyclic
coordinate descent iteratively changes dihedral angles
one at a time such that a distance constraint between
anchor residues is satisfied (Canutescu and Dunbrack,
2003). The KIC algorithm derives from kinematic meth-
ods that allow geometric analysis of possible conforma-
tions of a system of rigid objects connected by flexible
joints. The KIC algorithm generates a Fourier polynomial
in N variables for a system of N rotatable bonds by ana-
lyzing bond lengths and bond angles constraints (Coutsias
and Seok, 2004). Atom coordinates of the loop are then
determined using the polynomial equation.

The loop modeling step can be affected by two classes
of errors: scoring function errors and insufficient sam-
pling. The former arises when nonnative conformations
are assigned better scores. Confidence in scoring can be
improved by scoring with different functions, assuming
that true native conformation will likely be best ranked
across multiple scoring methods. Insufficient sampling
arises when near native conformations are not sampled.
Sufficient sampling can be achieved by running multiple
independent simulations to establish convergence.

The next step in comparative modeling is prediction of
side-chain conformations. A statistical clustering of ob-
served side-chain conformations in PDB, called a rotamer
library, is used in most side-chain construction methods
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(Krivov et al., 2009). Methods such as dead-end eli-
mination (Desmet et al., 1992) implemented in SCRWL
(Dunbrack and Karplus, 1993; Dunbrack and Karplus,
1994; Bower et al., 1997) and Monte Carlo searches
(Rohl et al., 2004) are used for side-chain conformation
sampling. Dead-end elimination imposes conditions to
identify rotamers that cannot be members of global mi-
nimum energy conformation. For example, the algorithm
prunes a rotamer a if a second rotamer b exists, such that
lowest energy conformation containing a is greater than
highest energy conformations containing b. The SCRWL
algorithm evaluates steric interactions between side
chains through the use of a backbone-dependent rotamer
library that expresses frequency of rotamers as a function
of dihedral angles f and c. Monte Carlo algorithms search
the side-chain conformational space stochastically using
the Metropolis criterion to guide the search into energetic
minima.

Binding pockets in homology models or even crystal
structures are often not amenable for ligand docking
because of insufficient accuracy. Ligand information
has been used to improve comparative models. Tanrikulu
et al. (2009) and Tanrikulu and Schneider (2008) used
a pseudoreceptor modeling method to improve a
homology model of human histamine H4 receptor.
Pseudoreceptor methods map binding pockets around
one or more reference ligands by capturing their
shape and interactions with the target. Conformation
snapshots of the homology model were obtained by
MD simulation, and pocket-forming coordinates were
extracted. Binding pockets of MD frames that matched
pseudoreceptor were prioritized for virtual screening.
Hits from virtual screening were tested experimentally,
and two compounds with diverse chemotypes ex-
hibited pKi . 4 (Tanrikulu and Schneider, 2008;
Tanrikulu et al., 2009). Katritich et al. (2010) used a

Fig. 3. Steps in homology model building process.
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combined homology modeling and ligand-guided back-
bone ensemble receptor optimization algorithm (LiB-
ERO) for prediction of a protein-ligand complex in CASP
experiments. The approach was identified as the best
in that it identified 40% of the 70 contacts that the
antagonist ZM241385 makes with adenosine A2a
receptor (PDB:3EML). In LiBERO, framework mul-
tiple models are generated and normal mode analysis is
used to generate backbone conformation ensembles.
Conformers are selected according to docking perfor-
mance through an iterative process of model building
and docking (Katritch et al., 2010). Ligand information-
assisted homology modeling is contingent on (1) avail-
ability of high-affinity ligands and (2) availability of
structurally close homologs to ensure good quality
initial homology model.
c. Model refinement and evaluation. Atomic models

are refined by introducing ideal bond geometries and
by removing unfavorable contacts introduced by the ini-
tial modeling process. Refinement involves minimizing
models using techniques such as molecular dynamics
(Raval et al., 2012), Monte Carlo Metropolis minimiza-
tion (Misura and Baker, 2005), or genetic algorithms
(Xiang, 2006). For example, the ROSETTA refinement
protocol fixes bond lengths and angles at ideal values
and removes steric clashes in an initial low-resolution
step. ROSETTA then minimizes energy as a function
of backbone torsional angles f, c, and v using a Monte
Carlo minimization strategy (Misura and Baker,
2005). Molecular dynamics-based refinement techniques
have been used widely as refinement strategy in drug
design-oriented homology models (Serrano et al., 2006;
Li et al., 2008).
Model evaluation involves comparison of observed

structural features with experimentally determined
protein structures. Melo and Sali (2007) applied a ge-
netic algorithm that used 21 input model features like
sequence alignment scores, measures of protein pack-
ing, and geometric descriptors to assess folds of models.
Critical Assessment of Techniques for Protein Structure
Prediction (CASP) (Cozzetto et al., 2009) is a worldwide
competition in which many groups participate for an
objective assessment of methods in the area of protein
structure prediction. Models are numerically assessed
and ranked by estimating similarity between a model
and corresponding experimental structure. Some eval-
uation methods used in CASP are full model root mean
square deviation, global distance test-total scores (GDT-
TS), and alignment accuracy (AL0 score). GDT-TS is the
average maximum number of residues in a predicted
model that deviate from corresponding residues in the
target by no more than a specified distance, whereas
AL0 represents the percentage of correctly aligned
residues (Cozzetto et al., 2009).
d. Model data bases. SWISS-MODEL (Kiefer et al.,

2009) and MODBASE (Pieper et al., 2009) data bases
store annotated comparative protein structure models.

SWISS-MODEL repository contains annotated 3D pro-
tein models generated by homology modeling of all se-
quences in SWISS-PROT (Kiefer et al., 2009). As of May
2012, SWISS-MODEL contained 3.2 million entries for
2.2 million unique sequences in UNIPROT data base.
MODBASE is organized into datasets of models for
specific projects, which include datasets of 9 archaeal
genomes, 13 bacterial genomes, and 18 eukaryotic ge-
nomes. Together with other datasets, MODBASE cur-
rently houses 5.2 million subdomain models across 1.6
million unique protein sequences (Pieper et al., 2009).

e. Example application in computer-aided drug design.
Park et al. (2009) used homology model of Cdc25A
phosphatases, a drug target for cancer therapy, to id-
entify novel inhibitors. The crystal structure of protein
Cdc25B served as a template to generate structural
models of Cdc25A. Docking of a library of 85,000 com-
pounds led to the discovery of structurally diverse com-
pounds with IC50 values ranging from 0.8 to 15 mM.

2. Binding Site Detection and Characterization.
Protein-ligand interaction is a prerequisite for drug
activity. Often possible binding sites for small mole-
cules are known from cocrystal structures of the target
or a closely related protein with a natural or nonnatural
ligand. In the absence of a cocrystal structure, muta-
tional studies can pinpoint ligand binding sites. How-
ever, the ability to identify putative high-affinity
binding sites on proteins is important if the binding
site is unknown or if new binding sites are to be iden-
tified, e.g., for allosteric molecules. Computational meth-
ods like POCKET, SURFNET, Q-SITEFINDER, etc.
(Laurie and Jackson, 2006; Henrich et al., 2010) are often
used for binding site identification. Computational meth-
ods for identifying and characterizing binding sites can
be divided into three general classes: (1) geometric al-
gorithms to find shape concave invaginations in the tar-
get, (2) methods based on energetic consideration, and (3)
methods considering dynamics of protein structures.

a. Geometric method. Geometric algorithms iden-
tify binding sites through the detection of cavities on
a protein’s surface. These algorithms frequently use
grids to describe molecular surface or 3D structure of
protein. The boundary of a pocket is determined by
rolling a “spherical probe” over the grid surface. A
pocket is identified if there is a period of noninteraction
i.e., probe does not touch any target atoms, between
periods of contact with protein. This technique is used
by POCKET (Levitt and Banaszak, 1992) and LIGSITE
(Hendlich et al., 1997). SURFNET (Laskowski, 1995)
places spheres between all pairs of target atoms and
then reduces the radius of spheres until each sphere
contains only a pair of atoms. The program thus
accumulates spheres in pockets, both inside the target
and on the surface. The SPHGEN program (Desjarlais
et al., 1988) generates overlapping spheres to describe
the 3D shape of binding pocket. The algorithm creates
a negative image of invaginations for target surface.
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Spheres are calculated all over the entire surface such
that each sphere touches the molecular surface at two
points. The overlapping dense representation of spheres
is then filtered to include only the largest sphere as-
sociated with each target surface atom. The main dis-
advantages of geometric-based methods include that
geometric descriptors are method dependent and
subjective, the target protein is typically rigid, and the
methods are often tied to a generalized concept of a bind-
ing pocket and may miss unorthodox binding sites within
channels or on protein-protein interaction interfaces
(Laurie and Jackson, 2006).
b. Example application in computer-aided drug

design. Trypanosoma brucei is the causative agent of
human trypanosomiasis in Africa (Smithson et al.,
2010). A binding pocket identified by LIGSITE was
used for identifying inhibitors of ornithine decarbox-
ylase, which is a molecular target for treatment of
African trypanosomiasis (Smithson et al., 2010). SPHGEN
was used to identify putative binding sites in BCL6
(Cerchietti et al., 2010), a therapeutic target for B cell
lymphomas. Docking of a library of 1,000,000 com-
mercially available compounds into the identified sites
led to successful identification of inhibitors of BCL6
(Cerchietti et al., 2010).
c. Energy-based approaches. Energy-based approaches

calculate van der Waals, electrostatic, hydrogen-binding,
hydrophobic, and solvent interactions of probes that
could result in energetically favored binding. Simple
energy-based methods tend to be as fast as geometric
methods but are more sensitive and specific. The Q-
SITEFINDER (Laurie and Jackson, 2005) algorithm
calculates the Van der Waals interaction energy for
aliphatic carbon probes on a grid and retains pockets
with favorable interactions. The GRID (Reynolds et al.,
1989; Wade et al., 1993) algorithm samples the po-
tential on a 3D grid to determine favorable binding po-
sitions for different probes. GRID determines interaction
energy as a sum of Lennard-Jones, Coulombic, and
hydrogen-bond terms. Other algorithms like POCK-
ETPICKER (Weisel et al., 2007) and FLAPSITE (Henrich
et al., 2010) use similar approaches but different metrics
to evaluate the quality of a putative binding site. For
example, POCKETPICKER defines “buriedness” indices
in its binding site elucidation. A serious limitation of
these methods is that they result in many different
energy minima on the surface of the protein, including
many false-positives (Laurie and Jackson, 2006).
These shortcomings can be addressed in part by including
the solvation term in the scoring potential as is done in
CS-Map algorithm (Kortvelyesi et al., 2003). More
complex tools distinguish solvent accessible from
solvent inaccessible surfaces. Kim et al. (2008) present a
method for defining the topology of the protein as a
Voronoi diagram of spheres and its use to elucidate
binding pocket locations.

d. Example application in computer-aided drug
design. Segers et al. (2007) applied Q-SITEFINDER
and POCKETFINDER to identify the binding site for
the C2 domain of coagulation factor V whose interaction
with platelet membrane is necessary for coagulation.
Excessive coagulation caused by high thrombin pro-
duction could be controlled by small molecule inhib-
itors of factor V. Docking of 300,000 compounds into
the predicted sites identified four inhibitors with IC50

, 10 mM. Novel putative drug binding regions were
identified in Avian Influenza Neuraminidase H5N1
using computational solvent mapping (Landon et al.,
2008). Virtual screening of the binding site with a library
of compounds led to the discovery of novel small-molecule
inhibitor of H5N1 (An et al., 2009).

e. Pocket matching. Methods like Catalytic Site
Atlas (Porter et al., 2004), AFT (Arakaki et al., 2004),
SURFACE (Ferre et al., 2004), POCKET-SURFER
(Chikhi et al., 2010), and PATCH-SURFER (Sael and
Kihara, 2012) detect similar pockets based on reference
ligand binding sites. Catalytic Site Atlas contains an-
notated descriptors of enzyme active site residues as well
as equivalent sites in related proteins found by sequence
alignment. Query made by PDB code returns annotated
catalytic residues highlighted on amino acid sequence
and on the structure via RasMol (Sayle and Milner-
White, 1995). SURFACE is a repository of annotated protein
functional sites with sequence and structure-derived
information about function or interactions. The
comparison algorithm explores all combinations of similar/
identical residues in a sequence-independent way between
query protein and data base structures. Pocket-surfer
and patch-surfer describe property of binding pockets.
Pocket-surfer captures global similarity of pockets,
whereas Patch-surfer evaluates and compares binding
pocketed in small circular patches. These methods
describe patches using four properties, the surface
shape, visibility, the hydrophobicity, and the electro-
static potential.

f. Molecular dynamics-based detection. The dynamic
nature of biomolecules sometimes makes it insufficient
to use a single static structure to predict putative bind-
ing sites. Multiple conformations of target are often
used to account for structural dynamics of target.
Classic molecular dynamics (MD) simulations can be
used for obtaining an ensemble of target conformations
beginning with a single structure. The MD method uses
principles of Newtonian mechanics to calculate a trajec-
tory of conformations of a protein as a function of time.
The trajectory is calculated for a specific number of
atoms in small time steps, typically 1–10 fs (Vangun-
steren and Berendsen, 1990). Classic MD methods tend
to get trapped in local energy minima. To overcome this,
several advanced MD algorithms such as targeted-MD
(Schlitter et al., 1994), SWARM-MD (Huber and van
Gunsteren, 1998), conformational flooding simulations
(Grubmuller, 1995), temperature accelerated MD
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simulations (Abrams and Vanden-Eijnden, 2010), and
replica exchange MD (Sugita and Okamoto, 1999)
have been implemented for traversing multiple-
minima energy surface of proteins.
g. Example application in computer-aided drug design.

MD simulations elucidated a novel binding trench in
HIV integrase (IN), which led to development of
raltegravir, a drug used to treat HIV infection. MD sim-
ulations of 5CITEP, a known inhibitor of IN, showed that
the inhibitor underwent various movements including
entry into a novel binding trench (shown in Fig. 4) that
went undetected with a static crystal structure (Schames
et al., 2004). The discovery of this trench led to the
development of raltegravir, by Merck (Summa et al.,
2008). Frembgen-Kesner and Elcock (2006) reproduced
a cryptic drug binding site in an explicit-solvent MD
simulations of unliganded p38 mitogen-activated pro-
tein kinase (p38 MAPK) protein, a target in the treat-
ment of inflammatory diseases.

B. Representing Small Molecules and Target Protein
for Docking Simulations

There are three basic methods to represent target
and ligand structures in silico: atomic, surface, and
grid representations (Halperin et al., 2002; Kitchen
et al., 2004). Atomic representation of the surface of
the target is usually used when scoring and ranking is
based on potential energy functions. An example is
DARWIN, which uses CHARMM force-field to calcu-
late energy (Taylor and Burnett, 2000). Surface methods
represent the topography of molecules using geometric
features. The surface is represented as a network of
smooth convex, concave, and saddle shape surfaces.
These features are generated by mapping part of van
der Waals surface of atoms that is accessible to probe
a sphere (Connolly, 1983). Docking is then guided by
a complementary alignment of ligand and binding site

surfaces. Earliest implementation of DOCK (Kuntz
et al., 1982) used a set of nonoverlapping spheres to
represent invaginations of target surface and the
surface of the ligand (method described earlier in
detail for SPHGEN). Geometric matching begins by
systematically pairing one ligand sphere a1 with one
receptor sphere b1. This is followed by pairing a second
set of spheres, a2 and b2. The move is accepted if the
change in atomic distances is less than an empirically
determined cut-off value. The cut-off value specifies
the maximum allowed deviation between ligand and
receptor internal distance. The pairing step is re-
peated for a third pair of atoms with the same internal
distance checks as above. A minimum of four assignable
pairs is essential for determining orientation, otherwise
the match is rejected. For the grid representation, the
target is encoded as physicochemical features of its
surface. A grid method described by Katchalskikatzir
et al. (1992) digitizes molecules using a 3D discrete
function that distinguishes the surface from the interior
of the target molecule. Molecules are scanned in relative
orientation in three dimensions, and the extent of
overlap between molecules is determined using a corre-
lation function calculated from a Fourier transform.
Best overlap is determined from a list of overlap
functions (Katchalskikatzir et al., 1992). Physiochemical
properties may be represented on the grid by storing
energy potentials on surface grid points.

C. Sampling Algorithms for Protein-Ligand Docking

Docking methods can be classified as rigid-body
docking and flexible docking applications depending
on the degree to which they consider ligand and protein
flexibility during the docking process (Halperin et al.,
2002; Dias and de Azevedo, 2008). Rigid body docking
methods consider only static geometric/physiochemical
complementarities between ligand and target and ig-
nore flexibility and induced-fit (Halperin et al., 2002)
binding models. More advanced algorithms consider se-
veral possible conformations of ligand or receptor or
both at the same time according to the conformational
selection paradigm (Changeux and Edelstein, 2011). Rigid
docking simulations are generally preferred when time is
critical, i.e., when a large number of compounds are to be
docked during an initial vHTS. However, flexible docking
methods are still needed for refinement and optimization
of poses obtained from an initial rigid docking procedure.
With the evolution of computational resources and ef-
ficiency, flexible docking methods are becoming more
commonplace. Some of the most popular approaches in-
clude systematic enumeration of conformations, molecular
dynamic simulations, Monte Carlo search algorithms with
Metropolis criterion (MCM), and genetic algorithms.

1. Systematic Methods. Systematic algorithms in-
corporate ligand flexibility through a comprehensive
exploration of a molecule’s degrees of freedom. In sys-
tematic algorithms, the current state of the system

Fig. 4. Discovery of novel binding trench in HIV-1 IN. Ligand in green is
similar to the crystal structure binding pose while the one in yellow is in
the novel trench. Adapted from Schames et al. (2004).
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determines the next state. Starting from the same exact
state and same set of parameters, systematic methods
will yield exactly the same final state. Systematic meth-
ods can be categorized into (1) exhaustive search algo-
rithms and (2) fragmentation algorithms.
Exhaustive searches elucidate ligand conformations

by systematically rotating all possible rotatable bonds
at a given interval. Large conformational space often
prohibits an exhaustive systematic search. Algorithms
such as GLIDE (Friesner et al., 2004) use heuristics to
focus on regions of conformational space that are likely
to contain good scoring ligand poses. GLIDE precom-
putes a grid representation of target’s shape and pro-
perties. Next, an initial set of low-energy ligand
conformations in ligand torsion-angle space is cre-
ated. Initial favorable ligand poses are identified by
approximate positioning and scoring methods (shape
and geometric complementarities). This initial screen
reduces the conformational space over which the high-
resolution docking search is applied. High-resolution
search involves the minimization of the ligand using
standard molecular mechanics energy function followed
by a Monte Carlo procedure for examining nearby
torsional minima.
Fragmentation methods sample ligand conformation

by incremental construction of ligand conformations
from fragments obtained by dividing the ligand of in-
terest. Ligand conformations are obtained by docking
fragments in the binding site one at a time and in-
crementally growing them or by docking all fragments
into the binding site and linking them covalently.
Desjarlais et al. (1986) modified the DOCK algorithm
to allow for ligand flexibility by separately docking
fragments into the binding site and subsequently
joining them. FLEXX (Rarey et al., 1996) uses the
“anchor and grow method” for ligand conformational
sampling. A base fragment has to be interactively
selected by the user, which is followed by automatic
determination of placements for the fragment that
maximize favorable interactions with the target protein.
The base fragment is grown incrementally by adding
new fragments in all possible conformations, and the
extended fragment is selected if no significant steric
clashes (overlap volume # 4.5 Å3) are observed be-
tween ligand and target atoms. Extended ligands are
optimized (1) if new interactions are found and (2) if
minor steric interactions exist (Rarey et al., 1996). Fully
automated “anchor and grow” methods have been
implemented in several methods such as FLOG (Miller
et al., 1994), SURFLEX (Jain, 2003), and SEED (Majeux
et al., 2001). In a benchmark study in which perfor-
mance of eight docking algorithm was compared on 100
protein-ligand complex, GLIDE and SURFLEXwere among
the methods that showed best accuracy (Kellenberger
et al., 2004). GLIDE and SURFLEX generated poses
close to X-ray conformation for 68 protein-ligand

complexes in the Directory of Useful Decoys (Cross
et al., 2009).

a. Example application in computer-aided drug design.
Human Pim-1 kinase, responsible for cell survival/
apoptosis, differentiation, and proliferation, is a valu-
able anticancer target as it is overexpressed in a variety
of leukemia. Pierce et al. (2008) used GLIDE to dock
approximately 700,000 commercially available com-
pounds and identified four compounds with Ki values
less than 5 mM. Chiu et al. (2009) used SURFLEX to
identify novel inhibitors of anthrax toxin lethal factor
responsible for anthrax-related cytotoxicity. Docking
study of a compound library derived from seven data
bases, including DrugBank (Wishart et al., 2006),
ZINC (Irwin and Shoichet, 2005), National Cancer
Institute data base (Milne et al., 1994), etc., identified
lead compounds that eventually led to the develop-
ment of nanomolar inhibitors upon optimization.
Table 2 illustrates some examples of drug discovery
campaigns in which systematic docking algorithms have
been used.

2. Molecular Dynamics Simulations. Molecular
dynamics (MD) simulation calculates the trajectory of
a system by the application of Newtonian mechanics.
However, standard MD methods depend heavily on the
starting conformation and are not readily appropriate
for simulation of ligand-target interactions. Because of
its nature, MD is not able to cross high-energy barriers
within the simulation’s lifetime and is not efficient for
traversing the rugged hyper surface of protein-ligand
interactions. Strategies like simulated annealing have
been applied for more efficient use of MD in docking.
Mangoni et al. (1999) described a MD protocol for
docking small flexible ligands to flexible targets in
water. They separated the center of mass movement
of ligand from its internal and rotational motions.

TABLE 2
Successful docking applications of some widely used docking software
The table lists some of the most widely used docking softwares along with some

successful applications in drug-discovery campaigns

Algorithm Target

SEED Plasmepsin (Friedman and Caflisch, 2009), target for
malaria

Flavivirus Proteases (Ekonomiuk et al., 2009a,b), target
for WNV and Dengue virus

Tyrosine kinase erythropoietin-producing human
hepatocellular carcinoma receptor B4 (EphB4)
(Lafleur et al., 2009)

FlexX Plasmepsin II and IV inhibitors (Luksch et al., 2008),
malaria

Anthrax edema factor (Chen et al., 2008)
Pneumococcal peptidoglycan deacetylase inhibitors (Bui

et al., 2011)
Glide Aurora kinases inhibitors (Warner et al., 2006)

Falcipain inhibitors (Shah et al., 2011)
Cytochrome P450 inhibitors (Caporuscioi et al., 2011)

Surflex Topoisomerase I, anticancer (optimization)
DOCK FK506 immunophilin (Zhao et al., 2006)

BCL6, oncogene in B-cell lymphomas (Cerchietti et al.,
2010)
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The center of mass motion and internal motions were
coupled to different temperature baths, allowing in-
dependent control to the different motions. Appropriate
values of temperature and coupling constants allowed
flexible or rigid ligand and/or receptor.
The McCammon group developed a “relaxed-complex”

approach that explores binding conformations that may
occur only rarely in the unbound target protein. A 2-ns
MD simulation of ligand free target is carried out to
extensively sample its conformations. Docking of ligands
is then performed in target conformation snapshots
taken at different time points of the MD run. This re-
laxed complex method was used to discover novel modes
of inhibition for HIV integrase and led to the discovery
of the first clinically approved HIV integrase inhibitor,
raltegravir. This MD method was also used in several
other campaigns to identify inhibitors of target of
interest (Amaro et al., 2008; Durrant et al., 2010a,b).
Metadynamics is a MD-based technique for predict-

ing and scoring ligand binding. The method maps the
entire free energy landscape in an accelerated way as it
keeps track of history of already sampled regions.
During the MD simulation of a protein-ligand complex,
a Gaussian repulsive potential are added on explored
regions, steering the simulation toward new-free energy
regions (Durrant and McCammon, 2010; Leone et al.,
2010; Biarnes et al., 2011).
Millisecond timescale MD simulations are now

possible with special purpose machines like Anton
(Shaw et al., 2008). Such long simulations have allowed
study of drug binding events to their protein target
(Shan et al., 2011). Anton has been used successfully for
full atomic resolution protein folding (Lindorff-Larsen
et al., 2011). Advances in computer hardware capabil-
ities mean protein flexibility can be accessed more
routinely on longer timescales. This would allow better
descriptions of conformational flexibility in future.
3. Monte Carlo Search with Metropolis Criterion.

Stochastic algorithms make random changes to either
ligand being docked or to its target binding site. These
random changes could be translational or rotational in
the case of ligand or random conformational sampling
of residue side-chains in the target binding site. Whether
a step is accepted or rejected in such a stochastic search
is decided based on the Metropolis criterion, which ge-
nerally accepts steps that lower the overall energy and
occasionally accepts steps that increase energy to enable
departure from a local energy minimum. The probability
of acceptance of an uphill step decreases with increasing
energy gap and depends on the "temperature" of the
MCM simulation (Sousa et al., 2006). MCM simulations
have been adopted for flexible docking applications such
as in MCDOCK (Liu and Wang, 1999), Internal Co-
ordinate Mechanics (ICM) (Abagyan et al., 1994), and
ROSETTALIGAND (Meiler and Baker, 2006; Davis and
Baker, 2009). MCM samples conformational space faster
than molecular dynamics in that it requires only energy

function evaluation and not the derivative of the energy
functions. Although traditional MD drives a system to-
ward a local energy minimum, the randomness intro-
duced with Monte Carlo allows hopping over the energy
barriers, preventing the system from getting stuck in
local energy minima. A disadvantage is that any in-
formation about the timescale of the motions is lost.

ROSETTALIGAND (Kaufmann et al., 2010; Roset-
taCommons, 2013) uses a knowledge-based scoring
procedure with a Monte Carlo-based energy minimiza-
tion scheme that reduces the number of conformations
that must be sampled while providing a more rapid
scoring system than offered through molecular me-
chanics force fields. ROSETTALIGAND incorporates
side-chain and ligand flexibility during a high-resolution
refinement step through aMonte Carlo-based sampling of
torsional angles. All torsion angles of protein and ligand
are optimized through gradient-based minimization, mi-
micking an induced fit scenario (Davis and Baker, 2009).
MCDOCK uses two stages of docking and a final energy
minimization step for generating target-ligand structure.
In the first docking stage, the ligand and docking site are
held rigid while the ligand is placed randomly into the
binding site. Scoring is done completely on the basis of
short contacts. This allows identification of nonclashing
binding poses. In the next stage, energy-based Metrop-
olis sampling is done to sample the binding pocket (Liu
and Wang, 1999). QXP (McMartin and Bohacek, 1997)
optimizes grid map energy and internal ligand energy for
searching ligand-target structure. The algorithm per-
forms a rigid body alignment of ligand-target complex
followed by MCM translation and rotation of ligand. This
step is followed by another rigid body alignment and
scoring using energy grid map. ICM (Totrov and Abagyan,
1997) relies on a stochastic algorithm for global optimiza-
tion of entire flexible ligand in receptor potential grid. The
relative positions of ligand and target molecule make up
the internal variables of the method. Internal variables
are subject to random change followed by local energy
minimization and selection by Metropolis criterion. ICM
performed satisfactorily in generating protein-ligand com-
plexes for 68 diverse, high-resolution X-ray complexes
found in DUD (Cross et al., 2009).

a. Example application in computer-aided drug
design. ROSETTALIGAND was used by Kaufmann
et al. (2009) to predict the binding mode of serotonin
with serotonin transporters. The binding site predicted
to be deep within the binding pocket was consistent with
mutagenesis studies. QXP has been used to optimize
inhibitors of human b-secretase (BACE1) (Malamas
et al., 2009, 2010; Nowak et al., 2010), which is an
important therapeutic target for treating Alzheimer’s
disease by diminishing b-amyloid deposit formation.
ICM was used successfully to identify inhibitors for
a number of targets, including tumor necrosis factor-a
(Chan et al., 2010), dysregulation of which is implicated
in tumorigenesis and autoinflammatory diseases like
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rheumatoid arthritis and psoriatic arthritis. Computa-
tional screening of 230,000 compounds from the NCI
data base against neuraminidase using ICM identified
4-{4-[(3-(2-amino-4-hydroxy-6-methyl-5-pyrimidinyl)propyl)
amino]phenyl}-1-chloro-3-buten-2-one, which inhibited in-
fluenza virus replication at a level comparable to known
neuraminidase inhibitor oseltamivir (An et al., 2009).
4. Genetic Algorithms. Genetic algorithms intro-

duce molecular flexibility through recombination of
parent conformations to child conformations. In this
simulated evolutionary process, the “fittest” or best
scoring conformations are kept for another round of
recombination. In this way, the best possible set of
solutions evolves by retaining favorable features from one
generation to the next. In docking, a set of values that
describe the ligand pose in the protein are state variable,
i.e., the genotype. State variables may include set of
values describing translation, orientation, conformation,
number of hydrogen bonds, etc. The state corresponds to
the genotype; the resulting structural model of the ligand
in the protein corresponds to the phenotype, and binding
energy corresponds to the fitness of the individual.
Genetic operators may swap large regions of parent’s
genes or randomly change (mutate) the value of certain
ligand states to give rise to new individuals.
Genetic Optimization for Ligand Docking (GOLD)

(Jones et al., 1997) explores full ligand flexibility with
partial target flexibility using a genetic algorithm. The
GOLD algorithm optimizes rotatable dihedrals and
ligand-target hydrogen bonds. The fitness of a genera-
tion is evaluated based on a maximization of intermo-
lecular hydrogen bonds. The fitness function is the sum
of a hydrogen bonding term, a term for steric energy
interaction between the protein and the ligand and a
Lennard-Jones potential for internal energy of ligand.
AutoDock (Morris et al., 1998) uses the Lamarckian
genetic algorithm, which allows favorable phenotypic
characteristics to become inheritable. GOLD has dem-
onstrated better accuracy than most docking algo-
rithms, except GLIDE, in various benchmark studies
(Kellenberger et al., 2004; Kontoyianni et al., 2004;
Li et al.,2010b).
a. Example application in computer-aided drug design.

Inhibition of a-glucosidase has shown to retard glucose
absorption and decrease postprandial blood glucose
level, which makes it an attractive target for curing
diabetes and obesity. Park et al. (2008) used AUTODOCK
to identify four novel inhibitors of a-glucosidase by
screening a library of 85,000 compounds obtained from
INTERBIOSCREEN chemical data base (http://www.
ibscreen.com). AUTODOCK was also used to identify
inhibitors of RNA Editing Ligase-1 enzyme of T. brucei,
the causative agent of human African trypanosomniasis
(Durrant et al., 2010a).
5. Incorporating Target Flexibility in Docking.

Conformational variability is seen in unbound form
and different apo structures (B-Rao et al., 2009; Sinko

et al., 2013). It is widely believed that the ligand-bound
state is selected from an ensemble of protein con-
formations by the ligand (Carlson, 2002). Accounting
for receptor flexibility in the form of protein side-chain
and backbone movement is essential for predicting
correct binding pose. An ensemble of nonredundant low
energy target structures will cover a large conforma-
tional space as against a single conformation, resulting
in more realistic target-ligand bound states. Methods
for inducing receptor flexibility include induced-fit
docking and ensemble generated from MD simulation
snapshots. Induced-fit algorithms allow small overlap
between the ligand and the target along with side-
chain movements, resulting in elasticity. GLIDE uses an
induced fit model in which all side-chain residues are
changed to alanine before initial docking. Side-chain
sampling is followed by energy minimization of the
binding site and ligand. ROSETTALIGAND allows for
full protein backbone and side-chain flexibility in the
active site. Multiple fix receptor conformations are
used in docking protocols, known as ensemble-based
screening, to incorporate receptor flexibility (Abagyan
et al., 2006). Receptor conformations may either be
experimentally determined by crystallography or NMR
or computationally generated from MD simulations,
normal mode analysis, and MC sampling (Cozzini et al.,
2008). Schames et al., (2004) used the relaxed complex
scheme (RCS) to describe a novel trench in HIV
integrase, which led to the discovery of the integrase
inhibitor raltegravir. In RCS, multiple conformations
are determined from MD simulations to perform dock-
ing studies against. Other sampling methods include
umbrella sampling, metadynamics, accelerated MD, etc.
(Sinko et al., 2013).

D. Scoring Functions for Evaluation Protein-
Ligand Complexes

Docking applications need to rapidly and accurately
assess protein-ligand complexes, i.e., approximate the
energy of the interaction. A ligand docking experiment
may generate hundreds of thousands of target-ligand
complex conformations, and an efficient scoring func-
tion is necessary to rank these complexes and differ-
entiate valid binding mode predictions from invalid
predictions. More complex scoring functions attempt to
predict target-ligand binding affinities for hit-to-lead
and lead-to-drug optimization. Scoring functions can be
grouped into four types: (1) force-field or molecular
mechanics-based scoring functions, (2) empirical scor-
ing functions, (3) knowledge-based scoring functions,
and (4) consensus scoring functions.

1. Force-Field or Molecular Mechanics-Based Scoring
Functions. Force-field scoring functions use classic
molecular mechanics for energy calculations. These
functions use parameters derived from experimental
data and ab initio quantummechanical calculations. The
parameters for various force terms including prefactor
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variables are obtained by fitting to high-quality ab initio
data on intermolecular interactions (Halgren, 1996). The
binding free energy of protein-ligand complexes are
estimated by the sum of van der Waals and electrostatic
interactions. DOCK uses the AMBER force fields in
which van der Waals energy terms are represented by
the Lennard-Jones potential function while electrostatic
terms are accounted for by coulomb interaction with
a distance-dependent dielectric function. Standard force
fields are however biased to select highly charged
ligands. This can be corrected by handling ligand
solvation during calculations (Shoichet et al., 1999;
Kukic and Nielsen, 2010). Terms from empirical scoring
functions (discussed below) are often added to force-field
functions to treat solvation and electronic polarizability.
A semi-empirical force field has been implemented in
AUTODOCK to evaluate the contribution of water sur-
rounding the receptor-ligand complex in the form of
empirical enthalpic and entropic terms, for example
(Huey et al., 2007).
2. Empirical Scoring Functions. Empirical scoring

functions fit parameters to experimental data. An ex-
ample is binding energy, which is expressed as a weighted
sum of explicit hydrogen bond interactions, hydrophobic
contact terms, desolvation effects, and entropy. Empirical
function terms are simple to evaluate and are based on
approximations. The weights for different parameters are
obtained from regression analysis using experimental
data obtained from molecular data. Empirical functions
have been used in several commercially available docking
suits like LUDI (Bohm, 1992), FLEXX (Rarey et al., 1996),
and SURFLEX (Jain, 2003).
3. Knowledge-Based Scoring Function. Knowledge-

based scoring functions use the information contained
in experimentally determined complex structures. They
are formulated under the assumption that inter-
atomic distances occurring more often than average
distances represent favorable contacts. On the other
hand, interactions that are found to occur with lower
frequencies are likely to decrease affinity. Several
knowledge based potentials have been developed to
predict binding affinity like potential of mean force
(Shimada et al., 2000), DRUGSCORE (Velec et al.,
2005), SMOG (DeWitte and Shakhnovich, 1997), and
BLEEP (Mitchell et al., 1999).
4. Consensus-Scoring Functions. More recently,

consensus-scoring functions have been demonstrated to
achieve improved accuracies through a combination of
advantages of basic scoring functions. Consensus
approaches rescore predicted poses several times using
different scoring functions. These results can then be
combined in different ways to rank solutions (Feher,
2006). Some strategies for combining scores include (1)
weighted combinations of scoring functions, (2) a voting
strategy in which cutoffs established for each scoring
method is followed by decision based on number of
passes a molecule has, (3) a rank by number strategy

ranks each compound by its average normalized score
values, and (4) a rank by rank method sorts compounds
based on average rank determined by individual scoring
functions. O’Boyle et al. (2009) evaluated consensus
scoring strategies to investigate the parameters for the
success of properly combined rescoring strategies. It
turns out that combining scoring functions that have
complementary strengths leads to better results over
those that have consensus in their predictions. For ex-
ample, scoring functions whose strengths are distinguish-
ing actives from inactive compounds are complemented
by scoring functions that can distinguish correct from
incorrect binding poses. A disadvantage of consensus
scoring methods could be a possible loss of active com-
pound if poorly scored by one of the scoring functions.

a. Example application in computer-aided drug design.
Okamoto et al. (2009) have used consensus scoring
technique for identifying inhibitors of death-associated
protein kinases that are targets for ischemic diseases
in the brain, kidney, and other organs. The consensus
scoring function used in the study was implemented in
DOCK4.0 program and included three scoring func-
tions: (1) empirical scoring function (implemented in
FLEXX), (2) a knowledge-based scoring function (Muegge
and Martin, 1999), and (3) a force-field function from
DOCK4.0. Approximately 400,000 compounds from a
corporate compound library were docked followed by
simultaneous scoring with the three functions. The con-
sensus score was defined as the score that was highest
among the three. In another successful application of
consensus scoring scheme, Friedman and Caflisch (2009)
discovered plasmepsin inhibitors for use as antimalarial
agents using a scoring based on median ranking of four
field-based scoring functions.

E. Structure-Based Virtual High-Throughput
Screening

Structure-based virtual high-throughput screening
(SB-vHTS), the in silico method for identifying putative
hits out of hundreds of thousands of compounds to
targets of known structure, relies on a comparison of
the 3D structure of the small molecule with the
putative binding pocket. SB-vHTS selects for ligands
predicted to bind a particular binding site as opposed
to traditional HTS that experimentally asserts general
ability of a ligand to bind, inhibit, or allosterically alter
the protein’s function. To make screening of large
compounds libraries in finite time feasible, SB-vHTS
often uses limited conformational sampling of protein
and ligand and a simplified approximation of binding
energy that can be rapidly computed. The inaccuracies
introduced by these approximations lead to false-
positive hits that ideally can at least in part be re-
moved by subsequent refinement of the best ranking
molecules and binding poses with more sophisticated
methods involving iterative docking and clustering of
ligand poses. The key steps in SB-vHTS are as follows:
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(1) preparation of the target protein and compound
library for docking, (2) determining a favorable binding
pose for each compound, and (3) ranking the docked
structures. SB-vHTS has been used successfully in
identifying novel and potent hits in several drug dis-
covery campaigns (Becker et al., 2006; Lu et al., 2006;
Zhao et al., 2006; Ruiz et al., 2008; Triballeau et al.,
2008; Li et al., 2009; Budzik et al., 2010; Izuhara et al.,
2010; Simmons et al., 2010; Roughley et al., 2012). We
discuss two examples in which SB-vHTS played pivotal
role in discovery of lead compounds.
1. Inhibitors of Hsp90. Hsp90 is a molecular chap-

erone that modulates the activity of multiple oncogenic
processes, which makes it an important therapeutic
target for oncology. Roughley et al. (2012) virtually
screened 0.7 million compounds from rCat (Baurin
et al., 2004) with Hsp90 to identify leads that led to the
development of potent inhibitors of Hsp90. Crystal
structures of Hsp90 bound to previously known in-
hibitors were used in the docking-based virtual screen.
From over 9000 nonredundant hits identified after
screen, a set of 719 compounds were purchased after
culling based on chemical diversity analysis. A total of
13 compounds with IC50 , 100 mM and seven with IC50

, 10 mM was identified. Determination of structure of
hit-protein complex identified resorcinol-pyrazole se-
ries of compounds as lead compounds for further
optimization. Compound AUY922, which was obtained
after lead optimization, was evaluated for multiple
myeloma, breast, lung, and gastric cancers.
2. Discovery of M1 Acetylcholine Receptor Agonists.

Selective agonism of M1 mAChR, which belong to the
GPCR family A, has therapeutic potential for treating
dementia, including Alzheimer’s disease and cognitive
impairment associated with schizophrenia. Budzik
et al. (2010) used a homology model of M1 mAChR based
on crystal structure of bovine rhodopsin for virtual
screening of a corporate compound collection. The
docking of compounds into a previously known alloste-
ric binding site yielded approximately 1000 putative
hits. In vitro testing of these hits identified a lead
compound, which is shown in Fig. 5. Optimization for
improving potency and selectivity for M1 mAChR led to
development of a series of novel 1-(N-substituted
piperidin-4-yl) benzimidazolones, which resulted in
compounds that were potent, central nervous system
penetrant, and orally active M1 mAChR agonists.

F. Atomic-Detail/High-Resolution Docking

The goal of SB-vHTS is to identify most probable hits
that can bind to a target structure. As mentioned, scoring
function and sampling algorithms are kept simple to
evaluate large libraries of compounds in realistic time
frames. The most promising hit compounds often are
evaluated with more sophisticated scoring functions, for
example, using an electrostatic solvation model for ev-
aluating energetics of protein-ligand interaction. The

implicit electrostatic solvation model is achieved by
assuming the solvent as a continuum high-dielectric-
constant medium through the use of numerical solu-
tions of Poisson equation (Honig and Nicholls, 1995) or a
generalized-Born approximation (Bashford and Case,
2000). Realistic conformational sampling, for example,
through the inclusion of protein conformational changes
is often done for lead compounds. The objective of this
atomic-detail refinement of initial docking poses is
threefold: (1) improved judgment if ligand will actually
engage the target, (2) accurate prediction of complex con-
formation, and (3) accurate prediction of binding affinity.
We describe some recent studies to highlight the success
of high-resolution docking in identifying therapeutically
important compounds.

1. Inhibitors of Casein Kinase by Hierarchical
Docking. Casein kinase 2 (CK2), a target for antineo-
plastic and anti-infectious drugs, is involved in a large
variety of important cell functions, and many viruses
exploit CK2 as phosphorylating agent of proteins
essential to their life cycle. Cozza et al. (2006, 2009)
used a hierarchical docking process to identify a potent
inhibitor from an in-house molecular data base con-
taining approximately 2000 compounds that included
several families of polyphenolic compounds like cat-
echins, coumarins, etc. A rigid body docking step using
FRED was used to dock ligand conformations gener-
ated by OMEGA v.1.1. The top 50% of poses ranked by
FRED score were selected, and one unique pose for
each of the best-scored compounds was used for sub-
sequent steps. The selected poses were optimized via
a flexible ligand-docking protocol with three different
programs: MOE-DOCK, GLIDE, and GOLD. A consen-
sus scoring scheme was developed in which each docked
set, i.e., FRED-DOCK, FRED-GLIDE, and FRED-
GOLD, was scored by five different scoring functions:
MOE-Score, GlideScore, GoldScore, ChemScore, and
Xscore, leading to three docking/scoring sets. Common
compounds among the top 5% of compounds ranked by
consensus scores from each list were prioritized for in
vitro testing. The hierarchical docking process allowed

Fig. 5. Lead compound obtained through virtual screening of a library of
compounds against M1 mAChR. Adapted from Budzik et al. (2010).
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identification of nanomolar CK2 inhibitors like ellagic
acid (IC50 = 40 nM) and quinalizarin (IC50 = 50 nM),
which are shown in Fig. 6. Segers et al. (2007) applied
the same hierarchical docking process to identify in-
hibitors of protein-membrane interaction. The C2 do-
main of coagulation factor V, a cofactor in blood
coagulation, interacts with platelet membrane to cause
platelet aggregation. Inhibitors of the protein-membrane
interaction could be used for treating thrombotic disease,
which is excessive blood coagulation due to overexpres-
sion of thrombin. A virtual screening of 300,000 com-
pounds at the interface of C2 domain of coagulation
factor V and the membrane identified four low micromo-
lar inhibitors (IC50 , 10 mM).
2. Discovery of Peroxisome Proliferator-Activated

Receptor g Agonists. Lu et al. (2006) successfully
combined a docking study and analog search for de-
signing agonists of peroxisome proliferator-activated
receptor (PPAR) g, the receptor of thiazolidinedione
antidiabetic drugs. A shape-based screening of the
Maybridge data base using the shape of the bound
conformation of a previously known agonist (PDB
code 1K74) yielded 163 compounds. Screening of
these compound in an in vitro binding assay identified
[N-[1-(4-fluorophenyl)-3-(2-thienyl)-1H-pyrazol-5-yl]-
5-[5-(tri-fluoromethyl) isoxazol-3-yl] thiophene-2-
sulfonamide] (Compound 7) with an IC50 value of 175
nM, which is shown in Fig. 7. The binding mode of
compound 7 was predicted by high-resolution docking
using GOLD. With the exception of isoxazole group, all
other four aromatic rings and the sulfonamide group
of compound 7 made significant interactions with the
protein. Thus, the scaffold containing the four aromatic
rings along with the sulfonamide moiety was used for
further analog search. The analog search in the May-
bridge compound data base yielded 37 compounds that
were tested in an in vitro binding assay. Compound 1
shown in Fig. 6 exhibited the strongest binding affinity,
with an IC50 of 22.7 nM. Compound 1 is selective for

PPARg with no activity to PPARa or PPARd. Adminis-
tration at a daily dose of 30 mg/kg for 5 days to KKAg

mice, which exhibit obesity, insulin resistance, and type 2
diabetes-like symptoms, decreased the blood glucose level
by 35.7%, demonstrating its glucose-lowering efficacy.

3. Discovery of Novel Serotonin Receptor Agonists.
Becker et al. (2006) used virtual screening tools to
guide a drug design campaign for novel serotonin
receptor subtype 1A (5-HT1A) agonists. 5-HT1A ago-
nists have been clinically demonstrated to be effective
in treatment of anxiety and depression. The 3D
structure of 5-HT1A was modeled using PREDICT
(Becker et al., 2004; Shacham et al., 2004), a de novo
modeling method for packing transmembrane helical
bundles. A screening library of 150,000 compounds
was selected from PREDIX corporate compound data
base containing approximately 2,100,000 drug-like
compounds. The selection was based on desired pro-
perties such as molecular weight range, compound
diversity, and conformity to binding site character-
istics. A docking study of a subset of screening library
containing 40,000 compounds using DOCK4.0 was
followed by ranking based on a rank-by-vote and rank-
by-number consensus scoring approach (Bar-Haim
et al., 2009). The top 10% of the library based on the
best DOCK scores was filtered using a consensus score
method using DOCK, CSCORE, and CHARMM. The hit
list was clustered for diverse scaffolds and best-scored
representatives of clusters yielded 78 compounds, which
were further tested in vitro. The in vitro 5-HT1A id-
entified 16 hits with binding affinities less than 5 mM,
reflecting a hit rate of 21%. Nine hits had a Ki , 1 mM
and the best hit, arylpiperazinylsulfonamide, which had
a binding affinity of 1 nM was selected as the lead
compound for further optimization. Further evaluation
of arylpiperazinylsulfonamide (compound 8 in Table 3)
revealed that it was suboptimal in both its DMPK/
ADMET properties and selectivity profile. Thus, the
goal of optimization process was to introduce selectivity

Fig. 6. Potent inhibitors of protein kinase CK2—ellagic acid and quinalizarin.
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for serotonin receptor (5-HT1A) over a1- and a2-adren-
ergic receptors. Analysis and comparison of docked po-
ses of compound 8 with 5-HT1A and a1-adrenergic
receptor models (obtained using PREDICT) shown in
Fig. 8 was used to design the optimization strategy for
compound 8. Prior to synthesis, each proposed com-
pound was analyzed for (1) selectivity for 5-HT1A by
docking with 5-HT1A and a1 adrenergic receptors, (2)
potency of inhibition of hERG (human ether-a-go-go-
related gene) K+ channel by docking to assess cardio-
vascular safety, (3) ADME-related properties like brain
penetration predictions and physiochemical parameters
such as polar surface area, cLogP, and more. The first
round of optimization for 5-HT1A and ADME-related
properties led to discovery of compounds shown in
Table 3. Compound 20d, shown in Table 3, exhibited
excellent DMPK/ADMET profile, but it was identified
as a potent hERG blocker inhibiting the channel with
IC50 of 300 nM compared with compound 8 with IC50 .
5000 nM. The structural analysis of the binding modes
of the two compounds docked into a hERG channel model
(based on the 3D structure of a related bacterial channel)
was used for further optimization of compound 20d.
Figure 9 illustrates the optimization strategy for reducing
hERG affinity of compound 20d that led to identification
of a preclinical candidate compound 20m as shown in
Table 3. The greater hERG affinity of compound 20d is
probably due to its interaction with the Ser660 region,
which is not formed by compound 8. However, removing
this interaction would annul previous optimization
strategies. The authors thus decided to focus on the p-
toluenesulfonyl region of compound 20d to reduce affinity
of compound 20d for hERG. An optimization strategy
that replaced p-toluenesulfonyl group with a nonaromatic
hydrophobic group led to identification of compound 20m,
which had lower affinity to hERG, while maintaining
substantial binding affinity to 5-HT1A. Compound 20m
was found to decrease the hyperthermic response to
stress in the stress-induced hyperthermia model, which

is based on the observation that stressful events cause a
rise in core body temperature in mammals and an-
xiolytics. In silico approaches used in the study allowed
the discovery of a phase three clinical trial drug
candidate in fewer than 2 years.

4. Molecular Dynamics for High-Resolution Docking.
Human African trypanosomiasis caused by T. brucei
affects approximately 70,000 people living in sub-
Saharan Africa. Durrant et al. (2010a) used a virtual
screening method that accounts for full protein flexibil-
ity to identify low micromolar inhibitors of RNA editing
ligase 1 (TbREL1). A substructure search for previously
known inhibitors of TbREL1 in several compound data
bases such as ZINC, Hit2Lead, National Cancer In-
stitute, and Sigma-Aldrich was used to generate a
library of compounds. These compounds were docked
into the ATP-binding pocket of a 1.20-Å resolution
TbREL1 crystal structure. The docked poses were
clustered at a tolerance of 2.0 Å, and the lowest-
energy pose of the most populated cluster was judged
to be the correct docked pose. A 2-ns explicit solvent

Fig. 7. Outline of discovery process of novel family of PPAR-g partial agonists. A, Conformation of compound 6 bound to active site of PPAR-g was used
as a pharmacophore. B, The bound conformation of compound 6 was used to screen the compound library. Compound 7 identified as a hit in the
compound library screen. The binding mode of compound 7 obtained through docking study was used to define a core structure that was used for
further similarity search which identified compound 1 as a potent agonist of PPAR-g. From Lu et al. (2006).

TABLE 3
Novel serotonin receptor agonists, which were identified during

optimization stage
The chemical structure in the table represents the basic scaffolds of the receptor

agonists. Derivatives of this structure were tested for affinity to 5-HT1A and hERG
receptors. Some derivatives are listed in table below the structure. For example,
compound 8 is derivative that has 2-OMe as the R group and 4-Me-Ph as the R2
group. Compound 8 exhibits a Ki value of 1 nM for 5-HT1A with an IC50 value of .
5000 nM for hERG receptor.

Compound R R2 5-HT1A Ki hERG: IC50

nM nM (%)

8 2-OMe 4-Me-Ph 1 .5000 (11%)
20d 3-MeCONH 4-Me-Ph 6.8 300 (73%)
20m 3-MeCONH CH2-chexyl 5.1 3800 (21%)
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MD simulation was used to generate 400 target
conformations, one every 50 ps. A total of 33
conformations obtained after removing redundant
conformations were used for further studies. The top
7.5% of the screening library by score was redocked
into the full MD ensemble using AutoDock and
rescored. This hybrid method of combining docking
method with dynamic approach provided by MD
simulations is called the relaxed complex scheme
(RCS). The RCS rescoring scheme involved compu-
tation of simple mean of ensemble-average binding
energy of each ligand predicted by AutoDock. Experi-
mental evaluation of top 12 compounds ranked by RCS
scoring scheme identified four low micromolar binders
of TbREL1. RCS was also successfully used in identi-
fying low micromolar inhibitors of T. brucei uridine
diphosphate galactose 49-epimerase (Durrant et al.,
2010b).

G. Binding Site Characterization

The success of SB-CADD methods depends on the
understanding of physiochemical interactions be-
tween molecules. Optimization of lead molecules into
high-affinity compounds that are worth studying in
vivo often requires optimization of its binding affinity
along with pharmacological properties. This process of
optimization requires a deep understanding of the
molecular interactions between ligand and target.
Structural studies to understand binding modes are
commonly done using experimental methods such as X-
ray and NMR. However, because of long turnover time
for generating samples and structure determination,
these methods are often unsuitable for repetitive cycles
of lead optimization. The optimization process can be
accelerated by the use of computational methods like
molecular docking, molecular dynamics simulation, and
quantum-mechanical simulations.

Fig. 8. Optimization of compound 8 for selective binding to 5-HT1A over a1-adrenergic receptor. 1a and 1b, Interactions of compound 8 with 5-HT and
a1, respectively. The dotted box represents the structural differences between the two target molecules. The authors leveraged this difference between
the protein molecules to design a virtual analog of compound 8, identified as 20h. 2b and 2b, docking models of 20h into 5-HT and a1. These docking
modes indicate that the piperazine atom and aspartic acid interaction is maintained for 20h-5-HT complex and not for 20h-a1 complex. An optimization
strategy based on this observation was used to design the novel agonist PRX-00023 for treatment of anxiety and depression. Adapted from Becker et al. (2006).

Computational Methods in Drug Discovery 355



Experimentally determined protein structures in
complex with ligand often serve as starting point for
SB-CADD campaigns. For example, the cocrystal
structure (PDB code 2BEL) of 11b-hydroxysteroid
dehydrogenase (11b-HSD1) and its inhibitor, a semi-
synthetic derivative of 18b-glycyrrhetnic acid (carbe-
noxolone, shown in Fig. 10), were used to generate
a model of the binding site. Increased expression of
11b-HSD1 in liver and adipose tissue has been linked
to obesity, insulin resistance, diabetes, and cardio-
vascular diseases in humans. The crystal structure
illustrates interaction of carbenoxolone with active
site residues Ser170, Tyr183, and Lys187, as shown in
Fig. 10. In addition, two hydrophobic pockets exist on
either side of the catalytic site, which is exploited by
a number of adamantine containing 11b-HSD1 inhib-
itors. A proprietary structure-based drug design pro-
gram, Contour, was used to develop binding models of
inhibitors containing an N-(2-adamantyl) amide moi-
ety. Structural insight of binding site allowed the
investigators to apply ligands containing an N-(2-
adamantyl) amide moiety in a drug design program.
With the help of the model and modeling studies, the
authors discovered an 11b-HSD1 inhibitor that is orally
bioavailable in three species and is active in a primate
pharmacodynamic model (Tice et al., 2010).
1. Helicase Inhibitor. Hepatitis C virus (HCV)

infection affects 180 million people worldwide and is
implicated in serious life-threatening liver diseases,
including cirrhosis, which may progress to hepatocel-
lular carcinoma. Kandil et al. (2009) used docking and
MD simulations to design selective inhibitors of HCV
NS3 helicase. A helicase domain cocrystallized with
a strand of DNA (PDB code 1A1V) was used as

a starting point for de novo design of inhibitors that
could compete with nucleic acid strand for binding. The
authors identified two residues with which ligands
could interact to inhibit helicase activity: (1) Arg393,
which interacts with DNA strand, and (2) Cys431,
which is situated 10 Å away from Arg393, whose sulfur
atom could anchor ligand to the DNA binding site. A de
novo designed inhibitor, structure B shown in Fig. 11,
was able to interact with Arg393 but could not interact
with Cys431 because of lack of any functional group.
For optimization of compound B, virtual libraries were
generated using MOE by varying linkers between the
two aromatic rings, whereas replacing one carboxylic
acid group with acceptors that have the ability to react
with thiol. MD simulation was performed on these
ligand/target complexes to evaluate stability of binding.
The 1-ns simulation revealed slow drifting of compound
3 away from Cys431, which was attributed to steric
hindrance of the aromatic ring. Smaller heterocycles in
place of the aromatic ring were investigated, and linker
chains were removed in subsequent molecules after MD
simulations showed that they provided no particular
advantage. Stable interactions with Arg481 and Cys431
duringMD simulations prompted synthesis and evaluation

Fig. 9. A comparison of the hERG binding modes of compounds 8 and 20d.
Shown are a detailed 3D view of the binding of compounds 8 in the hERG
pore, as well as two schematic views of the binding of compounds 8 and 20d
next to each other. The four main interaction regions are highlighted in all
views: an aromatic region formed by the four Tyr652 residues, a K+ pocket,
an aromatic region formed by the four Phe656 residues, and a polar region
formed by four Ser660 residues (shown only schematically).

Fig. 10. Carboxynoxolone and 10j2. Overlap of carenoxolone (yellow) and
urea 10j2 (green) in binding site of 11b-HSD1.

356 Sliwoski et al.

http://www.pdb.org/pdb/explore/explore.do?structureId=2BEL
http://www.pdb.org/pdb/explore/explore.do?structureId=1A1V


of compound 4, shown in Fig. 11, in helicase assay, and it
exhibited an IC50 of 0.26 mM.

H. Pharmacophore Model

A pharmacophore model of the target binding site
summarizes steric and electronic features needed for
optimal interaction of a ligand with a target. Most
common properties that are used to define pharmaco-
phores are hydrogen bond acceptors, hydrogen bond
donors, basic groups, acidic groups, partial charge,
aliphatic hydrophobic moieties, and aromatic hydro-
phobic moieties. Pharmacophore features have been
used extensively in drug discovery for virtual screen-
ing, de novo design, and lead optimization (Yang,
2010). A pharmacophore model of the target binding
site can be used to virtually screen a compound library
for putative hits. Apart from querying data base for
active compounds, pharmacophore models can also be
used by de novo design algorithms to guide the design
of new compounds.
Structure-based pharmacophore methods are devel-

oped based on an analysis of the target binding site or
based on a target-ligand complex structure. LigandSc-
out (Wolber and Langer, 2005) uses protein-ligand

complex data to map interactions between ligand and
target. A knowledge based rule set obtained from the
PDB is used to automatically detect and classify in-
teractions into hydrogen bond interactions, charge
transfers, and lipophilic regions (Wolber and Langer,
2005). The Pocket v.2 (Chen and Lai, 2006) algorithm
is capable of automatically developing a pharmaco-
phore model from a target-ligand complex. The algo-
rithm creates regularly spaced grids around the ligand
and the surrounding residues. Probe atoms that re-
present a hydrogen bond donor, a hydrogen bond ac-
ceptor, and a hydrophobic group are used to scan the
grids. An empirical scoring function, SCORE, is used to
describe the binding constant between probe atoms and
the target. SCORE includes terms to account for van der
Waals interactions, metal-ligand bonding, hydrogen
bonding, and desolvation effects upon binding (Wang
et al., 1998). A pharmacophore model is developed by
rescoring the grids followed by clustering and sorting to
extract features essential for protein-ligand interaction.
During rescoring, hydrogen bond donor/acceptor scores
lower than 0.2 and hydrophobic scores lower than 0.47
are reset to zero. Grids with three zero scores are
filtered out, and the “neighbor number” for each grid is
determined by counting the number of grids within 2 Å
having non-zero score for a particular type. Grids with
less than 50 donor neighbors, 30 acceptor neighbors, and
40 hydrophobic neighbors are reset to zero for their donor
score, acceptor score, and hydrophobic scores, respec-
tively. Grids are filtered by eliminating those with three
zero scores, leaving only those grids that represent key
interaction sites. The algorithm then superimposes the
ligand on the grid, and a given grid is selected as
a candidate if it is close to an atom type that can
mediate the same interaction. Candidates with non-
zero donor, acceptor, or hydrophobic scores are gathered
into separate clusters, and the grid with highest score is
defined as the center of donor, acceptor, or hydrophobic
property.

1. Virtual Screening Using a Pharmacophore Model.
17b-Hydroxysteroid dehydrogenase type 1 (17b-HSD1)
plays an important role in the synthesis of the most
potent estrogen estradiol. Its inhibition could be im-
portant for breast cancer prevention and treatment.
Schuster et al. (2008) used LigandScout2.0 to generate
pharmacophore models of 17b-HSD1 from cocrystalli-
zation complexes with inhibitors (PDB codes 1EQU
and 1I5R). These pharmacophore models represent the
binding mode of a steroidal compound and small hybrid
compounds (consisting of a steroidal part and an
adenosine), respectively. The 1I5R-based pharmacophore
model was used to screen the NCI and SPECS data
bases for new inhibitors using CATALYST. Best
scoring hit compounds were docked into the binding
pocket of 1EQU using GOLD, and final selection for in
vitro testing was performed according to the best fit
value, visual inspection of predicted docking pose and

Fig. 11. Evolution of the design of novel HCV helicase inhibitor.
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the ChemScore (GOLD scoring function) value. Four
of 14 compounds tested in vitro showed an IC50 value
of less than 50 mM, with the most potent being 5.7 mM.
Brvar et al. (2010) applied pharmacophore models to
discover novel inhibitors of bacterial DNA gyrase B,
a bacterial type II topoisomerase originating from
gyrase and a target for antibacterial drugs. A pharma-
cophore model obtained using LigandScout was used
to screen the ZINC data base, which yielded a novel
class of thiazole-based inhibitors with IC50 value of
25 mM.
2. Multitarget Inhibitors Using Common Pharmaco-

phore Models. Wei et al. (2008) used Pocket v.2 to
identify a common pharmacophore for two targets
involved in inflammatory signaling, human leukotri-
ene A4 hydrolase (LTA4H-h) and human nonpancre-
atic secretory phospholipase A2 (PLA2). The cocrystal
structure (PDB code 1HS6) of LTA4H-h with 2-(3-
amino-2-hydroxy- 4-phenylbutyrylamino)-4-methyl-
pentanoic acid (bestatin) and the structure (PDB code
1DB4) of PLA2 with [3-(1-benzyl-3-carbamoylmethyl-2-
methyl-1H-indol-5-yloxy)propyl]phosphonic acid (in-
dole 8) were used to derive pharmacophores of the
two targets. For LTA4H-h, six pharmacophore centers
were identified that included four hydrophobic centers,
one hydrogen bond acceptor, and one zinc metal
coordination pharmacophore. In the binding pocket of
PLA2, three hydrophobic centers, one hydrogen bond
acceptor, and two calcium ion coordination centers
were identified. The comparison of two sets of
pharmacophore models revealed that two hydrophobic
pharmacophores and a pharmacophore that coordi-
nated with metal, shown in Fig. 12, was common to
both proteins. The authors hypothesized that com-
pounds that satisfy the common pharmacophores
would inhibit both the proteins. The MDL chemical
data base was screened virtually with LTA4H-h and
PLA2 using Dock4.0 and binding conformation of the
top 150,000 compounds (60% of data base) ranked by
Dock score was extracted and checked for conformity to
common pharmacophores. This identified 163 com-
pounds whose binding conformations were reanalyzed
using Autodock3.5 followed by comparison with com-
mon pharmacophores. Finally, nine compounds whose
conformations matched the common pharmacophores
were tested in vitro for binding with PLA2 and LTA4H-
h. The best inhibitor, compound 10, shown in Fig. 13,
inhibited LTA4H-h at submicromolar range and PLA2

with an IC50 value of 7.3 mM.
3. Dynamic Pharmacophore Models That Account for

Protein Flexibility. The overexpression of murine
double minute 2 oncoprotein (MDM2), which inhibits
p53 tumor suppressor, is responsible for approximately
one-half of all human cancers. Reactivation of p53-
MDM2 integration has been shown to be a novel
approach for enhancing cancer cell death (Bowman
et al., 2007). Bowman et al. (2007) extracted snapshots

at every 100 ps from a 2-ns MD simulation of MDM3
bound to p53. The resulting 21 structures for MDM2
were used to generate a six-site pharmacophore model
of the active site, which included three aromatic/
hydrophobic sites and three hydrogen-bond donor sites. A
virtual screening of a library of 35,000 compounds
identified 27 hits, 23 of which were tested in a competitive
binding assay. Four of the tested compounds were
identified as true hits, with the best inhibitor having a Ki

value of 1106 30 nM. The dynamic pharmacophore model
was also used successfully to identify low micromolar
inhibitors of HIV-1 integrase (Deng et al., 2005).

I. Automated De Novo Design of Ligands

De novo structure-based ligand design can be
accomplished by either a ligand-growing or ligand-
linking approach. With the ligand-growing approach,
a fragment is docked into the binding site and the ligand

Fig. 12. Extracting common pharmacophores of LTA4H-h and human-
PLA2. Cyan spheres depict hydrophobic centers, red spheres represent H-
bond acceptor while yellow spheres stand for feature that coordinates
with a metal. Adapted from Wei et al. (2008).

Fig. 13. (A) A reported inhibitor of LTA4H-h. (B) Compound 11.
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is extended by adding functional groups to the fragment.
The linking method is similar in that multiple small
fragments are docked into adjacent binding pockets of
the target. Subsequently, the fragments are linked to
each other to form a single compound. This approach is
a computational version of the popular structure-activity
relationship by NMR technique introduced by Shuker et
al. (1996).
Several methods have been developed that imple-

ment both ligand-growing and ligand-linking strate-
gies for designing ligands that can bind to a given
target. LigBuilder (Wang et al., 2000b) builds ligands
in a step by step fashion using a library of fragments.
The design process can be carried out by various
operations like ligand growing and linking and the
construction process is controlled by a genetic algo-
rithm. The target-ligand complex binding affinity is
evaluated by using an empirical scoring function. The
program first reads the target protein and analyzes the
binding pocket. Depending on the choice of the user, it
can then either use a growing or a linking strategy. In
the growing strategy, a seed structure is placed in
a binding pocket and then the program replaces user-
defined growing sites with candidate fragments. This
gives rise to a new seed structure that can then be used
in further rounds of growing. For the linking strategy,
several fragments placed at different locations on the
target protein serve as seed structure. The growing
scheme happens simultaneously on each fragment. In
the process, the program seeks to link these fragments.
The LUDI (Bohm, 1992) algorithm, which precedes
LigBuilder, primarily uses a linking strategy for ligand
design. It positions seed fragments into binding pockets
of the target structure, optimizing their interactions
individually. This step is followed by linking the frag-
ments into a single molecule. The synthetic accessibility
of ligands can be taken into account. For example,
LigBuilder 2.0 analyzes designed using a chemical
reaction data base and a retrosynthesis analyzer
(Yuan et al., 2011).
The biggest challenge of de novo drug design is

inseparable from its greatest advantage. By defining
compounds that have never been seen before, one is
invariably necessitating synthetic effort for acquisition
prior to testing. This forces any de novo protocol to
incorporate synthesizability metrics into its scoring.
This increases the effort required in terms of cost,
yield, time, and expertise necessary. Synthesizability
thus becomes increasingly important when designing
a large number of different compounds and scaffolds.
Tools have been designed and used to approach syn-
thesizability constraints. SYNOPSIS (SYNthesize and
OPtimize System in Silico) (Vinkers et al., 2003) is a
commonly used tool that enforces synthesizability
throughout the design process by starting with avail-
able compounds and creating novel compounds by vir-
tually using known chemical reactions. This tool

contains a set of 70 reaction types that are selected
based on the presence of different functional groups in
the evolving molecule. SYNOPSIS also provides addi-
tional restraints for desired properties such as solubil-
ity. Krier et al. (2005) proposed an approach called the
Scaffold-Linker-Functional Group (SLF) approach,
which has been implemented in de novo strategies.
This method is designed to create a de novo scaffold-
focused library that maximizes diversity and minimizes
size. A limited number of nonoverlapping functional
groups were selected that are added or removed from
the static scaffold core. The linker plays the role of
varying the distances between the scaffold and func-
tional groups. RECAP (Retrosynthetic Combinatorial
Analysis Procedure) was the first fragment generation
method to incorporate rules that limit the chemical
reactions to ones used in typical combinatorial chemis-
try techniques, thereby limiting the possible fragments
as well as possible recombination patterns (Lewell et al.,
1998; Degen et al., 2008).

1. Example Application in Computer-Aided Drug
Design. De novo design by linking fragments has
been successfully applied in the design of inhibitors of
p38 MAPK (Cogan et al., 2008), which is a key reg-
ulator in signaling pathways that control the pro-
duction of cytokines such as tumor necrosis factor-a
and interleukin-1b. Inhibitors of MAPK can potentially
be used for the treatment of various autoimmune
diseases. Figure 14A shows four classes of interactions of
a clinical compound BIRB 796 with MAPK: (1) in-
teraction with residues in ATP binding site (Met109), (2)
interaction with the “Phe pocket” (dotted arc), (3)
hydrophobic interaction with the kinase specificity
pocket (solid arc), and (4) interaction of the urea with
backbone NH-bond of Asp168 and carboxylate of Glu71.
A design strategy for exploring structurally distinct
scaffolds by leveraging the interactions of BIRB 796
[1-(5-tert-butyl-2-p-tolyl-2H-pyrazol-3-yl)-3-[4-(2-morpho-
lin-4-yl-ethoxy)naphthalen-1-yl] urea] was devised as
follows: (1) a tert-butyl group was used as “Phe pocket”
seed structure in place of pyrazole ring of BIRB 796, (2)
an N-formyl group was appended to tert-butyl fragment
to access the hydrogen bonds with Glu71 and Asp168,
and (3) a carbonyl group was used as the second seed
fragment to access the hydrogen bond with Met109 as
shown in Fig. 14B. LigandBuilder software was used
to link the two seed fragments, the tert-butyl linked to
N-formyl group, and the carbonyl group. The program
consistently introduced a 4-tolyl group in the kinase
specificity pocket. However, LigandBuilder failed to
predict favorable rigid linkers for connecting the tolyl
group to carbonyl group, which would be essential for
carbonyl display at the proper distance to interact
with Met109. Modeling indicated N-linked azoles con-
nected to tolyl group via an N-linkage as a suitable linker.
Derivatives of this designed molecule were synthesized,
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leading to the discovery of compound 28 shown in Fig.
14D, which exhibited an IC50 value of 83 nM.
The fragment extension approach was used by Zhang

et al. (2011) in the discovery of inhibitors of vascular
endothelial growth factor (VEGF) receptor 2 (VEGFR2),
a therapeutic target for tumor-induced angiogenesis.
The authors used quinazoline as the seed fragment,
because three of the nine clinically approved kinase
inhibitor drugs are 4-anilinoquinazoline derivatives (Li
et al., 2010a). These inhibitors bind the active site of
their respective targets such that the quinazoline ring is
located at the front of ATP binding pocket. The ligand
building process involved placing the quinazoline
fragment in the binding pocket in the same orientation
as found for known inhibitors. The design strategy
sought to create a ligand that would extend to fit a
specific hydrophobic pocket at the back of the ATP
binding cleft. An NH2, OH, or SH group was added in
the C4 position of the quinazoline ring to allow for a
turn owing to orientation of quinazoline and the spatial
arrangement of the hydrophobic pocket. A fragment-
growth-based de novo method was applied in which
various fragments (approximately 1200 fragments)
were allowed to grow on the turn fragment to extend
into the hydrophobic pocket. Designed molecules were
then rescored and ranked using GOLD. The design process
led to the development of a potent and specific VEGFR2
inhibitor, SKLB1002 [2-((6,7-dimethoxyquinazolin-4-
yl)thio)-5-methyl-1,3,4-thiadiazole], shown in Fig. 15.

The inhibitor was successful in inhibiting angiogenic
processes in zebrafish embryo and athymic mice with
human tumor xenografts.

J. Strategies for Important Classes of Drug Targets

Protein kinases and GPCRs are the most frequently
targeted classes in drug discovery. About a dozen drugs
that target kinases have been approved for clinical use
in the field of cancer and more than a hundred are
undergoing clinical trials. Kinase inhibitors have been
found to be useful in several other conditions like
inflammatory diseases, treatment of hypertension, and
Parkinson’s disease (Cohen and Alessi, 2013). Modu-
lators of GPCRs represent 27% of all clinically ap-
proved drugs. Diseases associated with loss of function
include congenital hypothyroidism, congenital bowel
obstruction, abnormal breast and bone development,
and loss of function mutation in type 5 chemokine
receptor leading to resistance to HIV infection. In ad-
dition, there are several gain-of-function disorders such
as night blindness due to constitutive active rhodopsin,
hyperthyrodism, neonatal hyperparathyroidism, etc. In
general, drugs targeting GPCRs come under two ca-
tegories: (1) agonists stimulate GPCRs and (2) anta-
gonists that block the activation.

Kinase 3D structures are abundantly available in the
PDB. A large number of 3D structures have also been
developed by means of homology modeling based on
templates having highest sequence similarity with
targets. Docking studies with kinases, however, indicate
that similarity of binding site influences docking pre-
diction (Tuccinardi et al., 2010). In addition, kinases’
binding sites have high plasticity, allowing adaptation
to interact with ligands (Rabiller et al., 2010). This
makes for a good argument to go for ligand-induced
homology modeling. A straightforward approach is to
use homology models created from a template cocrys-
tallized with a ligand similar to the one of interest.
Tuccinardi et al. (2010) found that this approach
yielded models that could be reliable for docking
studies. Ideally homology models based on multiple-
templates may be used in docking and selected on the
ability to generate conserved interactions. ATP-
competing inhibitors typically form at least one hydro-
gen bond with a backbone amide or carbonyl group in
the hinge region (Cheng et al., 2012). Docking results
can be improved by keeping constraints to preserve
conserved interactions (Ravindranathan et al., 2010).
Kinases undergo receptor rearrangement upon ligand
binding (Rabiller et al., 2010). The ATP binding pocket
has highly conserved residues, which is an obstacle for
development selective kinase inhibitors and requires
the exploitation of an adjacent “allosteric pocket.”
Mimicking conformational change of kinases, and not just
side-chain flexibility, improves the success of kinase
inhibitor docking (Cavasotto and Abagyan, 2004; Rabiller
et al., 2010). Cavasotto and Abagyan (2004) reported

Fig. 14. Design strategy for inhibitors of p38 MAPK. (A) Key interactions
of BIRB-796 inhibitor with MAPK. (B) A fragment linking strategy to link
two seed structures was applied using LigBuilder. A tert-butyl phenyl
fragment was used in the first pocket, whereas a carbonyl fragment was
used to access the hydrogen bond with Met109 in the second site. An N-
formyl group was attached to the first seed fragment to access hydrogen
bonds with Glu71 and Asp168. (C) General structure of optimized
structures which showed potent activity. (D) R group for compound 28,
which showed IC50 value of 83 nM. Adapted from Cogan et al. (2008).
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that incorporating protein flexibility in ligand docking
is essential.
GPCRs play a central role in human physiology and

are prime targets for drug discovery for different
indications such as cardiovascular, metabolic, neuro-
degenerative, and oncologic diseases. High-resolution
crystal structures of GPCRs have become available
only recently and are sparse. de Graaf and Rognan
(2009) studied the effect of template choice on docking.
The results indicate that multiple-template-based mod-
els performed slightly better than single-template
models if all templates shared low sequence identity
with the target. Fragment-based methods like
I-TASSER (Zhang, 2008) have performed well in CASP.
I-TASSER takes a hierarchical approach to homology
modeling by using fragments from template structures
and assembling multiple fragments based on threading
alignment. Ligand-induced homology modeling using
LiBERO (Katritch et al., 2010) has shown promise in
terms of percentage of correctly predicted native con-
tacts. MD refinement of homology models of GPCRs has
demonstrated benefits (Yarnitzky et al., 2010). The
accurate modeling of extracellular loops is essential
because they are important for ligand recognition as has
been demonstrated by several site-directed mutagenesis
studies (Bokoch et al., 2010). Although considerable

progress has been made in de novo loop modeling,
loopless models provide practical alternatives in cases
where de novo modeling fails. de Graaf et al. (2008) re-
commended loopless models of GPCRs for virtual
screening unless high homology targets or receptor
specific data were available. Finally, receptor ensemble
docking studies have shown promising results compared
with one binding site conformation in terms of signifi-
cant improvement in virtual screening yields (Vilar
et al., 2011).

III. Ligand-Based Computer-Aided Drug Design

The ligand-based computer-aided drug discovery
(LB-CADD) approach involves the analysis of ligands
known to interact with a target of interest. These
methods use a set of reference structures collected from
compounds known to interact with the target of
interest and analyze their 2D or 3D structures. The
overall goal is to represent these compounds in such
a way that the physicochemical properties most im-
portant for their desired interactions are retained,
whereas extraneous information not relevant to the
interactions is discarded. It is considered an indirect
approach to drug discovery in that it does not necessitate
knowledge of the structure of the target of interest. The

Fig. 15. (A) Chemical structure of SKLB1002. (B) SKLB1002 is docked into the active site of VEGFR2, showing interactions between SKLB1002 and
VEGFR2 by using the in silico model. (C) A 2D interaction map of SKLB1002 and VEGFR2. Adapted from Zhang et al. (2011).
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two fundamental approaches of LB-CADD are (1) se-
lection of compounds based on chemical similarity to
known actives using some similarity measure or (2) the
construction of a QSAR model that predicts biologic
activity from chemical structure. The difference between
the two approaches is that the latter weights the features
of the chemical structure according to their influence on
the biologic activity of interest, whereas the former does
not. The methods are applied for in silico screening for
novel compounds possessing the biologic activity of
interest, hit-to-lead and lead-to drug optimization, and
also for the optimization of DMPK/ADMET properties.
LB-CADD is based on the Similar Property Principle,
published by Johnson et al. (1990), which states that
molecules that are structurally similar are likely to have
similar properties. LB-CADD approaches in contrast to
SB-CADD approaches can also be applied when the
structure of the biologic target is unknown. Addition-
ally, active compounds identified by ligand-based vir-
tual high-throughput screening (LB-vHTS) methods are
often more potent than those identified in SB-vHTS
(Stumpfe et al., 2012).

A. Molecular Descriptors/Features

LB-CADD techniques use different methods for
describing features of small molecules using computa-
tional algorithms that balance efficiency and informa-
tion content. The optimal descriptor set depends on the
biologic function predicted as well as on the LB-CADD
technique used, and therefore many different algo-
rithms for deriving chemical information have been
developed and used. Molecular descriptors can be struc-
tural as well as physicochemical and can be described on
multiple levels of increasing complexity. Information
described can include properties such as molecular
weight, geometry, volume, surface areas, ring content,
rotatable bonds, interatomic distances, bond distan-
ces, atom types, planar and nonplanar systems, mole-
cular walk counts, electronegativities, polarizabilities,
symmetry, atom distribution, topological charge in-
dices, functional group composition, aromaticity in-
dices, solvation properties, and many others (Cramer
et al., 1988; Randic, 1995; Schuur et al., 1996; Bravi
et al., 1997; Hemmer et al., 1999; Pearlman and
Smith, 1999; Hong et al., 2008; Roberto Todeschini,
2010). These descriptors are generated through
knowledge-based, graph-theoretical methods, molecular-
mechanical, or quantum-mechanical tools (Acharya et al.,
2011; Marrero-Ponce et al., 2012) and are classified
according to the “dimensionality” of the chemical re-
presentation from which they are computed (Ekins et al.,
2007): 1D, scalar physicochemical properties such as
molecular weight; 2D, molecular constitution-derived
descriptors; 2.5D, molecular configuration-derived descrip-
tors; 3D, molecular conformation-derived descriptors.
These different levels of complexity, however, are over-
lapping with the more complex descriptors, often

incorporating information from the simpler ones. For
example, many 2D and 3D descriptors use physicochem-
ical properties to weight their functions and to describe
the overall distribution of these properties.

1. Functional Groups. Functional groups are de-
fined by the International Union of Pure and Applied
Chemistry as atoms or groups of atoms that have
similar chemical properties across different compounds.
These groups are attached to a central backbone of the
molecule, also called scaffold or chemotype. The spatial
positioning of the functional groups achieved by the
backbone defines the physical and chemical properties
of compounds. Therefore, the location and nature of
functional groups for a given compound contain key
information for most ligand-based CADD methods.
There are many different kinds of functional groups
including those that contain hydrocarbons, halogens,
oxygens, nitrogens, sulfur, phosphorous, etc. Func-
tional groups include alcohols, esters, amides, carbox-
ylates, ethers, nitro group, thiols, etc. (March, 1977)

Functional groups can either be described explicitly
by their atomic composition and bonding or may be
implicitly encoded by their general properties. For
example, under physiologic conditions carboxyl groups
are often negatively charged, whereas amine groups
are positively charged. This property is accurately
reflected in the structure of the functional group but
also in the charge computed from that structure.
Because it is the properties conferred by the functional
groups that are most important to the biochemical
activity of a given compound, many CADD applications
treat functional groups containing different atoms
but conferring the same properties as similar or even
identical. For example, the capacity for hydrogen
bonding can heavily influence a molecule’s properties.
These interactions frequently occur between a hydro-
gen atom and an electron donor such as oxygen or
nitrogen. Hydrogen bonding interactions influence the
electron distribution of neighboring atoms and the
site’s reactivity, making it an important functional
property for therapeutic design. Commonly, hydrogen
bonding groups are separated as hydrogen bond donors
with strong electron-withdrawing substituents (OH,
NH, SH, and CH) and hydrogen bond acceptor groups
(PO, SO, CO, N, O, and S) (Pimentel and McClellan,
1960; Vinogradov and Linnell, 1971). The applications
Phase, Catalyst, DISCO, and GASP (Genetic Algo-
rithm Superposition Program) as well as Pharmaco-
phore mapping algorithms discussed in greater detail
below focus primarily on hydrogen-bond donors,
hydrogen-bond acceptors, hydrophobic regions, ion-
izable groups, and aromatic rings.

2. Prediction of Psychochemical Properties. Descriptors
within the same dimensionality can show a range of
complexity. The simplest ones, such as molecular
weight and number of hydrogen bond donors, are
relatively simple to compute. These can be rapidly

362 Sliwoski et al.



and accurately computed. More complex descriptors
such as solubility and partial charge are more difficult
to compute. However, the higher information content
provided by these descriptors makes them extremely
useful for model development. (Zhou et al., 2010).
Therefore, prediction of physicochemical properties
is a critical step in developing effective molecular
descriptors. The trade-off in computing such descriptors
is between the high speed needed to encode thousands
of molecules and sufficient accuracy.
a. Electronegativity and partial charge. Electron

distribution plays an important role in a molecule’s
properties and activities. Therefore, it was important
to develop a descriptor that is capable of modeling the
charge distribution over an entire molecule. A useful
form of this descriptor was to assign a partial charge to
all atoms in a molecule. Initially, electron distribution
could be assigned to individual atoms through quan-
tum mechanical calculations. However, when screen-
ing thousands or millions of compounds, a much faster
and more efficient method is necessary. Gasteiger and
Marsili (1980) developed a method for assigning partial
charges to individual atoms called the Partial Equal-
ization of Orbital Electronegativity (PEOE). This
method is based on a definition of electronegativity in-
troduced by Mulliken (1934) that relates electronega-
tivity of an atom to its ionization potential I and
electron affinity E with the equation electronegativity
= 1/2(I + E). The values for E and I depend on the
valence state of the atom, and Hinze and Jaffe (1962)
and Hinze et al. (1963) introduced the concept of orbital
electronegativity, which was capable of defining elec-
tronegativity of a specific orbital in a given valence
state. Orbital electronegativities depend on hybridiza-
tion and occupation number of the orbital.
Electronegativity equalization was proposed by

Sanderson (1951, 1960) and stated that bonded atoms
changed electron density until total equalization of
electronegativity was reached. However, this simple
model led to chemically unacceptable calculations. The
PEOE method is an improvement to this electroneg-
ativity equalization model that produces more ap-
propriate results by adding some complexity to the
equalization of electronegativities. Gasteiger and Mar-
sili (1980) first introduced an approximation function
that joins the electronegativity values of an atom in its
anionic, neutral, and cationic state with appropriate
ionization potentials and electron affinities and relates
orbital occupation with orbital electronegativity. They
also added a damping function to account for the fact
that when charge transfer is occurring an electrostatic
field is generated, inhibiting further electron transfer
and preventing a complete equalization. Finally, they
introduced an iterative procedure to account for the fact
that modified electronegativities after charge transfer
give rise to new charge separations. Progressive iterations
included wider spheres of neighboring atoms until the

total transfer dropped below a cutoff. The total charge of
an atom is then calculated as the sum of the individual
charge transfers after the iteration.

For small-member rings, special bonds based on the
valence bond model (Coulson and Moffitt, 1947) were
used as additional parameters in the PEOE method
(Guillen and Gasteiger, 1983). The valence bond model
states that the bonds of three- and four-membered ring
systems arise from orbitals with varying amounts of s
and p character depending on the type and number of
rings involved and whether exo- or endocyclic bonds
are considered. The extra coefficients provided charge
dependence for the different hybridization states in-
terpolated from the values of electronegativities for
sp3, sp2, sp, and p states (Hinze and Jaffe, 1962).

Gasteiger and Saller (1985) introduced a method for
applying the PEOE method to molecules with multiple
resonance structures. Charge distribution in p systems
could be calculated on the basis of resonance structure
weights. These weights were calculated by including
a topological weight and electronic weight. The topolog-
ical weight was based on whether resonance structures
involved the loss of covalent bonds, decrease in aromatic
systems, or charge separation. The electronic weight was
based on the idea that resonance structures are more
important when a negative charge is localized on the
more strongly electronegative atom. Therefore, it was
a measure of how well the donor atom can donate its lone
pair of electrons and how stable is a negative charge on
the acceptor atom. To calculate this weight, the el-
ectronegativity concept is applied. Finally, by adding the
changes in charge of the individual resonance structures
to the scaling factor the charge distribution could be
calculated. Orbital electronegatives are often imple-
mented into s and p bond systems. Standard connection
tables describe localized connections between two atoms
that contain twice the number of electrons per bond
order (single bonds contain two electrons, double bonds
contain four, etc.). This valence bond structure, however,
is insufficient to describe some compounds and to
distinguish between the different excited states of a
molecule. Separating s and p electrons has been
shown to be advantageous to this representation scheme
(Gasteiger, 1979). Bauershmidt and Gasteiger (1997)
describe computational representation of chemical spe-
cies using three electron systems: s-electron systems,
p-electron systems, and coordinative bonds.

s-Electron systems contain electrons localized in the
s part of a bond and single bond electrons. These
systems may consist of more than two atoms when
multicenter bonds are described, including overlapping
orbitals that point into a central region between bonded
atoms and open bridging a-electron systems where one
atom is located between the other atoms part of the
same system. p-Electron systems encode free electrons.
One p-electron system is generated for each electron
pair. For example, the electrons of a triple bond are
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distributed into one s-electron system and two p-elec-
tron systems, each with two electrons. Properties such
as orbital electronegativity and partial charges are more
accurately described using the s- and p-electron sys-
tems. Therefore, it is common to implement descriptors
separated as s charges, p charges, s electronegativity,
and p electronegativity.
These methods provide a means to quantitatively

calculate electronegativity and partial charge on a per-
atom basis without the need for quantum mechanics.
PEOE charges have been shown to be useful in-
formation for predicting chemical properties such as
taste (Belitz et al., 1979). Additionally, these properties
are often used to weight three-dimensional descriptors
that would, on their own, only capture purely struc-
tural information. By weighting these descriptors with
these properties, information regarding the three-
dimensional distribution of electrons is available.
b. Polarizability. Effective polarizability or mean

molecular polarizability is another widely used molec-
ular descriptor. It quantifies the response of electron
density to an external field to give an induced dipole
moment (Le Fèvre, 1965). Polarizability contributes to
dispersion forces and influences intermolecular inter-
actions (a fast empirical method for the calculation of
molecular polarizability). Brauman and Blair (1968)
described stabilization effects of substituent polariz-
ability. For example, induced dipole moments in un-
substituted alkyl groups are believed to stabilize
charges in gaseous ions formed by protonation or de-
protonation (Gasteiger and Hutchings, 1984). The
magnitude of the induced dipole is calculated as the
product of the electric field operator and the polariz-
ability tensor of the molecule. The average polarizabil-
ity of a molecule is calculated as the average of the
three principal components of this tensor (Glen, 1994).
Miller and Savchik (1979) introduced a formula for

calculation of mean molecular polarizabilities using
a polarizability contribution for each atom based on its
atom type and hybridization state and the total number
of electrons in the molecule. Gasteiger and Hutchings
(1983) improved this formula to account for the at-
tenuation of substituent influence. This was accom-
plished through the introduction of a damping factor
dependent on the distance in bonds between the atom
and the charged reaction center.
Glen (1994) defined a method for calculating static

molecular polarizability using a modified calculation of
atomic nuclear screening constants based on effective
nuclear charge described by Slater (1930). This calcula-
tion divides electrons into different groups with different
shielding constants. These shielding constants reflect
the fact that inner-shell electrons modify the view of the
nucleus for outer-shell electrons and adjust the field of
nuclear charge for each group of electrons.
c. Octanol/water partition coefficient. LogP (loga-

rithm of partition coefficient between n-octanol and

water) is an important molecular descriptor that has
been widely used in QSAR since the work of Leo et al.
(1971). Lipinksi’s rule of five, a class set of rules des-
cribing the “druggability” of a compound, includes mea-
surement of the compound’s logP. Traditionally, logP can
be calculated experimentally by measuring its partition-
ing behavior in the insoluble mixture of n-octanol and
water and reflects the molecule’s hydrophobicity. This
molecular property has been shown to be important in
solubility, oral availability, transport, penetration of
the blood-brain-barrier, receptor binding, and toxicity
(Hansch et al., 1962, 1987). For virtual screening
applications, several methods for calculating logP based
on molecular constitution have been established.

LogP calculations largely rely on an additive method
introduced by Rekker and Mannhold (1992) in which
the contributions to logP by basic fragments of a mo-
lecule (atoms and functional groups) are summed. Ad-
ditivity methods improved with the incorporation of
molecular properties have also been used to calculate
logP (Kellogg et al., 1991; Meng et al., 1994).

Wang et al. (1997) developed the very popular
additivity method called XLOGP. This method origi-
nally defined 80 basic atom types for carbon, nitrogen,
oxygen, sulfur, phosphorous, and halogen atoms. Hy-
drogen atoms are implicitly included in the different
atom types. Additionally, correction factors were applied
to account for specific intramolecular interactions that
can affect a molecule’s logP beyond each of the frag-
ments on their own. This method was later improved to
include 90 atom types and 10 correction factors (Wang
et al., 2000a).

Correction factors were necessary and determined
empirically due to the fact that many logP calculations
based on simple summations were incorrect. For
example, compounds with long hydrocarbon chains
had underestimated logP because of their flexibility and
aggregation behavior, atoms bonded to two or more
halogen atoms had altered properties due to dipole
shielding, internal hydrogen bonding, the unusually
strong internal hydrogen bonding with salicylic acids,
and the existence of a-amino acids as zwitterions. Ad-
ditionally, correction factors are included for aromatic
nitrogen pairs, ortho sp3 oxygen pairs, para donor
pairs, sp2 oxygen pairs, and amino sulfonic acids.

Xing and Glen (2002) introduced an alternative logP
calculation that was based on the evidence that
molecular size and hydrogen-bonding ability account
for a major part of logP. They created a statistical model
by combining molecular size and dispersion interactions
using molecular polarizability and the sum of squared
partial atomic charges on oxygen and nitrogen atoms.
The final model showed that molecular polarizability is
more significant than atomic charges and that an in-
crease in polarizability is correlated with an increase in
logP, whereas a decrease in charge densities on nitrogen
and oxygen correlated with a decrease in logP. They
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theorized that the importance of molecular polarizabil-
ity on logP was due in part to the relative energy
required for a larger molecule to create a cavity in water
or octanol.
3. Converting Properties into Descriptors. Molecule

properties are converted into numerical vectors of
descriptors for analysis. This conversion is needed to
ensure that descriptions of molecules have a constant
length independent of size. Each position in the vector
of descriptors encodes a well-defined property or
feature that facilitates comparison by mathematical
algorithms.
a. Binary molecular fingerprints. Fingerprints are

bit string representations of molecular structure and/or
properties (Bajorath 2001, 2002). They encode various
molecular descriptors as predefined bit settings (Auer
and Bajorath, 2008), i.e., representation as 1 or 0, where
1 means descriptor is present or 0 if not. This allows
chemical identity to be unambiguously assigned by the
presence or absence of features (Hutter, 2011). The
features described in a molecular fingerprint can vary in
number and complexity (from hundreds of bits for
structural fragments to thousands for connectivity finger-
prints and millions for the complex pharmacophore-like
fingerprints) (Auer and Bajorath, 2008), depending on
the computational resources available and the intended
application. Fingerprints that rely solely on interatomic
connectivity, i.e., molecular constitution, are known as
2D fingerprints (Hutter, 2011). In the prototypic 2D
keyed fingerprint design, each bit position is associated
with the presence or absence of a specific substructure
pattern, for example carbonyl group attached to sp3

carbon, hydroxyl group attached to sp3 carbon, etc.
(Barnard and Downs, 1997).
Molecular structure itself comprises several levels of

organization between the atoms within a molecule,
and, therefore, fingerprints may differ in their levels of
organization too. For example, the simplest fingerprint
may contain the information that a given compound
contains six carbon atoms and six hydrogen atoms.
However, up to 217 different isomers can contain this
fingerprint. Adding connectivity increases the specific-
ity of the fingerprints but does not necessarily provide
discrimination between stereoisomers. These molecules
are not identical despite having equal constitutions and
2D fingerprints that are insufficient to describe their
structures. Therefore, considerable effort is taken to
ensure the efficient application of fingerprints without
sacrificing important molecular characteristics. One ex-
tension to fingerprints is the use of hash codes. These
are bit strings of fixed length that contain information
about connectivity, stereo centers, isotope labeling, and
further properties. This information is then compressed
to avoid redundancies (Ihlenfeldt and Gasteiger, 1994).
Unfortunately, it is not always obvious which of these
characteristics are important in a given context and
which are not (Hutter, 2011).

Commonly used fingerprints include the ISIS (In-
tegrated Scientific Information System) keys with 166
bits and the MDL (Molecular Design Limited) MACCS
(Molecular ACCess System) keys (Durant et al., 2002)
with 960 bits. The ISIS keys are small topological
substructure fragments, whereas the MACCS keys
consist of the ISIS keys plus algorithmically generated
more abstract atom-pair descriptors. MDL keys are
commonly used when optimizing diversity (McGregor
and Pallai, 1997; Roberto Todeschini, 2010). For exam-
ple, the PubChem data base uses a fingerprint that is
881 bits long to rank substances against a query
compound. This fingerprint is comprised of the number
and type of elements, ring systems (saturated and un-
saturated up to a size of 10), pairwise atom combina-
tions, sequences, and substructures (Hutter, 2011).

b. 2D description of molecular constitution. 2D
descriptors can be computed solely from the constitution
or topology of a molecule, whereas 3D descriptors are
obtained from the 3D structure of the molecule (Ekins
et al., 2007). Many 2D molecular descriptors are based
on molecular topology derived from graph-theoretical
methods. Topological indices treat all atoms in a mole-
cule as vertices and index-specific information for all
pairs of vertices. A simple topological index, for ex-
ample, will contain only constitutional information such
as which atoms are directly bound to each other. This is
known as an adjacency matrix and an entry of 1 for
vertices vi and vj if their corresponding atoms are
bonded, and an entry of 0 for vi and vi indicates that the
corresponding atoms are not directly bonded (Trinajsti�c,
1992). For an adjacency matrix, the sum of all entries is
equal to twice the total number of bonds in the molecule.

Complex topological indices are created by performing
specific operations to an adjacency matrix that allow for
the encoding of more complex constitutional information.
These indices are based on local graph invariants that
can represent atoms independent of their initial vertex
numbering (Devillers and Balaban, 1999). For example,
topological indices may contain entries for the number of
bonds linking the vertices. Information gathered from
such an index can include the number of bonds linking
all pairs of atoms and the number of distinct ways a path
can be superimposed on the molecular graph. A topo-
logical index that includes information such as heter-
oatoms and multiple bonds through the weighting of
vertices and edges was introduced by Bertz (1983).
Randic and Basak (2001) introduced an augmented
adjacency matrix by replacing the zero diagonal entries
(where vi = vj) with empirically obtained atomic
properties. This adjacency matrix includes atom type
information as well as connectivity (Randic and Basak,
2001). Topological indices that describe the molecular
charge distribution as evaluated by charge transfers
between pairs of atoms and global charge transfers have
also been developed (Galvez et al., 1994, 1995). Addi-
tionally, topological indices known as geometrical indices
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have been derived to describe molecular shape. For
example, the shape index E measures how elongated is
the molecular graph (Galvez et al., 1995, 1998).
Statistical methods such as linear discriminant analysis
are often applied to topological indices and biologic pro-
perties to create predictive descriptors relating indices to
molecular activity (Galvez et al., 1994, 1995).
Topological autocorrelation (2D autocorrelation) is

designed to represent the structural information of
a molecular diagram as a fixed-length vector that can be
applied to molecules of any shape or size. It encodes the
constitutional information as well as atom property
distribution by analyzing the distances between all
pairs of atoms. Topological autocorrelations are inde-
pendent of conformational flexibility because all dis-
tances are measured as the shortest path of bonds
between the two atoms. The autocorrelation vector is
created by summing all products for atom pairs within
increasing distance intervals in terms of number of
bonds. In other words, it creates a frequency plot for
a specific range of atom pair distances. By including
atom property coefficients for all atom pairs, autocorre-
lations are capable of plotting the arrangement of
specific atom properties. For example, information such
as the frequency at which two negatively charged atoms
are three bonds apart versus four bonds apart is stored
in an autocorrelation plot that has been weighted by
partial atomic charge (Moreau and Broto, 1980).
c. 3D Description of molecular configuration and

conformation. The physicochemical meaning of topo-
logical indices and autocorrelations is unclear and
incapable of representing some qualities that are in-
herently three-dimensional (stereochemistry). 3D molec-
ular descriptors were developed to address some of these
issues (Kubinyi., 1998).
The 3D autocorrelation is similar to the 2D autocor-

relation but measures distances between atoms as
Euclidian distances between their 3D coordinates in
space. This allows a continuous measure of distances
and encodes the spatial distribution of physicochemical
properties. Instead of summing all pairs within discrete
shortest path differences, the pairs are summed into
interval steps (Broto et al., 1984).
Radial distribution functions (RDFs) is another very

popular 3D descriptor. It maps the probability distri-
bution to find an atom in a spherical volume of radius
r. In its simplest form, the RDF maps the interatomic
distances within the entire molecule. Often it is com-
bined with characteristic atom properties to fit the re-
quirements of the information to be represented
(Hemmer et al., 1999). RDFs not only provide informa-
tion regarding interatomic distances between atoms and
properties, they reflect other information such as bond
distances, ring types, and planar versus nonplanar
molecules. These functions allow estimation of molecular
flexibility through the use of a “fuzziness” coefficient that

extends the width of all peaks to allow for small changes
in interatomic distances.

GRIND (Grid-Independent Descriptor) is another
3D descriptor that does not require prior alignment
(Pastor et al., 2000). This set of descriptors was designed
to retain characteristics that could be directly traced to
the molecules themselves, rather than producing purely
mathematical descriptors that are not obviously related
to the molecular structures they describe. GRIND is
comprised of three steps. The first step is to calculate
a molecular-interaction field (MIF). The MIF is calcu-
lated using probes with different chemical properties to
scan the molecule and identify regions showing favor-
able interaction energy (Goodford, 1985).

The initial MIFs generated may contain up to
100,000 nodes. Therefore, the second step of GRIND
reduces this set of nodes to focused regions of greatest
favorable interaction energies. Initial implementation
of GRIND used a Fedorov-like optimization algorithm
(Fedorov, 1972) to reduce the number of nodes to
several hundred by considering both the intensity of a
field and the mutual node-node distances between the
selected nodes. In the second iteration of GRIND
(GRIND-2), this method was replaced with a new
algorithm called AMANDA (Duran et al., 2008).
Although the original GRIND requires users to define
the number of nodes to extract per molecule, AMANDA
allows GRIND-2 to automatically adjust the number of
nodes per compound. After a prefiltering step in which
all nodes failing an energy cutoff are removed, every
atom in the molecule is assigned a set of nodes and the
number of nodes to extract per atom is calculated
using a weighting factor and function that automatically
assigns more nodes to larger regions. The node selection
uses a recursive technique that is designed to initially
assign selection weight to energy values. As the
iterations continue through lower energy nodes, how-
ever, the internode distances become more important
than the individual energy score of each node.

The final step of GRIND-2 (and GRIND) encodes this
set of nodes into descriptors using auto- and cross-
correlation methods. Pairs of interaction energies are
multiplied and only the greatest product is retained for
each internode distance. This is called maximum auto-
and cross-correlation and allows for GRIND-2 (and
GRIND) to contain information that directly correlates
with the initial molecular structure.

GRIND-PP (Duran et al., 2009) improves GRIND-2 by
removing much of the inherent repetition in the cal-
culated descriptors. Structural features are repeated
across many GRIND-2 variables and this can artificially
assign importance to some structural features while
reducing computational efficiency (Pastor, 2006). Prin-
ciple properties replace the original variables in GRIND
and are calculated using principle component analysis.
These variables are linear combinations of the original
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variables selected to explain as much of the variance in
the original set of variables as possible.
Comparative field molecular analysis (CoMFA)

(Cramer et al., 1988) is a 3D-QSAR technique that
aligns molecules and extracts aligned features that can
be related to biologic activity. This method focuses on
the alignment of molecular interaction fields rather
than the features of each individual atom. CoMFA was
established over 20 years ago as a standard technique
for constructing 3D models in the absence of direct
structural data of the target. In this method, molecules
are aligned based on their 3D structures on a grid and
the values of steric (Van der Waals interactions) and
electrostatic potential energies (Coulombic interactions)
are calculated at each grid point. Comparative molec-
ular similarity indices (CoMSIA) is an important
extension to CoMFA. In CoMSIA, the molecular field
includes hydrophobic and hydrogen-bonding terms in
addition to the steric and Coulombic contributions.
Similarity indices are calculated instead of interaction
energies by comparing each ligand with a common
probe and Gaussian-type functions are used to avoid
extreme values (Klebe et al., 1994). One important
limitation to these methods, however, is that their
applicability is limited to static structures of similar
scaffolds while neglecting the dynamical nature of the
ligands (Acharya et al., 2011).

B. Molecular Fingerprint and Similarity Searches

Molecular fingerprint-based techniques attempt to
represent molecules in such a way as to allow rapid
structural comparison in an effort to identify structur-
ally similar molecules or to cluster collections based on
structural similarity. These methods are less hypoth-
esis driven and less computationally expensive than
pharmacophore mapping or QSAR models (see sections
III.C and III.E). They rely entirely on chemical structure
and omit compound known biologic activity, making the
approach more qualitative in nature than other LB-
CADD approaches (Auer and Bajorath, 2008). Addition-
ally, fingerprint-based methods consider all parts of the
molecule equally and avoid focusing only on parts of
a molecule that are thought to be most important for
activity. This is less error prone to overfitting and
requires smaller datasets to begin with. However, model
performance suffers from the influence of unnecessary
features and the often narrow chemical space evaluated
(Auer and Bajorath, 2008). Despite this drawback, 2D
fingerprints continue to be the representation of choice
for similarity-based virtual screening (Willett, 2006). Not
only are these methods the computationally least ex-
pensive way to compare molecular structures (Hutter,
2011), but their effectiveness has been demonstrated in
many comparative studies (Willett, 2006).
1. Similarity Searches in LB-CADD. Fingerprint

methods may be used to search data bases for compounds
similar in structure to a lead query, providing an

extended collection of compounds that can be tested
for improved activity over the lead. In many sit-
uations, 2D similarity searches of data bases are
performed using chemotype information from first
generation hits, leading to modifications that can be
evaluated computationally or ordered for in vitro
testing (Talele et al., 2010). Bologa et al. (2006) used
2D fingerprint and 3D shape-similarity searches to
identify novel agonists of the estradiol receptor family
receptor GPR30. Estrogen is an important hormone
responsible for many aspects of development of physi-
ology of tissues (Hall et al., 2001; Osborne and Schiff,
2005). The GPCR GPR30 has recently been shown to
bind estrogen with high affinity and its specific role in
estrogen-regulated signaling is being studied (Revankar
et al., 2005). This group used virtual screening to
identify compounds selective for GPR30 that could be
used to study this target. 10,000 molecules provided by
Chemical Diversity Laboratories were enriched with
GPCR binding ligands and screened for fingerprint-
based similarity to the reference molecule 17b-estradiol.
Fingerprints used were Daylight and MDL and simi-
larities were scored using Tanimoto and Tversky
scores. The top 100 ranked hits were selected for
biologic testing and a first-in-class selective agonist
with a Ki of 11 nM for GPR30 was discovered (Bologa
et al., 2006).

Stumpfe et al. (2010) used SecinH3 and analogs as
reference compounds for a combined fingerprint and
fingerprint-based support vector machine modeling
screen aimed at inhibitors targeting the multifunc-
tional cytohesins. Cytohesins are small guanine nucle-
otide exchange factors that stimulate Ras-like GTPases,
which control various regulatory networks implicated in
a variety of diseases (Klarlund et al., 1997; Ogasawara
et al., 2000; Fuss et al., 2006). For example, cytohesin-1
has been shown to be involved in MAPK signaling in
tumor cell proliferation and T-helper cell activation
(Kliche et al., 2001; Perez et al., 2003), and cytohesin-3
was identified as an essential component of the pho-
sphatidylinositol 3-kinase-based insulin signaling in
liver cells (Fuss et al., 2006; Hafner et al., 2006). The
group screened approximately 2.6 million compounds in
the ZINC data base (Irwin and Shoichet, 2005), and the
top 145 candidates were selected for biologic testing. Of
those tested, 40 compounds showed measurable activ-
ity, and 26 were more potent than SecinH3 (Stumpfe
et al., 2010).

Ijjaali et al. (2007) created 2D pharmacophoric fin-
gerprints using a query dataset of 19 published T-type
calcium channel blockers. T-type calcium channels
underlie the generation of rhythmical firing patters
in the central nervous system and have been impli-
cated in the pathologies of epilepsy and neuropathic
pain (Huguenard and Prince, 1992; Perez-Reyes, 2003;
Bourinet and Zamponi, 2005). Specifically, T-type
calcium channel 3.2 has been identified as a promising
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target for novel analgesic drugs for pathologic pain
syndromes (Bourinet and Zamponi, 2005). A data base
of two million compounds was collected from various
commercial catalogs and filtered for drug-like quali-
ties, uniqueness, and standardization. The group used
ChemAxon’s PF and CGC GpiDAPH3 fingerprints and
tested a subset of 38 unique hits biologically. Sixteen
hits showed more than 50% blockade of CaV3.2-
mediated T-type current. These compounds proved to
be an interesting collection of T-type calcium channel
blockers. Some showed reversible inhibition, whereas
others resulted in irreversible inhibition, and one of
the compounds caused alterations in depolarization/
repolarization kinetics (Ijjaali et al., 2007).
In addition to the enrichment of lead compound

population, fingerprints are also used to increase
molecular diversity of test compounds. Fingerprints
can be used to cluster large libraries of hits to allow the
sampling of a wide range of compounds without the
need to sample the entire library. In this case, fin-
gerprints are being used to optimize the sampling of
diversity space. The Jarvis-Patrick method that calcu-
lates a list of nearest neighbors for each molecule has
been shown to perform well for chemical clustering.
Two structures cluster together if they are in each
other’s list of nearest neighbors, and they have at least
K of their J nearest neighbors in common. The MDL
keys also provide a way to eliminate compounds that
are least likely to satisfy the drug-likeness criterion
(McGregor and Pallai, 1997).
2. Polypharmacology: Similarity Networks and Off-

Target Predictions. Recently, chemical similarity
measures such as Tanimoto coefficients are being used
to generate networks capable of clustering drugs that
bind to multiple targets in an effort to predict novel off-
target effects. Keiser et al. (2009) used a similarity
ensemble approach (SEA) (Keiser et al., 2007) to
compare drug targets based on the similarity of their
ligands. SEA predicts whether a ligand and target
will interact using a statistical model to control for
chemical similarity due to chance. Sets of ligands that
interact with each target are compared by calculating
Tanimoto coefficients based on standard 2D Daylight
fingerprints (Daylight Chemical Information Systems,
2013) for each pair of molecules between two sets.
Raw similarity scores between all pairs of ligand sets
are calculated as the sum of all Tanimoto coefficients
between the sets greater than 0.57. Because the
probability of achieving Tanimoto coefficients greater
than 0.57 increases with set size, this is normalized by
expected similarity due entirely to chance. This model
for random chemical similarity is achieved by ran-
domly generating 300,000 pairs of molecule sets
spanning logarithmic size intervals from 10 to 1000
molecules. Expectation scores are calculated based on
raw scores and the probability of achieving the raw
score by random chance and used to sequentially link

ligand sets into a clustered map. Keiser et al. (2007,
2009) collected over 900,000 drug-target comparisons
from 65,241 ligands and 246 targets in the MDL Drug
Data Report data base (Schuffenhauer et al., 2002) to
generate a target similarity network. Another drug
data base, WOMBAT (Olah et al., 2005), included
interactions not listed in the MDDR data base, and
the authors tested the predictability of their networks
by searching their networks for interactions found in
WOMBAT but not MDDR. They found that 19% of the
off-target effects listed in WOMBAT but not in MDDR
were captured in their network. In addition to those
found in MDDR and WOMBAT, 257 additional drug-
target predictions were captured in their network,
184 of which had not been documented. The authors
tested 30 of these undocumented predictions using
radioligand competition assays and verified 23 inter-
actions with binding constants less than 15 mM. Some
of these interactions may help to explain well-known
side effects. For example, the authors discovered an
interaction between b-adrenergic receptors and selec-
tive serotonin reuptake inhibitors Prozac (fluoxetine)
and Paxil (paroxetine). This may explain the selective
serotonin reuptake inhibitors discontinuation syn-
drome seen with these drugs that are analogous to
discontinuation syndrome seen with b-blockers.

Lounkine et al. (2012) used the SEA approach
combined with adverse drug reaction (ADR) information
to generate a drug-target-ADR network. This network
was then used to predict off-target interactions that may
explain specific ADRs. The authors experimentally
tested 694 predictions and verified that 151 interactions
showed IC50 values less than 30 mM. The clinical
relevance of these off-target interactions was explored
through the enrichment of target-ADR pairs within their
network. For example, abdominal pain has been reported
for 45 drugs that interact with COX-1, and based on their
network, the ADR-target pair abdominal pain-COX-1
was enriched (represented in a greater degree within the
network than average) 2.3-fold, reflecting a predicted
correlation between abdominal pain and COX-1 interac-
tion. Another target-ADR correlation is predicted for
sedation and H1 interaction with an enrichment of 4.9.

3. Fingerprint Extensions. Current research focuses
improving fingerprint-based LB-CADD methods. As
mentioned, one drawback is that all features of a query
molecule are equally important for ranking candidate
molecules, regardless of any effect of these features on
the biologic activity at a target. Hessler et al. (2005)
proposed a method that combines the advantages of
similarity and pharmacophore searching on the basis
of 2D structural representations only. In their pro-
posed method, a set of query molecules is converted
into a topological model (MTree) based on chemically
reasonable matching of corresponding functional
groups. This creates a topological map of the most
similar fragments from a set of structurally diverse but
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active molecules, and conserved features are charac-
terized by high similarity scores of the corresponding
nodes in the MTree model (Hessler et al., 2005).
Because of the low dependence on chemical substruc-
tures, they argue that the MTree model is especially
useful for identification of alternative novel molecular
scaffolds or chemotypes. Methods for forming multiple
feature tree models and multiple feature tree scoring
schemes are also presented.

C. Quantitative Structure-Activity
Relationship Models

Quantitative structure-activity relationship (QSAR)
models describe the mathematical relation between
structural attributes and target response of a set of
chemicals (Zhang, 2011). Classic QSAR is known as the
Hansch-Fujita approach and involves the correlation of
various electronic, hydrophobic, and steric features with
biologic activity. In the 1960s, Hansch (1964) and others
began to establish QSAR models using various molec-
ular descriptors to physical, chemical, and biologic
properties focused on providing computational esti-
mates for the bioactivity of molecules. In 1964, Free
and Wilson (1964) developed a mathematical model
relating the presence of various chemical substituents
to biologic activity (each type of chemical group
was assigned an activity contribution), and the two
methods were later combined to create the Hansch/
Free-Wilson method (Free and Wilson, 1964; Tmej
et al., 1998).
The general workflow of a QSAR-based drug discov-

ery project is to first collect a group of active and
inactive ligands and then create a set of mathematical
descriptors that describe the physicochemical and
structural properties of those compounds. A model is
then generated to identify the relationship between
those descriptors and their experimental activity, max-
imizing the predictive power. Finally, the model is
applied to predict activity for a library of test compounds
that were encoded with the same descriptors. Success
of QSAR, therefore, depends not only on the quality of
the initial set of active/inactive compounds but also on
the choice of descriptors and the ability to generate the
appropriate mathematical relationship. One of the most
important considerations regarding this method is the
fact that all models generated will be dependent on the
sampling space of the initial set of compounds with
known activity, the chemical diversity. In other
words, divergent scaffolds or functional groups not
represented within this “training” set of compounds
will not be represented in the final model, and any
potential hits within the library to be screened that
contain these groups will likely be missed. Therefore,
it is advantageous to cover a wide chemical space
within the training set. For a comprehensive guide on
performing a QSAR-based virtual screen, please see
the review by Zhang (2011).

1. Multidimensional QSAR: 4D and 5D Descriptors.
Multidimensional QSAR (mQSAR) seeks to quantify
all energy contributions of ligand binding including
removal of solvent molecules, loss of conformational
entropy, and binding pocket adaptation.

4D-QSAR is an extension of 3D-QSAR that treats each
molecule as an ensemble of different conformations, ori-
entations, tautomers, stereoisomers, and protonation
states. The fourth dimension in 4D-QSAR refers to the
ensemble sampling of spatial features of each molecule.
A receptor-independent (RI) 4D-QSAR method was
proposed by Hopfinger et al. (1997). This method begins
by placing all molecules into a grid and assigning in-
teraction pharmacophore elements to each atom in the
molecule (polar, nonpolar, hydrogen bond donor, etc.).
Molecular dynamic simulations are used to generate
a Boltzmann weighted conformational ensemble of each
molecule within the grid. Trial alignments are performed
within the grid across the different molecules, and
descriptors are defined based on occupancy frequencies
within each of these alignments. These descriptors are
called grid cell occupancy descriptors. A conformational
ensemble of each compound is used to generate the
grid cell occupancy descriptors rather than a single
conformation.

5D-QSAR has been developed to account for local
changes in the binding site that contribute to an
induced fit model of ligand binding. In a method de-
veloped by Vedani and Dobler (2002), induced fit is
simulated by mapping a “mean envelope” for all ligands
in a training set on to an “inner envelope” for each
individual molecule. Their method involves several
protocols for evaluating induced-fit models including a
linear scale based on the adaptation of topology, ada-
ptations based on property fields, energy minimization,
and lipophilicity potential. By using this information, the
energetic cost for adaptation of the ligand to the binding
site geometry is calculated.

2. Receptor-Dependent 3D/4D-QSAR. Although
QSAR methods are especially useful when structural
information regarding target binding site is not available,
QSARmethods that specifically include such information
have been developed. One method, known as free energy
force field 3D-QSAR trains a ligand-receptor force field
QSAR model that describes all thermodynamic contribu-
tions for binding (Pan et al., 2003). A 4D-QSAR version of
free energy force-field has also been developed to apply
this method to the RI-4D-QSARmethods described above
(Pan et al., 2003). Structurally, the analysis is focused
solely on the site of interaction between the ligand and
target, and all atoms of interest are assigned partial
charges. Molecular dynamic simulations are applied to
these structures to generate a conformational ensemble
following energy minimization. This approach avoids
any alignment issues present in the RI-4D-QSAR
method, because the binding site constrains the three-
dimensional orientations of the ligands. The conformation
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ensembles of receptor-ligand complexes generated are
placed in a similar grid-cell lattice as used in RI-4D-
QSAR, and occupancy profiles are calculated to generate
receptor-dependent 4D-QSAR models. When tested
alongside RI-4D-QSAR against a set of glucose analog
inhibitors of glycogen phosphorylase, predictability of
receptor-dependent 4D-QSAR models outperformed
those of RI-4D-QSAR (Pan et al., 2003).
3. Linear Regression and Related Methods.

Linear models used include multivariable linear re-
gression analysis (MLR), principal component analysis
(PCA), or partial least square analysis (PLS) (Acharya
et al., 2011). MLR computes biologic activity as
a weighted sum of descriptors or features. The method
requires typically 4 or 5 data points for every de-
scriptor used. PCA increases the efficiency of MLR by
extracting information from multiple variables into
a smaller number of uncorrelated variables. Analysis of
results is, however, not always straightforward (Wold
et al., 1987; Kubinyi, 1997). It can be applied with
smaller sets of compounds than MLR. PLS combines
MLR and PCA and extracts the dependent variable
(biologic activity) into new components to optimize
correlations (Zheng and Tropsha, 2000). PCA or PLS
are commonly used for developing models for the mo-
lecular interaction field algorithm CoMFA and CoM-
SIA (Acharya et al., 2011). Advantage of these models
is that they can be trained rapidly using the tools of
linear algebra. The major drawback is that chemical
structure often relates with biologic activity in a non-
linear fashion.
4. Nonlinear Models Using Machine Learning

Algorithms. Artificial neural networks (ANNs) are
one of the most popular nonlinear regression models
applied to QSAR-based drug discovery (Livingstone,
2008). These models belong to the class of self-
organizing algorithms in which the neural network
learns the relationship between descriptors and bi-
ologic activity through iterative prediction and im-
provement cycles (Acharya et al., 2011). A major
drawback of neural networks is the fact that they are
sensitive to overtraining, resulting in excellent per-
formance within the training set but reduced ability
to assess novel compounds. Therefore, care is taken to
always measure ANN performance on “independent”
datasets not used for model generation.
SVM is a kernel-based supervised learning method

that was introduced by Vapnik and Lerner (Vapnik and
Lerner, 1963; Boser et al., 1992). It is based on statistical
learning theory and the Vapnik-Chervonenkis dimension
(Blumer et al., 1989; Vapnik, 1999) and seeks to divide
sets of patterns (molecules described with descriptors)
based on their classification (biologic function). Once this
separation is performed on a training dataset, novel
patterns can be classified based on which side of the
boundary they fall. The simplest form of separation can
be imagined as a straight line down the center of a graph

with the two classes clustered in opposite corners of the
graph. Because there are many different lines that can
be defined to separate these classes, SVM is described as
a maximal margin classifier as it seeks to define the
hyperplane with the widest margin between these two
classes. The patterns (compounds) that line the closest
border of each class define the two hyperplanes se-
parated by that margin. These patterns (molecules) are
known as support vectors and represent the maximal
margin solution and are used to predict classes for novel
unclassified patterns. All patterns that lie further from
these boundaries are not support vectors and have no
influence on the classification of novel patterns. Hyper-
planes defined by the lowest number of support vectors
are preferred. The solution is a parallel decision
boundary that lies equidistant from the two hyperplanes
defined by their respective support vectors (Ivanciuc,
2007; Boyle, 2011; Liang, 2011).

Ideally, the margin between hyperplanes contains no
patterns (molecules). However, to account for noise
within datasets and other issues that prevent a linear
solution from being reached, a soft-margin classifier is
used that allows for misclassification of some data and
the existence of patterns within the margin between hy-
perplanes. In this approach, a penalization constant can
be adjusted, with higher values stressing classification
accuracy and lower values providing more flexibility.

SVM was initially designed for datasets that could be
separated linearly. However, especially in CADD
application, this is not always possible. Therefore,
SVM incorporated a high-dimensional space in which
linear classification was once again possible. This
involves the preprocessing of input data using feature
functions where the input variables are mapped into a
Hilbert space of finite or infinite dimension (Ivanciuc,
2007). Although it cannot be predicted which feature
functions will allow for linear classification because
the input vector is mapped into higher space, this
becomes more possible. This strategy, however, must
be offset by the fact that higher dimensional space
creates more computational burden and contributes to
overfitting (Cristianini and Shawe-Taylor, 2000).

SVM utilizes kernel functions to ease the computa-
tional demand imposed by the existence of higher
dimensional data. These special nonlinear functions
combine the feature functions in a way that avoids
explicit transformation and preprocessing using feature
functions (Ivanciuc, 2007). In other words, the higher
dimensional space that allows for linear separation does
not need to be dealt with directly.

A kernel is essentially a function in which the
solution for two inputs is equal to the dot product of
their mapping from input space to Hilbert space. Based
on this fact, any novel kernels a researcher seeks to
develop must be a dot product in a mapped feature
space. This can be tested mathematically applying
Mercer’s condition (Cristianini and Shawe-Taylor,
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2000). The definition of new kernels, however, is not
usually necessary because multiple useful kernels have
already been well established for different problem
types. Which kernel is necessary for any given problem
cannot be predicted but is generally best selected a priori
by researching which kernels have been successfully
used in similar applications. It is not recommended to
select the best kernel based on performance with the
dataset being researched, because this can often lead to
overfitting and poor generalizability. Some of the most
commonly used kernels include the linear (dot) kernel,
used mainly as a test of nonlinearity and reference for
classification improvement after the application of non-
linear kernels; the polynomial kernel, which can be ad-
justed based on its degree to allow for larger feature
space; radial basis function kernel; analysis of variance
kernel; Fourier series kernel; spline kernel; additive
kernel; and tensor product kernel. Addition, multiplica-
tion, and composition of these kernels all result in valid
kernels (Ivanciuc, 2007). When implementing a novel
kernel function, however, the researcher must ensure
that it is the dot product in a feature space for some
mapping. This condition can be tested by applying
Mercer’s condition (Cristianini and Shawe-Taylor,
2000). It should be considered, however, that overfitting
can be induced with more complex kernel functions.
Several methods of SVM optimization have been

considered. SVM parameter optimization is accom-
plished by solving the quadratic programming problem
with a termination condition called the Klarush-Kuhn-
Tucker condition that defines when parameters are at
their minima. This can be computationally demanding
and difficult to implement. Therefore, decompositional
methods have been used to discard all zero parameters
(Vapnik, 2006). The sequential minimization optimi-
zation algorithm is a commonly used alternative
introduced by Platt (1999). This method breaks the
overall quadratic programming problem into subpro-
blems and solves the smallest possible optimization
problem at every stop involving only two parameters.
One problem with the sequential minimization opti-
mization, however, is that it can result in selection of
support vectors that include more than those necessary
for the optimal model. Researchers have found that
identical solutions can be achieved even after several of
these support vectors have been removed (Zhan and
Shen, 2005). Because the time needed to predict a
pattern classification with an SVM model is dependent
on the number of support vectors, it is beneficial to
eliminate unnecessary or redundant support vectors.
Zhan and Shen (2005) describe a four-step method for
removing unnecessary support vectors. Once the SVM
has completed training, the support vectors that
contribute to the most curvature along the hypersur-
face are removed. The SVM model is then retrained
and the hypersurface is further approximated with
a subset of support vectors.

Decision tree learning is a supervised learning
algorithm that works by iteratively grouping the
training dataset into small and more specific groups.
The resulting classification resembles a tree in which
each feature is broken into different values and each of
these values is subsequently divided based on values of
a different feature. The order in which features are
divided is usually based on an information gain
(difference between information before and after the
branching) parameter with the highest valued features
appearing first (Mitchell, 1997; Han and Kamber,
2006). Various methods are used to sort the features,
with the overall goal of the smallest possible decision
tree providing the best performance. C4.5 is a widely
used decision tree algorithm that calculates informa-
tion gain based on information entropy (Quinlan, 1993;
Fukunishi, 2009). The information entropy of a given
classification that can divide the dataset into two
classes is calculated based on the number of com-
pounds in either class. The information entropy of the
system when dividing the dataset into two subsets
using a specific feature is calculated based on the
number of compounds from each class in either of the
feature subsets. Finally, the information gain for that
specific feature is calculated as the difference between
the information entropy of the classification and the
information entropy of the system.

Once the decision tree has been optimized for the
training set, new compounds can be classified by
applying their descriptors to the decision tree and
activities can be predicted based on which subset they
fall into and the activities of the training compounds
that are contained in that subset.

5. Quantitative Structure-Activity Relationship Ap-
plication in Ligand-Based Computer-Aided Drug
Design. QSAR has been used to screen for novel
therapeutics in the same way both pharmacophore
models and fingerprint similarity methods have been
applied to virtual libraries. Casañola-Martin et al. (2007)
used Dragon (Talete S.R.L., Italy) software to define
descriptors for tyrosinase inhibitors. Tyrosinase is a
copper-containing enzyme that catalyzes two reactions in
the melanin biosynthesis pathway (Sanchezferrer et al.,
1995; Briganti et al., 2003). Altered melanin synthesis is
found in multiple disease states including hyperpigmen-
tation, melisma, and age spots. Additionally, this protein
has been implicated in dopamine neurotoxicity in dis-
eases such as Parkinson’s disease (Xu et al., 1997).
Descriptors were generated using a highly variable
training set of 245 active tyrosinase inhibitors and 408
inactive molecules. These descriptors include constitu-
tional, topological, BCUT, Galvez, topological charge, 2D
autocorrelations, and empirical properties and descrip-
tors. Seven models were created using linear discrimi-
nant analysis. In vitro testing revealed their most potent
inhibitor with an IC50 of 1.72 mM. This presents a more
potent inhibition of tyrosinase than the current reference
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drug L-mimosine (IC50 = 3.68 mM) (Casañola-Martin
et al., 2007).
Mueller et al. (2012) used ANN QSAR models to

identify novel positive and negative allosteric modu-
lators of mGlu5. This receptor has been implicated in
neurologic disorders including anxiety, Parkinson’s
disease, and schizophrenia (Gasparini et al., 2008;
Conn et al., 2009). For the identification of positive
allosteric modulators, they first performed a traditional
high-throughput screen of approximately 144,000
compounds. This screen yielded a total of 1356 hits,
a hit rate of 0.94%. The dataset from this HTS was
then used to develop a QSAR model that could be
used in a virtual screen. To generate the QSAR
model, a set of 1252 different descriptors across 35 ca-
tegories was calculated using the ADRIANA (Molecular
Networks GmbH, Erlangen, Germany) software package.
The descriptors included scalar, 2D, and 3D descriptor
categories. The authors iteratively removed the least-
sensitive descriptors to create the optimal set. This final
set included 276 different descriptors, including scalar
descriptors such as molecular weight up to 3D descrip-
tors, including the radial distribution function weighted
by lone-pair electronegativity and p electronegativity. A
virtual screen was performed against approximately
450,000 commercially available compounds in the Chem-
Bridge data base. Eight hundred twenty-four compounds
were tested experimentally for the potentiation of mGlu5
signaling. Of these compounds, 232 were confirmed as
potentiators or partial agonists. This hit rate of 28.2%
was approximately 30 times greater than that of the
original HTS, and the virtual screen took approximately
1 hour to complete once the model had been optimized
(Fig. 16) (Mueller et al., 2012).
In a separate study, Mueller et al. (2010) used

a similar approach to identify negative allosteric
modulators for mGlu5. Rodriguez et al. (2010) pre-
viously performed a traditional HTS screen of 160,000
compounds for allosteric modulators of mGlu5 and
found 624 antagonists. The QSAR model was used to
virtually screen over 700,000 commercially available
compounds in the ChemDiv Discovery data base. Hits
were filtered for drug-like properties, and fingerprint
techniques were used to remove hits that were highly
similar to known actives to identify new chemotypes.
Seven hundred forty-nine compounds were tested in
vitro, and 27 compounds were found to modulate
mGlu5 signaling. This hit rate of 3.6% was a significant
increase over the 0.2% hit rate of the traditional HTS
screen. The most potent of the compounds showed in
vitro IC50 values of 75 and 124 nM, respectively, and
contained a previously unidentified scaffold. After
analog synthesis and stability optimization, the experi-
menters tested the effect of their best lead in vivo
against two behaviors known to involve mGlu5:
operant sensation seeking behavior (Olsen et al.,
2010) and the burying of foreign objects in deep

bedding (Deacon, 2006). Both behaviors were found to
be inhibited given intraperitoneal administration of
their lead analog.

In addition to predicting the behavior of novel
compounds within a virtual library, QSAR has been
used to improve compound libraries used in traditional
HTS. Although many chemical libraries are con-
structed in a combinatorial manner, it was reported
that the chemical space covered by combinatorially
synthesized libraries is different from the chemical space
of known drugs and natural products. Because of this,
along with the overall chemical space estimated to be
more than 1060, it is critical to design HTS compound
collections to cover the widest possible space of drug-like
chemicals (Bohacek et al., 1996). QSAR can be used to
direct combinatorial library synthesis for constructing
libraries that will later be screened against targets of
a particular class or classes. This allows the researcher to
cover a wide range of chemical space that has been
enriched with compounds more likely to be hits for their
target of interest. This strategy has been used to create
several libraries directed at particular target types. For
example, Erickson et al. (2010) generated seven libraries
meant to be screened for kinase inhibitors. The group
initially generated a fragment library from over 1400

Fig. 16. QSAR-based virtual screening of mGlu5 negative allosteric
modulators yields lead compounds that contain substructure combina-
tions taken across several known actives used for model generation.
Adapted from Mueller et al. (2012).
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known kinase inhibitors. Potential scaffold fragments
were identified using substructure and similarity search-
ing, and break points for fragment generation were
guided with structure-based pharmacophores. These
data were also used to train SVM-based QSAR models.
Compounds were generated from this fragment library,
and their activity was predicted using the QSAR model.
The final library included compounds predicted to have
some activity against kinase targets and showed good hit
rates against six different kinases. These compounds,
however, did not exhibit the desirable specificity, and the
authors suggested that more specific pharmacophores
may be necessary (Erickson et al., 2010). Rolland et al.
(2005) used a similar strategy to design a library that
could be screened with GPCR targets. They collected
binding profiles for 1939 compounds against 40 GPCR
targets and used this information to train a global QSAR
model. The model was used to screen for putative GPCR
active compounds within a library of 16,000 compounds.
Additionally, 50 focused libraries of 200 compounds each
were generated using medicinal-chemistry-based scaf-
folds guided by the QSAR model. The researchers found
significant hit rates within these libraries not only
among the original panel of GPCRs but against pre-
viously untested GPCR targets (Rolland et al., 2005).
QSAR has also been applied to de novo drug design

techniques when structural information regarding the
target is unknown. Descriptor and model generation is
performed and is used to score the de novo-generated
molecules in place of other structure-based scoring
techniques such as docking. Most commonly, com-
pound generation involves iterative algorithms in
which structures are repeatedly modified and their
biologic activities are estimated using QSAR models.
In the simplest case, modifications can be achieved by
randomly swapping parts of the structure such as
functional groups. Ligand-based de novo drug design,
however, is less practiced than structure-based de novo
design because of the inherent challenges of accurately
evaluating a new molecule in the absence of the
receptor structure. To address the challenge of scoring
the newly generated molecules, similarity based meth-
ods have been applied in addition to QSAR models
(Brown et al., 2004).
Feher et al. (2008) used five selective norepinephrine

reuptake inhibitors as a training set to generate 2200
molecules using a combination of structural similarity,
2D pharmacophore similarity, and properties to drive
the evolution. One of the top scoring compounds was
found to be highly active and has been selected as
a lead compound in a project at Neurocrine (Feher
et al., 2008).
Golla et al. (2012) applied QSAR-based methods to

the design of novel chemical penetration enhancers
(CPEs) to be used in transdermal drug delivery. This
group used a genetic algorithm to design novel CPEs. In
this paradigm, new molecules are generated based on

crossover and mutation operations randomly applied to
candidates. All generated molecules are scored based on
the QSAR model, and predicted property values and the
highest scoring molecules are retained for new rounds
of evolution. Two hundred seventy-two CPEs were used
to both generate the QSAR model and provide seed
molecules for the genetic algorithm. The QSAR model
was created using sequential regression analysis and
heuristic analysis using CODESSA and contained a final
set of 40 descriptors that optimally predicted properties,
including skin penetration coefficient, logP, melting
point, skin sensitization, and irritation. The top scoring
molecules were validated experimentally for permeation
and toxicity using Franz Cell with porcine skin and
HPLC analysis as well as toxicity effects on human
foreskin fibroblasts and porcine abdominal skin. The
study resulted in the identification of 18 novel CPEs,
four of which showed minimal or no toxic effects (Golla
et al., 2012).

Hoeglund et al. (2010) used QSAR modeling com-
bined with synthetic optimization in a follow up to
their most potent hit from a 2008 in silico screen for
inhibitors of autotaxin. Autotaxin is an autocrine
motility factor and has been linked to cancer pro-
gression, multiple sclerosis, obesity, diabetes, Alz-
heimer’s disease, and chronic pain through the
production of lysophosphatidic acid (LPA) (Kawagoe
et al., 1997; Euer et al., 2002; Baumforth et al., 2005;
Boucher et al., 2005; Umemura et al., 2006; Inoue
et al., 2008). Analogs of the lead compound were tested,
and 4 of the 30 exhibited IC50 less than or equal to the
lead. The most potent compound showed 3-fold higher
affinity for autotaxin than the lead, whereas another
compound showed twofold higher affinity (Hoeglund
et al., 2010).

CoMFA and CoMSIA 3D-QSAR methods have also
been used to predict novel therapeutic compounds for
a variety of disease targets. Ke et al. (2013) generated
CoMFA and CoMSIA models using 66 previously
discovered pyrazole- and furanopyrimidine-based au-
rora kinase inhibitors (Coumar et al., 2009, 2010a,b).
Aurora kinase A is a serine/threonine kinase involved in
mitosis (Li et al., 2010) that has been shown to be
involved in various different forms of cancer (Agnese
et al., 2007; Fu et al., 2007). By using the model that
showed the best predictive performance, the group
synthesized a novel compound (compound 67). This com-
pound was tested in vitro and displayed an IC50 of 25 nM
against aurora kinase A. Additionally, compound 67
displayed antiproliferative activity with an IC50 of 23 nM
against the HCT-116 colon cancer cell line.

Chai et al. (2011) used 26 previously identified anti-
hepatitis B (HBV) compounds (Chai et al., 2006; Zhao
et al., 2006a,b) to generate CoMFA models based on
steric and electrostatic fields and CoMSIA models
based on steric, electrostatic, hydrophobic, and H-bond
acceptor fields. Three compounds were designed using
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these models and subsequently tested against replica-
tion of HBV DNA in HBV-infected 2.2.15 cells. The
most potent compound displayed an IC50 of 3.1 mM,
whereas the other two showed IC50 values of 5.1 and
3.3 mM. These compounds were comparatively more
potent than the control lamivudine, which displays an
IC50 of 994 mM.
Jiao et al. (2010) generated CoMFA models using 38

styrylquinoline derivatives in an effort to understand
and design potential HIV integrase inhibitors. Their
model suggested that a bulky group near the carboxyl
group at C-7 in the quinolone ring may confer in-
creased inhibition. Additionally, the presence of an
H-bonding donor is favorable near the C-7 atom. On the
basis of these predictions, they designed several com-
pounds that were tested against purified HIV Integrase
to determine inhibitory activity on the strand transfer
reaction of integrase. Four of these compounds showed
higher inhibitory activity than their positive control
baicalein (Sigma-Aldrich, St. Louis, MO).
Over the past several decades, over 18,000 QSAR

models have been reported for a variety of targets with
a variety of descriptors. C-QSAR was used to generate
a comprehensive database of QSAR models (Kurup,
2003). This collection has provided not only access to
models for novel applications, but allows the analysis
of QSAR models to identify challenges for the field.
Kim (2007) examined the C-QSAR data base for outlier
patterns, i.e., compounds that showed poor prediction
when the average prediction for the model was good.
They found that of over 47 QSAR models examined, the
number of compounds scoring as outliers ranged from 3
to 36%. Twenty-six of the 47 datasets showed 20% or
more compound outliers (Kim, 2007). They presented
several theories as to why QSAR models are so
sensitive to the generation of outliers. One possibility
came from analysis of the RCSB protein databank
(RCSB 2013) where they discovered examples where
related analogs were shown to bind in very different
poses. Another explanation offered was protein flexibil-
ity, leading to multiple binding modes and or binding
sites on the same protein. These different binding
modes/sites may reflect different structure-activity
relationships for molecules within a given dataset. In
other words, analogous compounds that do not share
the same binding mode can present difficulties in the
classifications of ligands (Kim, 2007).

D. Selection of Optimal Descriptors/Features

Hristozov et al. (2007) analyzed the performance of
different descriptors across a range of benchmarking
datasets and found that the performance of a particular
descriptor was often dependent on the activity class. It
was found that topological autocorrelation usually
offers the best dimensionality/performance ratio. The
fusion of the ranked lists obtained with RDF codes and
2D descriptor improved results because RDF codes,

while giving similar results, covered different parts of
the activity spaces under investigation (Hristozov et al.,
2007). As a result, it is not possible to choose a small
optimal set of descriptors independent of the problem;
a custom-optimized descriptor set is needed for optimal
performance of LB-CADD.

Excessive numbers of descriptors or features can add
noise to a model, reducing its predictive power. Feature
selection techniques remove unnecessary features to
minimize the number of degrees of freedom of the
model. Thus, the ratio of data points versus degrees of
freedom increases, leading to models of increased
predictive power. Techniques that have proven suc-
cessful in QSAR modeling include selecting features by
measures such as information gain (Kent, 1983) and
F-score (Chen and Lin, 2006), sequential feature for-
ward selection or feature backward elimination (Mao,
2004), genetic algorithm (Davis, 1991; Goodarzi et al.,
2009), swarm optimization (Goodarzi et al., 2009), and
input sensitivity analysis (Mueller et al., 2010).

Information gain measures the change of informa-
tion entropy from the data distribution of two classes
(active and inactive compounds) of one feature com-
pared with the entropy of the feature overall. Thus,
discriminatory power of the individual feature in-
creases with information gain. An F-score is calculated
that considers the mean and standard deviation of
each feature across data classes. The higher the f-score
value, the greater discriminatory power of that feature.
Selecting features by individual benchmarks has the
disadvantage that correlation between features is
ignored. For example, let us assume a feature has
a high information gain. However, if a second feature
highly correlated is already part of the model, no im-
proved model will result from adding the feature.
More complex feature selection schemes address this
limitation:

Sequential feature forward selection is a determinis-
tic, greedy search algorithm. In each round, the best
feature set from the previous round N appends a single
feature from the pool of M remaining features and
trains the M models using the N + 1 features. The best
performing feature set from this round then advances
to the next round. This continues until all features are
used in a final feature set. The best performing model
over all iterations is then chosen as the best feature
set. This process is time consuming and not guaranteed
to yield the optimal feature set; the single best per-
forming feature will always be part of the model.
However, there is no guarantee that it is needed. Feature
backward elimination inverts the process starting from
a model trained from all features, eliminating one after
the other. Although the process is more robust in terms
of identifying the optimal model, it also requires sub-
stantial computer time. Therefore, alternative approaches
have been explored to optimize feature sets.
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Genetic algorithms mimic the process of evolution to
create an efficient search heuristic. This method uses
a population of individuals (distinct feature sets) to
encode candidate solutions. The initial individuals can
be generated randomly. In each iteration, or genera-
tion, the fitness of each individual is evaluated, i.e., the
predictive power of the derived LB-CADD model. This
fitness function is the performance metric of a model
trained using that individual as the feature set. Indi-
viduals are then selected based on the fitness and
undergo recombination and/or mutation to form the next
generation. The algorithm continues until a desired
fitness score is achieved or a set number of generations
has been completed.
Swarm optimization algorithms, such as ant colony

optimization (Zhou et al., 2012), particle swarm optimi-
zation, and artificial bee colony optimization (Lv et al.,
2012), are optimization techniques based on the orga-
nized behavior of social animals such as birds. The
algorithm iteratively searches for a best solution by
moving individuals around the search space guided by
both the local best solution as well as the best solutions
found so far in the entire population. The best overall
solution is constantly updated, letting the swarm
converge toward the optimal solutions.
Input sensitivity analysis seeks to combine speed of

individual benchmark values with accuracy of methods
that take correlation into account. First, a model is
constructed using all features. Next, the influence of
each feature on the model output is determined: Each
feature xi is perturbed, and the change in output y is
computed. This procedure numerically estimates the
partial derivative of the output with respect to each
input, a measure that is effective in selecting optimal
descriptor sets (Mueller et al., 2010).

E. Pharmacophore Mapping

In 1998, the International Union of Pure and
Applied Chemistry formally defined a pharmacophore
as “the ensemble of steric and electronic features that
is necessary to ensure the optimal supramolecular in-
teractions with a specific biological target structure
and to trigger (or to block) its biological response”
(Wermuth, 2006). In terms of drug activity, it is the
spatial arrangement of functional groups that a com-
pound or drug must contain to evoke a desired biologic
response. Therefore, an effective pharmacophore will
contain information about functional groups that in-
teract with the target, as well as information regarding
the type of noncovalent interactions and interatomic
distances between these functional groups/interactions.
This arrangement can be derived either in a structure-
based manner by mapping the sites of contact between
a ligand and binding site or in a ligand-based approach.
The former can be achieved by analyzing one or several
cocrystal structures with lead or drug compounds bound

and will not be discussed in more detail here. We focus
on the latter, more challenging problem.

To generate a ligand-based pharmacophore, multiple
active compounds are overlaid in such a way that
a maximum number of chemical features overlap
geometrically (Wolber et al., 2008). This can involve
rigid 2D or 3D structural representations or, in more
precise applications, incorporate molecular flexibility
to determine overlapping sites. This conformational
flexibility can be incorporated by precomputing the
conformational space of each ligand and creating a
general-purpose conformational model or conformations
can be explored by changing molecule coordinates as
needed by the alignment algorithm (Wolber et al., 2008).
For example, one popular pharmacophore-generating
software package, Catalyst (Accelrys, Inc., San Diego,
CA), uses the “polling” algorithm (Smellie et al., 1995) to
generate approximately 250 conformers that it uses in
its pharmacophore generation algorithm (Acharya et al.,
2011). In a study targeting HSP90a, Al-Sha’er and Taha
(2010) used 83 known reference molecules to generate
pharmacophore queries and identified 25 diverse inhib-
itors including three with IC50 values below 10 nM.

1. Superimposing Active Compounds to Create a
Pharmacophore. Molecules are commonly aligned
through either a point-based or property-based tech-
nique. The point-based technique involves superposing
pairs of points (atoms or chemical features) by mini-
mizing Euclidean distances. These alignment methods
typically use a root-mean-square distance to maximize
overlap (Poptodorov et al., 2006). Property-based align-
ment techniques, on the other hand, use molecular field
descriptors to generate alignments (Wolber et al., 2008).
These fields define 3D grids around compounds and
calculate the interaction energy for a specific probe at
each point. The distribution of interaction energies is
represented by Gaussian functions, and the degree of
overlap between Gaussian functions of two aligned com-
pounds is used as the objective scoring function to maxi-
mize alignment (Poptodorov et al., 2006). One popular
field generation method for property-based alignments is
GRID (Goodford, 1985).

Molecular flexibility is always an important consid-
eration when aligning compounds of interest, and
several approaches are used to most efficiently sample
conformational space. These approaches include rigid,
flexible, and semiflexible methods. Rigid methods re-
quire knowledge of the active conformation of known
ligands and align only the active conformations. This is
only applicable, however, when the active conformation
is known with confidence. Semiflexible methods begin
with pregenerated ensembles of static conformations to
overlay, and flexible methods, being the most computa-
tionally expensive, perform conformational search dur-
ing the alignment process, often usingmolecular dynamics
or randomly sampling of rotatable bonds. Because
the conformational space can increase substantially
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with an increase in the number of rotatable bonds,
strategies are often used to limit the exploration of
conformational space through the use of reference
geometry (often an active ligand with low flexibility).
This method is known as the active analog approach
(Marshall et al., 1979).
2. Pharmacophore Feature Extraction. A pharmaco-

phore feature map is carefully constructed so as to
balance generalizability with specificity. A general de-
finition might categorize all functional groups having
similar physiochemical properties (i.e., similar hydrogen-
bonding behavior, ionizability) into one group, whereas
specific feature definitions may include specific atom
types at specific locations. More general feature defini-
tions increase the population of compounds that match
the pharmacophore. They allow the identification of
novel scaffolds but also increase the ratio of false-
positives. The level of feature definition generalizability
is usually determined by the algorithm used to extract
feature maps and through user-specified parameters.
The most common features used to define pharmaco-
phore maps are hydrogen bond acceptors and donors,
acidic and basic groups, aliphatic hydrophobic moieties,
and aromatic hydrophobic moieties (Acharya et al.,
2011). Features are commonly implemented as spheres
with a certain tolerance radius for pharmacophore
matching (Wolber et al., 2008).
3. Pharmacophore Algorithms and Software Packages.

The most common software packages used for ligand-
based pharmacophore generation include Phase
(Dixon, Smondyrev et al., 2006), MOE (Chemical
Computing Group, Quebec, Canada), Catalyst (Kurogi
and Güner, 2001), LigandScout (Inte:Ligand, Vienna,
Austria), DISCO (Martin et al., 1993), and GASP
(Jones et al., 1995). These packages use different ap-
proaches to molecular alignment, flexibility, and feature
extraction. Catalyst approaches alignment and feature
extraction by identifying common chemical features
arranged in certain positions in three-dimensional
space. These chemical features focus on those expected
to be important for interaction between ligand and
protein and include hydrophobic regions, hydrogen-bond
donors, hydrogen-bond acceptors, positive ionizable, and
negative ionizable regions. Chemical groups that par-
ticipate in the same type of interaction are treated as
identical. Catalyst contains two algorithms that can be
used for pharmacophore construction. HipHop is the
simpler of the two algorithms and looks for common 3D
arrangements of features only for compounds with a
threshold activity against the target. It begins with best
alignment of only two features (scored by RMS devia-
tions) and continues expanding the model to include
more features until no further improvements are
possible. This method is only capable of producing a
qualitative distinction between active and inactive pre-
dictions. HypoGen, on the other hand, uses biologic
assay data such as IC50 values for active compounds as

well as a set of inactive compounds. Initial pharmaco-
phore construction in HypoGen is identical to HipHop
but includes additional algorithms that incorporate
inactive compounds and experimental values. These
algorithms compare the best pharmacophore from the
"HipHop" stage with the inactive compounds and features
common to the inactive set are removed. Finally,
HypoGen performs an optimization routine that attempts
to improve the predictive power of the pharmacophore by
making adjustments and scoring the accuracy in predict-
ing the specific experimental activities (Güner, 2000;
Kurogi and Guner, 2001). This results in models that
are capable of quantitative predictions that can predict
specific levels of activity. Ten different models are
created following a simulated annealing optimization
(Chang and Swaan, 2006). Both Catalyst methods
incorporate molecular flexibility by storing compounds
as multiple conformations per molecule. The Poling
algorithm published by Smellie et al. (1995) is used to
increase the conformational variation within the set of
conformations per molecule. This allows Catalyst to
cover the greatest extent of conformational space while
keeping the number of conformations at a minimum.

Phase approaches alignment and feature extraction
using a tree-based partitioning algorithm and an RMS
deviation-based scoring function that considers the
volume of heavy atom overlap. It incorporates molec-
ular flexibility through a preparation step where confor-
mational space is sampled using a Monte Carlo or
torsional search (Poptodorov et al., 2006).

DISCO regards compounds as sets of interpoint
distances between heavy atoms containing features of
interest. Alignments are based on the spatial orientation
of common point among all active compounds. DISCO
considers multiple conformations that have been pre-
specified by the user during the alignments and uses
a clique-detection algorithm for scoring alignments
(Güner, 2000).

GASP uses a genetic algorithm with iterative gen-
erations of the best models for pharmacophore con-
struction (Jones et al., 1995). Flexibility is handled
during the alignment process through random rotations
and translations. Conformations are optimized by
fitting them to similarity constraints and weighing the
conformations that fit these constraints more than
conformations that do not (Chang and Swaan, 2006).

Different software packages can produce different
results for the same datasets, and their strengths
and weaknesses should be considered prior to any
application. For example, Catalyst only permits a single
bonding feature per heavy atom, whereas LigandScout
allows a hydrogen-bond donor or acceptor to be
involved in more than one hydrogen-bonding interac-
tion (Wolber et al., 2008). MOE, on the other hand,
allows a more customizable approach to hydrogen-
bonding features. Lipophilic areas are generally repre-
sented as spheres located on hydrophobic atom chains,

376 Sliwoski et al.



branches, or groups in a similar manner across software
packages but with slight nuances. Although subtle,
these differences have important consequences on pre-
diction models. Additionally, software packages that do
not attach a hydrophobic feature to an aromatic ring are
unable to predict that an aromatic group may be
positioned in a lipophilic binding pocket (Wolber et al.,
2008). The level of customizability also differs across
pharmacophore software packages and can influence
predictions. Catalyst allows the specification of one or
more chemical groups that satisfy a particular feature,
whereas Phase allows not only matching chemical
groups but also a list of exclusions for a given feature.
MOE offers a level of customization that allows the user
to implement entirely novel pharmacophore schemes
as well as modification of existing schemes. However,
this requires additional levels of expertise to program
(Wolber et al., 2008). For a comprehensive analysis of
the differences between commercial pharmacophore
software packages, please see the 2008 review by
Wolber et al. (2008) and a 2002 comparison of Catalyst,
DISCO, and GASP by Patel et al. (2002).
Ligand-based pharmacophore methods have been

used for the discovery of novel compounds across
a variety of targets. New compounds can have activity
in the micromolar and nanomolar range and reflect
proof of concept with in vivo disease models. Al-Sha’er
and Taha (2010) used a diverse set of 83 known Hsp90-
a inhibitors and the HypoGen module of Catalyst to
generate a pharmacophore model. Hsp90-a is a molec-
ular chaperone that is involved in protein folding,
stability, and function (Prodromou and Pearl, 2003). By
interacting with many oncogenic proteins, it has been
shown to be a valid anticancer drug target (Chiosis
et al., 2006; Solit and Rosen, 2006). The pharmaco-
phore model was used to screen the NCI list of
compounds (238,000) using the “best flexible” search
option. The top 100 hits were evaluated in vitro, and
their most potent compound had an IC50 of 25 nM (Al-
Sha’er and Taha, 2010).
Schuster et al. (2011) used three steroidal inhibitors

and two nonsteroidal inhibitors of 17b-HSD3 and
Catalyst to create a pharmacophore model that was
used to screen for novel 17b-HSD3 inhibitors. Hydrox-
ysteroid dehydrogenases (HSD3) catalyze the oxidor-
eduction of alcohols or carbonyls and the final step in
male and female sex hormone biosynthesis. Therefore,
these enzymes are suggested therapeutic targets for
control of estrogen- and androgen-dependent diseases
such as breast and prostate cancer, acne, and hair loss
(Poirier, 2009). Eight commercial data bases were
screened, and the 15 top scoring hits were tested in
vitro at 2 mM; five were verified to be inhibitors of 17b-
HSD3. The most potent compound was able to inhibit
17b-HSD3 by 67.1% at 2 mM (Schuster et al., 2011).
Noha et al. (2011) developed 5-point pharmacophore

models using the HipHop algorithm of Catalyst based

on a training set of compounds with IC50 , 100 nM
against IKK-b as potential anti-inflammatory and
chemosensitizing agents. The authors used 128 active
and 44 inactive compounds to develop a pharmacophore
model (Noha et al., 2011). Their model was further
refined with exclusion volume spheres and shape
constraints to improve the scoring of compounds in their
virtual high-throughput screen against the National
Cancer Institute molecular data base. Ten compounds
were selected, and the most potent compound
(NSC719177, C26H31NO4) showed inhibitory activity
against IKK-b in a cell-free in vitro assay with IC50 of
6.95 mM. Additionally, this compound inhibited NF-kB
activation induced by tumor necrosis factor-a in HEK293
cells with an IC50 of 5.85 mM (Noha et al., 2011).

Chiang et al. (2009) used the HypoGen module of
Catalyst to generate four-feature pharmacophore mod-
els based on an indole series of 21 compounds that
showed antiproliferative activity through the inhibi-
tion of tubulin polymerization/microtubule depolymer-
ization. Disruption of microtubules during the mitotic
phase of the cell cycle can induce cell-cycle arrest and
apoptosis (Valiron et al., 2001). Therefore, inhibitors of
tubulin polymerization are useful cancer treatments.
One hundred thirty thousand compounds of the Chem-
Div data base and in-house compound collection were
screened, and the top 142 hits were tested in vitro. Four
novel compounds were discovered with antiproliferative
activity. The most potent compound displayed antipro-
liferative activity in human cancer KB cells with an IC50

of 187 nM. This compound also inhibited the pro-
liferation of other cancer cell types, including MCF-7,
NCI-H460, and SF-268, and demonstrated anticancer
effects in a histoculture system. In vitro assays revealed
that this compound inhibited tubulin polymerization
with an IC50 of 4.4 mM (Chiang et al., 2009).

Doddareddy et al. (2007) generated a pharmacophore
model containing three hydrophobic regions, one
positive ionizable center, and two hydrogen bond acceptor
groups for the identification of novel selective T-type
calcium channel blockers. The most potent hit showed an
IC50 of 100 nM (Annoura et al., 2002; Doddareddy et al.,
2007). T-type calcium channels are involved in rhythmical
firing patterns in the central nervous system and present
therapeutic targets for the treatment of epilepsy and
neuropathic pain (Ijjaali et al., 2007).

Lanier et al. (2007) generated pharmacophores con-
taining five feature points using Catalyst and Combi-
Code (Deltagen Research Laboratories, San Diego CA)
software and an exclusion sphere generated in MOE
based on a training set of 100 active and 1000 inactive
compounds. This model was used to guide and evaluate
variations of a core molecule, leading them to a gonad-
otropin releasing hormone GnRH receptor antagonist
with receptor affinity below 10 nM (Lanier et al., 2007).
GnRH is involved in the regulatory pathways of follicle
stimulating hormone and luteinizing hormone. It is
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a target for disease therapeutics, including endometri-
osis, uterine fibroids, and prostate cancer (Cheng and
Leung, 2000; Huirne and Lambalk, 2001).
Roche and Rodriguez Sarmiento (2007) used known

H3 antagonists to generate a pharmacophore model with
four features including a distal positive charge, an
electron-rich position, a central aromatic ring, and either
a second basic amine or another aromatic. Histamine is
a central modulator in the central and peripheral ner-
vous systems through four receptors (H1–H4) (Hough,
2001). H3 is a presynaptic autoreceptor that modulates
production and release of histamine and other neuro-
transmitters (Alguacil and Perez-Garcia, 2003). H3
antagonists have been studied in Alzheimer’s disease,
attention deficit disorder, and schizophrenia (Witkin and
Nelson, 2004). Additionally, it has been suggested to be
involved in appetite and obesity (Hancock and Brune,
2005). This model was used in a de novo approach with
the Skelgen software (Stahl et al., 2002) to generate
novel compounds from fragment libraries that match the
pharmacophoric restraints. They found a series of four
compounds with high potency and selectivity for H3.
Their most potent compound showed inverse agonist
activity with an EC50 of 200 pM in a guanosine 5[prime]-
O-(3-thio)triphosphate functional assay and a binding
affinity Ki toward H3 of 9.8 nM (Roche and Rodriguez
Sarmiento, 2007).
Chao et al. used (2007) pharmacophore-based design

to take advantage of the therapeutic benefits of indole-3-
carbinol (I3C) in the treatment of cancer. I3C is known
to suppress proliferation and induce apoptosis of various
cancer cells through the inhibition of Akt activation
(Howells et al., 2002; Li et al., 2005). I3C, however, has
a poor metabolic profile and low potency, likely due to
the fact that its therapeutic behavior comes from only
four of its metabolites. By overlaying these low-energy
conformers of these four metabolites, Chao et al. (2007)
was able to identify similar N-N9 distances and over-
lapping indole rings. This led them to design SR13650,
which showed an IC50 of 80 nM. Tumor xenograft
studies using MCF-7 cells revealed antitumor effects at
10 mg/kg for 30 days. Computational analysis was also
applied to increase the bioavailability, and three com-
pounds showed 45–60% tumor growth inhibition in vivo
compared with the 26% growth inhibition of SR13650.
SR13668 was the most potent compound and also dis-
played antitumor effects in other xenograft models. In
vitro, SR13668 was shown to inhibit Akt activation by
blocking growth-factor stimulated phosphorylation and
showed favorable toxicological profiles (Chao et al.,
2007). This drug is currently in phase 0 trials for the
treatment of cancer (Reid et al., 2011) (Fig. 17).
Dayam et al. (2008) used pharmacophore modeling

in an effort to identify novel HIV-1 integrase (IN)
inhibitors. IN is the third viral enzyme in HIV and
is responsible for integration of viral DNA into host
cell chromosomes through 39-processing and strand

transfer (Gordon et al., 2007; Palmisano, 2007). This
model was created with the HipHop algorithm within
Catalyst and was based on the quinolone 3-carboxylic
acid class of IN inhibitors that show IC50 values ranging
from 43.5 to 7.2 nM and EC50 against HIV-1 replication
of 805 to 0.9 nM (Sato et al., 2006). The final
pharmacophore hypothesis consisted of four features
including a negatively ionizable feature, hydrogen-bond
acceptor, and two hydrophobic aromatic features (Fig.
18). Three hundred sixty-two thousand two hundred
sixty commercially available compounds were screened
and 56 selected for in vitro evaluation. Eleven of those
tested inhibited the IN catalytic activity with an IC50

value , 100 mM. Five compounds had an IC50 less than
20 mM, and the most potent compound inhibited both
the 39-processing (IC50 14 mM) as well as strand transfer
activities (IC50 5 mM) of IN (Dayam et al., 2008).
Mugnaini et al. (2007) created a pharmacophore model
using 30 known inhibitors of the 39-processing step of
HIV-1 IN and screened the ASINEX gold data base of
over 200,000 compounds for inhibitors of IN. Twelve
hits were tested in vitro and one compound was dis-
covered with a novel scaffold and anti-integrase activity
with IC50 of 164 mM. Further improvement of this
compound yielded an analog with IC50 of 12 mM
(Mugnaini et al., 2007).

Noeske et al. (2007) used 2D-pharmacophore-based
virtual screening to identify novel mGlu1 antagonists.

Fig. 17. SR13668, an anticancer therapeutic was discovered using
ligand-based pharmacophore screening based on active components of
indole-3-carbinol. Adapted from Chao et al. (2007).
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Antagonism of this receptor has been studied in regards
to therapeutic potential in neurodegenerative diseases,
anxiety, pain, and schizophrenia (Bordi and Ugolini,
1999; Spooren et al., 2003). Six reference mGlu1 an-
tagonists were used to construct 2D-pharmacophores
with the CATS software package (Schneider et al., 1999).
This software assigns all atoms in a compound as either a
hydrogen-bond donor, hydrogen-bond acceptor, positively
charged, negatively charged, lipophilic, or noninterest
atom type. Then, all compounds of a library are com-
pared with the distances between these different atom
types in the reference molecule, and similarity scores are
calculated to rank molecules that most closely fit this 2D-
pharmacophore. Screening the Gold Collection of Asinex
Ltd. yielded six different hit lists (one for each reference
molecule). The top hits were collected from all lists as
well as hits that appeared in three or more different lists,
and 23 compounds were tested experimentally for mGlu1
antagonism. Their most potent compound yielded an

IC50 of 360 nM and was further optimized to a compound
with an IC50 of 123 nM.

IV. Prediction and Optimization of Drug
Metabolism and Pharmacokinetics Properties

Including Absorption, Distribution, Metabolism,
Excretion, and the Potential for

Toxicity Properties

In addition to high biologic activity and selectivity
for the target of interest, drug metabolism and
pharmacokinetics (DMPK) properties including absorp-
tion, distribution, metabolism, excretion, and the poten-
tial for toxicity (ADMET) in humans are critical to the
success of any candidate therapeutic. After lead discov-
ery or design, there is considerable attention given to
improving the compounds’ in vivo DMPK/ADMET
properties without losing its biologic activity. It is
common to apply some DMPK/ADMET-based restric-
tions early on in the discovery process to reduce the

Fig. 18. (I, A) Novel HIV-1 Integrase inhibitor using ligand-based virtual screening with a pharmacophore model of quinolone 3-carboxylic acid IN
inhibitors [from Dayam et al. (2008)]. (B) Pharmacophore query generated from the quinolone 3-carboxylic acid IN inhibitors accompanied with an
overlay onto a known HIV-1 integrase inhibitor. Features are color-coded, and their 3D arrangement/distances are shown in angstroms. Green sphere
represent H-bond acceptor regions, blue spheres represent negatively ionizable regions, and cyan spheres represent hydrophobic aromatic regions. (II)
Pharmacophore query overlayed with 3 potent hits from the ligand-based virtual screen: compounds 8 (A), 9 (B), and 17 (C).
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number of compounds necessary to evaluate and save
time and resources. Therefore, computational techniques
extend to predicting this very important aspect of drug
design and discovery. Methods used are structure-based
to study the interaction of candidate compounds with key
proteins involved in DMPK/ADMET and ligand-based to
predict of key properties using quantitative structure
property relation (QSPR) models.

A. Compound Library Filters

Computational tools are routinely used to filter large
data bases so that compounds predicted to have poor
DMPK/ADMET profiles may be avoided. One of the
earliest and still the most popular filters to apply to
any compound data base when performing a vHTS is
Lipinski’s rule of five. These rules are: (1) molecular
weight of 500 or less, (2) logP coefficient less than 5, (3)
5 or fewer hydrogen-bond donor sites, (4) 2�5 or fewer
hydrogen-bond accepting sites (Lipinski et al., 1997).
The rule set is based on an analysis of 2245 compounds
from the World Drug Index that had reached phase II
trials or higher. The rules were based on distributions
for molecular weight, logP, hydrogen bond donors, and
hydrogen bond acceptors for the top percentile of these
compounds (Lipinski et al., 1997). This set of rules
suggests the necessary properties for good oral bio-
availability (Lajiness et al., 2004) and reflects the
notion that pharmacokinetics, toxicity, and other adverse
effects are directly linked to the chemical structure of
a drug. Although this criteria is well established and
offers a relatively fast and simple way to apply DMPK/
ADMET filters before any sort of screening is per-
formed, it is incapable of predicting with any certainty
whether a compound will make an appropriate thera-
peutic. It has been estimated that almost 69% of
available compounds in the Available Chemical
Directory (ACD) Screening Database (2.4 million
compounds) and 55% of the compounds in the ACD
(240,000) do not violate this rule of 5 (Hou et al., 2006).
Accordingly, this rule set has always been intended to
be a guide and not necessarily a hard-set filter. It is
expected that such a simple rule of thumb will remove
lead compounds; for example, many peptidomimetics,
transporter substrates, and natural products will
violate Lipinski’s rule. Approximately 16% of oral
drugs violate at least one criterion and 6% fail two or
more criteria, and multiple examples exist of highly
successful drugs that fail one or more of Lipinksi’s
criteria including Lipitor and Singulair (Bickerton et al.,
2012). At the same time the Lipinski’s rule will not, for
example, recognize and remove compounds with struc-
tural features that give rise to toxicity. It is limited to
evaluating oral bioavailability through passive transport
only. When used to train models with machine learning,
Lipinski’s rule failed to provide better than random
classification of drugs and nondrugs (Frimurer et al.,
2000). Additionally, it is not designed to provide any

discrimination beyond a binary pass or fail. Any com-
pound that violates two or more criteria is treated as an
equal fail, whereas any compound that does not is
treated as an equal pass.

On the basis of its shortcomings, several improve-
ments and replacements have been proposed for the rule
of 5. For example, two additional criteria have been
suggested that include the number of rotatable bonds
being less than or equal to ten and the polar surface area
being less than 140 Å2 (Veber et al., 2002). Bickerton
et al. (2012) introduced the quantitative estimate of
drug-likeness that is a score ranging from 0 (all pro-
perties unfavorable) to 1 (all properties favorable). This
score is taken as a geometric mean of individual de-
sirability functions, each of which corresponds to a dif-
ferent molecular descriptor. These descriptors include
molecular weight, logP, hydrogen bond donors and ac-
ceptors, rotatable bonds, aromatic rings, and the number
of structural alerts (Brenk et al., 2008).

However, the simple application of filters such as these
during a lead compound search can be problematic by
nature of the limitation of these descriptors and the
evolution of lead compound to drug. For example, Hann
et al. (2001) found that, on average over a set of 470 lead-
drug pairs, lead compounds had lower molecular weight,
lower logP, fewer aromatic rings, and fewer hydrogen-
bond acceptors compared with their eventual drugs.
Therefore, it can be problematic to apply filters designed
around the average properties of drugs to libraries that
are intended for the discovery of lead compounds.

Additionally, some of the properties used in these
filters can depend on conformation and environment.
Kulkarni et al. (2002) state that permeability and
hydrophobicity can change depending on the free energy
of solvation, interaction of the drug with a phospholipid
monolayer, and the drug’s flexibility. Vistoli et al. (2008)
state that hydrophobicity and hydrogen bonding are
both dependent on the dynamic nature of molecules and
that chemical information is limited without the use of
dynamic descriptors. For a comprehensive review on the
concept of drug likeness, please see the 2011 review by
Ursu et al. (2011).

The same computational tools used to predict activity
can be applied to predict a more detailed DMPK/
ADMET profile, including solubility, membrane perme-
ability, metabolism, interaction with influx/efflux trans-
porter proteins, interaction with transcription proteins,
and different aspects of toxicity. For example, QSAR-
based techniques have been especially important in
predicting the toxicology profiles for drugs very early on
in their development. These tools collect information
regarding known toxins such as carcinogens, neuro-
toxins, and skin irritating agents, and create statistical
models that can predict the likelihood that a particular
compound will reflect these undesirable properties
(Schnecke and Bostrom, 2006).
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B. Lead Improvement: Metabolism and Distribution

Aside from general filters applied to compound libraries
preceding a screen, computational tools can be used to
guide hit-to-lead optimization where a compound’s met-
abolic profile is fine tuned. This requires a precise
balancing act as the changes necessary to improve a
compound’s metabolic profile may also significantly
reduce its target affinity. During this stage of drug
development, efforts are made in changing the com-
pound’s structure not only to improve affinity but also
to improve its metabolism. Therefore, although com-
putational tools are useful in predicting the effects on
target affinity from any proposed changes to the lead
structure, they can be used in parallel to predict the
affinity and interactions the compound may have with
metabolizing enzymes and their regulators (Sun and
Scott, 2010). The metabolism of a drug can have
significant impacts not only on its bioavailability but
also on its half-life and generation of harmful metab-
olites. When metabolic stability is lowered, a drug can
lose its efficacy. Increasing stability can amplify harmful
side effects attributed to a long half-life. Physiologically,
there are two important phases in drug metabolism that
have been studied extensively. The phase I reactions
include hydrolysis, reduction, and oxidation and are
primarily performed by cytrochrome P450 enzymes.
Phase II reactions are more diverse and include glucur-
onidation, sulfation, acetylation, methylation, and gluta-
thione conjugation (Goldstein, 1974). These reactions
accelerate the drug’s elimination from the body but can
result in toxic products like highly reactive electrophiles
or free radicals (Sun and Scott, 2010).
Computational tools have been developed to address

the phase I metabolism reactions performed by cy-
trochrome P450 enzymes, mainly through docking and
QSAR procedures to predict the likelihood that a
particular compound will bind to a cytochrome P450.
At least 57 P450 isoforms exist in the human body, but
phase I metabolism is dominated by the isoforms 1A2,
2C9, 2C19, 2D6, and 3A4 (Ortiz de Montellano, 2005)
and computational methods are routinely directed
against these particular P450 isoforms. In addition to
the elimination of the drug and generation of metab-
olites, P450s can also be the source of drug-drug in-
teractions in that one drug can reduce the elimination
of another drug by blocking access to metabolizing
enzymes or can increase elimination by upregulating
expression of those enzymes. For example, in the early
development of CCR5 antagonists, experimenters dis-
covered hits that contained functional groups that are
common among CYP2D6 inhibitors. By modeling the
binding of these ligands to CYP2D6, imidazopyridines
were replaced with benzimidazoles so that possible
drug-drug interactions arising from inhibition of CYP2D6
were avoided early on (Armour et al., 2006).

Structure-based methods are the most popular com-
putational tools for predicting the interaction between
a compound and P450 enzymes. Binding poses predicted
through docking studies may provide further insight
into the specific sites of metabolism within the com-
pound. For example, structure-based methods success-
fully predicted the metabolism of celecoxib and its 13
analogs through CYP2C9 (Ahlstrom et al., 2007a,b). In
addition to some P450 isoforms, X-ray structures of the
ligand-binding domain of prenane X receptor (Xue et al.,
2007), the transcription regulator of CYP3A4 (Yano
et al., 2004), glutathione S-transferases (Udomsinpra-
sert et al., 2005), and drug transporters such as P-
glycoprotein (Aller et al., 2009) have been determined.
Structural information about prenane X receptor and
drug transporters can be used to predict drug-drug
interactions through the induction of CYP3A4 or trans-
port channels.

One of the major challenges in modeling P450
binding is the dynamic nature of the binding site that
accommodates a wide variety of ligands. Another
challenge with docking studies involving P450 enzymes
is the fact that the goal is often fundamentally opposite
to that of most docking studies in that weaker binding is
usually preferred over stronger binding. Monte Carlo
and stochastic simulations of a wide variety of cocrystal
structures have allowed development of several dy-
namic models of P450 binding sites exploring the
different orientations amino acid side chains (Sun and
Scott, 2010). GOLD, FlexX, DOCK, AutoDock, and the
scoring function C-Score are most commonly used for
structure-based methods with P450 predictions (de
Graaf et al., 2005). For modeling the catalytic reaction
encountered when the ligand binds to the P450 enzyme,
ab initio calculations using Hartree-Fock or density
functional theory have been used (Sun and Scott, 2010).

For example, the formation of the hydroquinone
metabolite and electrophilic quinonone from remox-
ipride was calculated using hybrid density functional
theory. This information was then used to redesign
remoxipride (Erve et al., 2004). Density functional
theory calculations were used to eliminate the forma-
tion of reactive metabolites from a series of tyrosine
kinase-2 inhibitors. These calculations correctly pre-
dicted the necessary changes that avoided the formation
of these harmful metabolites (Sun et al., 2009). Park and
Harris (2003) used DFT on CYP2E1 homology models
along with docking and MD to predict the metabolism
profiles for seven compounds. Li et al. (2008) used
homology modeling and MD to dock ligands into CYP2J2
in an effort to describe the binding characteristics of this
enzyme. CYP2J2 is involved in the creation of eicosa-
trienoic acids from arachidonic acid. They were able to
identify key residues that were important for the sub-
strate specificity of CYP2J2. Additionally, they dis-
covered that different ligands, although sharing the
same scaffold, show different binding modes (Li et al.,
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2008). Bazeley et al. (2006) used structural information
of CYP2D6 to identify invariant segments and performed
conformational sampling with MD. Combining this data
with neural-network based feature selection they found
that only three out of 20 conformations are relevant for
CYP2D6 binding. They also analyzed the docking of 82
compounds and showed that the most important at-
tributes that conferred a compound’s affinity for CYP2D6
was the number of hydrogen-bonding sites, molecular
weight, the number of rotatable bonds, AlogP, formal
charge, number of aromatic rings, and the number of po-
sitive atoms. With these findings, they were able to
achieve a prediction accuracy of 85% (Bazeley et al., 2006).
In addition to these structural methods, reactivity

rules are also used to predict the metabolism of small
molecules. Data bases such as Accelrys Metabolite
(Accelrys, 2013) contain curated metabolic transforma-
tions from the literature. This information can be used to
predict the various metabolic transformations that will
be produced from an input structure. META (Talafous
et al., 1994) is a model of mammalian xenobiotic meta-
bolism that incorporates metabolic data from literature,
textbooks, and monographs to define chemical trans-
formation rules called transforms, which can identify
and substitute functional groups. These focus on both
phase 1 and phase 2 metabolism.
Another method uses electronics and intramolecular

sterics to predict sits of CYP3A4 metabolism. This
approach focuses on the rate-limiting step of the hy-
droxylation by CYP3A4, namely the removal of the
hydrogen-atom (Shaik et al., 2002). The model assumes
that the susceptibility for removal depends mainly on
the electronic environment surrounding the hydrogen.
Therefore, the method calculates a hydrogen abstraction
energy for each hydrogen atom and this information is
used to predict sites of metabolism (Singh et al., 2003b).
SMARTCyp (Rydberg et al., 2010) is another rule-

based method that determines the reactivity of mo-
lecular fragments based on activation energies calculated
by quantum mechanical methods. It combines a reactiv-
ity descriptor and accessibility descriptor. The reactivity
descriptor estimates energy required for P450 metabo-
lism at a given site by looking up fragments in an energy
table for each atom. The accessibility descriptor is
a calculation that determines the 2D distance from the
center of the molecule a given atom is and always ranges
between 0.5 and 1.
The activation energy table used for the reactivity

descriptor combines 11 previously defined rules for
aliphatic, aromatic, and alkene carbon atoms for 50
carbon sites (Rydberg et al., 2009) with new data
generated by the authors. This produced a collection of
139 transition states that can represent different types
of P450 reactions.
Other aspects of a drug’s DMPK/ADMET profile

that are predicted with computational tools include
membrane permeability, which is a large part of

bioavailability as well as volume of distribution and
penetration of the blood-brain barrier and blood
plasma protein binding, involved in a drug’s volume
of distribution and effective plasma concentrations. The
evolution of predictive models for blood-brain barrier
penetration is reviewed in detail by Norinder and
Haeberlein (2002). Additionally, the structure of human
serum albumin is used to predict plasma protein
binding and volume of distribution changes (Davis and
Riley, 2004).

C. Prediction of Human Ether-a-go-go Rrelated
Gene Binding

The human ether-a-go-go related gene (hERG) pro-
tein is a voltage-gated potassium channel expressed in
the heart and nervous system. The tetramer has six
transmembrane spanning regions per protamer and is
important for repolarization during the cardiac action
potential (Mitcheson and Perry, 2003; Recanatini et al.,
2005; Sanguinetti and Tristani-Firouzi, 2006). The
delayed rectifier repolarizing current, an outward
potassium current comprised of a rapid and slow
component, is involved in plateau repolarization and
the configuration of the action potential. Alterations in
this channel’s conductance, especially blockade of the
channel, can lead to an altered refractory period and
action potential duration (Recanatini et al., 2005),
often resulting in what is known as drug-induced QT
syndrome and a severe cardiac side effect called
torsades de points (Hancox and Mitcheson, 2006).
The QT interval is the period of a cardiac cycle where
ventricular repolarization occurs (Sanguinetti and
Tristani-Firouzi, 2006), and drug-induced QT syn-
drome can lead to sudden death (Keating and Sangui-
netti, 1996). Because of its importance in the proper
regulation of cardiac action potential, off-target inter-
actions with hERG have caused several drugs to be
removed from the market and/or linked to arrhythmias
and sudden death (Mitcheson and Perry, 2003). hERG
has been termed an “antitarget” in the pharmaceutical
industry (Aronov, 2005). It has been estimated that 2–
3% of prescribed medications include some unintended
QT elongation (Recanatini et al., 2005). Although most
drugs have been shown to inhibit the rapid component
of the outward potassium current (Garg et al., 2008),
interaction between drugs and hERG is not completely
understood, and high-affinity ligands tend to interact
with the inactivated channel with low voltage-
dependency, whereas low-affinity ligands tend to
interact with the activated state with high voltage-
dependent kinetics (Ficker et al., 2002). However, key
residues involved in the interaction between hERG and
at least some ligands have been identified. For example,
Phe656 and Tyr652 in the channel pore may engage in
p-p and cation-p interactions with the ligand. Thr623
and Ser624 are thought to interact with the polar tails
of some ligands and some evidence exists of a second
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binding site (Aronov, 2005; Recanatini et al., 2005; Choe
et al., 2006; Sanguinetti and Tristani-Firouzi, 2006). In
vitro and in vivo methods are commonly used to
evaluate drug candidates for potential hERG blockade
activity, especially patch clamp techniques and radio-
ligand binding assays (Wood et al., 2004; Polak et al.,
2009). However, these methods are difficult to scale
to high-throughput candidate evaluation, making the
computational approach attractive for this aspect of
drug discovery.
SB-CADD and LB-CADD have both been used to

develop models to discriminate hERG blockers and
nonblockers (Bridgland-Taylor et al., 2006; Thai and
Ecker, 2007). Currently, LB-CADD is more popular for
hERG predictions because of the fact that there is
currently no crystal structure for the hERG potassium
channel (Wang et al., 2012). Therefore, SB-CADD
techniques have mainly relied on docking with homology
models, and this method has not been validated with
large, highly diverse datasets (Wang et al., 2012). LB-
CADD-based hERG models have been created using tools
including ligand-based pharmacophore (Ekins et al.,
2002a; Cianchetta et al., 2005), CoMFA (Cavalli et al.,
2002), Bayesian classification with QSAR (Sun, 2006), and
2D fragment-based descriptors (Song and Clark, 2006).
Wang et al. (2012) developed discrimination models

based on molecular property descriptors and finger-
prints. Descriptors were calculated using Discovery
Studio molecular simulation package (Accelrys) and
included several variations on logP, molecular weight,
hydrogen-bonding, the number of rotatable bonds, rings,
and aromatic rings, the sum of oxygen and nitrogen
atoms, and fractional polar surface area. The finger-
prints included SciTegic extended-connectivity finger-
prints and Daylight-style path-based fingerprints using
the Morgan algorithm (Rogers and Hahn, 2010). Bayesian
classifiers and decision tree methods were used to create
models based on these descriptors.
Wang et al. (2012) analyzed the results of their

models and found that increased hydrophobicity was
correlated with increased hERG binding. Additionally,
molecular weight showed a significant, although lesser
impact on hERG binding, with molecules having a
molecular weight under 250 being less likely to be a
hERG blocker. Additionally, analysis of their finger-
prints revealed that most hERG-binding fragments con-
tained nitrogen atoms, with four of the top five containing
positively charged nitrogen atoms. These top five
fragments also contained at least one oxygen atom or
a carboxylic acid. Despite these correlations, the authors
stressed that no single molecular property can be used to
discriminate between hERG blockers and nonblockers.
Obrezanova and Segall (2010) used the Gaussian

process to build models for hERG inhibition as well as
other ADMET properties. The Gaussian process method
(Gibbs and MacKay, 2000; Rasmussen and Williams,
2006) is a nonlinear regression technique that is

resistant to overtraining. It uses Bayesian inference to
link the descriptors of a molecule with the probability of
the molecule falling into a specific class. Eventually, a
posterior probability distribution is created over func-
tions that identify those that best describe the observed
data. The mean value over all functions can provide the
prediction, whereas the full distribution can provide
a measure of uncertainty for each prediction. The hERG
inhibitor model was trained on 117 active and 51
inactive compounds evaluated through patch clamp in
mammalian cells with descriptors generated in Star-
Drop’s Auto-Modeler (Obrezanova et al., 2008). These
2D descriptors were based on SMARTS and included
atom type counts, functionality, and molecular proper-
ties such as logP, molecular weight, and polar surface
areas. Datasets were also clustered using 2D finger-
prints and tanimoto similarity.

Nisius and Goller (2009) used the Tripos Topomer
Search technology (Cramer et al., 2002) to design a
modeling approach termed topoHERG. This method
screens reference datasets for molecules similar to a
query compound and returns pharmacophore and shape-
based distances between a query molecule and its
neighbors. The dataset contained 115 inactive com-
pounds, 90 moderately active hERG blockers, and 70
highly active hERG blockers. The topomer is defined
as a 3D representation of a molecular fragment that
is based on 2D topology and a rule set that generates an
absolute conformation (Jilek and Cramer, 2004) so that
distances between topomers of different molecules in
large data bases can be calculated. To differentiate be-
tween hERG active and inactive neighbors, the inverse of
the topomer search distance was multiplied by one if the
topomor search neighbor was active and negative one if it
was inactive. A molecule was predicted to be an active
hERG blocker if its overall sum was greater than zero. A
two-stage approach using two optimized models yielded
a prediction accuracy of 76–81% (Nisius and Goller, 2009).

Garg et al. (2008) used a genetic function approxi-
mation to generate quantitative structure-toxicity
relationship (QSTR) models using 2D descriptors gener-
ated using the QSAR+ module of Cerius (Accelrys).
These models were trained with 56 hERG blockers and
descriptors included electrotopological descriptors that
contained information regarding the topological environ-
ments for all atoms in the molecule as well as electronic
interactions with other atoms in the molecule. To per-
form genetic function approximation, the authors gener-
ated a number of random equations that were randomly
selected as pairs. These parent pairs underwent random
crossover operations to generate new equations, and
those that showed improved fitness scores were kept
(Rogers and Hopfinger, 1994). In parallel, the authors
generated a toxicophore (pharmacophore-based toxicity
model) using Catalyst’s HypoGen that included hydrogen-
bonding, hydrophobic, aromatic, and positive ionizable
features. Upon analysis of their models, the authors noted
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that both basic and neutral hERG blockers had highly
flexible linkers and various molecular fragments.

D. Drug Metabolism and Pharmacokinetics/
Absorption, Distribution, Metabolism, and Excretion
and the Potential for Toxicity Prediction Software
Packages and Algorithms

There is currently a great deal of models available
for predicting absorption, bioavailability, transporter
binding, metabolism, volume of distribution, and P450
interactions (Yoshida and Topliss, 2000; de Groot and
Ekins, 2002; Ekins et al., 2002a,b; Lewis, 2003; Pintore
et al., 2003; Turner et al., 2003; Lombardo et al., 2004).
Comprehensive software packages have been devel-
oped such as QikProp, which can be used to predict an
array of ADMET-related properties such as solubility,
membrane permeability, partition coefficients, blood-
brain barrier penetration, plasma protein binding, and
the formation of metabolites (Jorgensen and Duffy,
2002). These predictions mainly come from statistical
models such as regression and neural networks that
are trained on known ADMET properties for many
compounds. The OSIRIS Property Explorer allows scien-
tists to draw chemical structures and predict ADMET
profile (Mandal et al., 2009). The software package
MetaSite (Molecular Discovery Ltd, Middlesex UK) is
used to predict the site of metabolism using structural
information from both the ligand and the enzyme. A
probability function is created for the site(s) of me-
tabolism using the free energy of P450-ligand binding
and reactivity. This software uses structure-based
techniques to identify the relevant amino acids and
proposes compound modifications that can optimize
its metabolism profile (Cruciani et al., 2005). Ahl-
strom et al. (2007) proposed a three-step procedure
using MetaSite to identify metabolic sites, in silico
modification of these sites, and docking of new com-
pounds. These software packages aim at predicting
overall ADMET properties with convenient and ac-
cessible tools and have shown great benefit in drug
development. For example, computational modeling of
ADMET properties prevented a potential blood pressure-
lowering drug from being lost early in the development
process. The proposed compound showed low EC50

values, indicating that it was less potent than another
compound of consideration. However, pharmacokinetic
modeling showed that this compound would actually
have greater efficacy than the one that showed higher
potency. This compound did indeed show superior ef-
ficacy in the clinic (Rajman, 2008).

E. Drug Metabolism and Pharmacokinetics/
Absorption, Distribution, Metabolism, and Excretion
and the Potential for Toxicity: Clinical Trial
Prediction and Dosing

Computational tools are also being developed to
address the possibility of simulating early clinical

trials to avoid the waste resources inherent in testing
drugs with poor ADMET profiles. This is a prevalent
problem in drug development because up to 90% of
drugs fail during clinical development, and the time
between reaching clinical trials and approval is up to
8 years (Holford et al., 2010). These simulations aim
at modeling the pathophysiology of biologic systems
and the pharmacology of treatments and can often
incorporate things such as disease progression, pla-
cebo response, and dropout rates.

For example, clinical trial simulation was used by Laer
et al. (2005) to propose appropriate doses for Sotalol
[CAS 959-24-0; N-[4-[1-hydroxy-2-[(1-methylethyl)ami-
no]ethyl]phenyl]methanesulfonamide hydrochloride] in
children and the Food and Drug Administration approved
dosing changes for Etanercept (Immunex Corporation,
Thousand Oaks CA) in juvenile rheumatoid arthritis
due to clinical trial simulations performed by Yim et al.
(2005). SimCYP (Simcyp Ltd, Sheffield UK) is a soft-
ware package that creates virtual populations of
participants with specifiable genetic and physiologic
characteristics using literature data. In vitro me-
tabolism data can be applied to the in vitro-in vivo
extrapolation process to simulate whole-live and hepatic
clearances for these virtual populations (Jamei et al.,
2009). Kowalski et al. (2008) used the NONMEM
software package (ICON plc, Dublin, Ireland) and
PK/PD modeling to suggest a dosing regimen for
SC-75416, a selective COX-2 inhibitor that would be
comparable to the pain relief afforded from 50 mg
of rofecoxib. This simulation saved an estimated
9 months of development.

V. Conclusions

The extensive variety of computational tools used in
drug discovery campaigns suggests that there are no
fundamentally superior techniques. The performance
of methods varies greatly with target protein, available
data, and available resources. For example, Kruger
and Evers (2010) completed a performance benchmark
between structure- and ligand-based vHTS tools across
four different targets, including angiotensin-converting
enzyme, cyclooxygenase-2, thrombin, and HIV-1 pro-
tease. Docking methods including Glide, GOLD, Sur-
flex, and FlexX were used to dock ligands into rigid
target crystal structures obtained from PDB. A single
ligand was used as a reference for ligand-based si-
milarity search strategies such as 2D (fingerprints and
feature trees) and 3D [rapid overlay of chemical
structures (ROCS; OpenEye Scientific Software, Santa
Fe, NM)], a similarity algorithm that calculates maxi-
mum volume overlap of two 3D structures (Rush et al.,
2005). In general the authors found that docking
methods performed poorly for HIV-1 protease and
thrombin attributable to the flexible nature of the
targets and the fact that the known ligands for these
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proteins have large molecular weight and peptidomi-
metic character.
Enrichments based on 3D similarity searches were

poor for HIV-1 protease and thrombin datasets com-
pared with ACE, which is likely due to the higher level
of diversity in the HIV-1 protease and thrombin ligand
datasets. Similarity scoring algorithms like Shape-
Tanimoto, ColorScore, and ComboScore were compared
with the performance of ROCS (Kruger and Evers,
2010). It was found that even within the scoring,
algorithm performance varied across targets. For ex-
ample, ColorScore performed best for ACE and HIV-1
protease, whereas ShapeTanimoto for COX-2 and
ComboScore was the method of choice for thrombin.
All vHTS tools performed comparatively well for ACE,
but ligand-based 2D fingerprint approach generally
outperformed docking methods. The authors also note
an important observation in that, especially for HIV-1
protease, the structure-based and ligand-based ap-
proaches yielded complimentary hit lists. Therefore,
performance metrics are not the only benchmark to
consider when comparing CADD techniques. In some
cases, discovery of novel chemotypes is more important
than high hit rates or high activity. In the current
study, Kruger and Evers (2010) found that ROCS
and feature trees were more successful in retrieving
compounds with novel scaffolds compared with other
fingerprints.
Warren et al. (2006) published an in-depth assess-

ment of the capabilities and shortcomings for docking
programs and their scoring techniques against eight
proteins of seven evolutionarily diverse target types.
They found that docking programs were well adept at
generating poses that included ones similar to those
found in complex crystal structures. In general, al-
though the molecular conformation was less precise
across docking programs, they were fairly accurate in
terms of the ligand’s overall positioning. With regards
to scoring, their findings agree with others that
docking programs lack reliable scoring algorithms. So
while the tools were able to predict a set of poses that
included those that were seen in the crystal structure,
the preference for the crystal structure pose was not
necessarily reflected in the scoring. For five of the
seven targets that were evaluated, the success rate,
however, was greater than 40%. It was found that the
enrichment of hits could be increased by applying
previous knowledge regarding the target. However,
there was little statistically significant correlation
between docking scores and ligand affinity across the
targets. The study concluded that a docking program’s
ability to reproduce accurate binding poses did not
necessarily mean that the program could accurately
predict binding affinities. This analysis underscores
the necessity not only to re-rank the top hits from
a docking-based vHTS using computationally expen-
sive tools but also to continue evaluating novel scoring

functions that can efficiently and accurately predict
binding affinities (Warren et al., 2006).

Improvements in scoring functions involve the use of
consensus scoring methods and free energy scoring
with docking techniques. Consensus scoring methods
have been shown to improve enrichments and pre-
diction of bound conformations and poses by balancing
out errors of individual scoring functions. In 2008,
Enyedy and Egan (2008) compared docking scores of
ligands with known IC50 and found that docking scores
were incapable of correctly ranking compounds and
were sometimes unable to differentiate active from
inactive compounds. They concluded that individual
scoring methods can be used successfully to enrich a
dataset with increased population of actives but are
insufficient to identify actives against inactives. Page
and Bates (2006) concluded that although binding
energy calculations such as MM-PBSA are one of the
more successful methods of estimating free energy of
complexes, these techniques are more applicable to
providing insights into the nature of interactions
rather than prediction or screening. Consensus scoring
functions where free energy scores of different algo-
rithms have been combined or averaged have been
shown to substantially improve performance (Fukunishi
et al., 2008; Teramoto and Fukunishi, 2008; Bar-Haim
et al., 2009; Plewczynski et al., 2011).

In their literature survey, Ripphausen et al. (2010)
reported that structure-based virtual screening was
used much more frequently than ligand-based virtual
screening (322 to 107 studies). Despite a preference for
structure-based methods, ligand-based methods on
average yield hits with higher potency than structure-
based methods. Most ligand-based hits had activities
better than 1 mM, whereas structure-based hits fall
frequently in the range of 1–100 mM. Scoring algorithms
in docking functions have been found to be biased to-
ward known protein ligand complexes; for example,
more potent hits against protein kinase targets are
discovered when compared with other target classes
(Stumpfe et al., 2012) (Fig. 19).

One CADD approach that has been gaining consider-
able momentum is the combination of structure-based
and ligand-based computation techniques (Nicolotti
et al., 2008). For example, the GRID-GOLPE method
docks a set of ligands at a common binding site using
GRID and then calculates descriptors for the binding
interactions by probing these docking poses with
GOLPE (Baroni et al., 1993). Multivariate regression
is then used to create a statistical model that can ex-
plain the biologic activity of these ligands. Structure-
based interactions between a ligand and target can
also be used in similarity-based searches to find com-
pounds that are similar only in the regions that
participate in binding rather than cross the entire
ligand. LigandScout uses such a technique to define a
pharmacophore based on hydrogen bonding and
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charge-transfer interactions between a ligand and its
target. Another technique known as the pseudoreceptor
technique (Tanrikulu and Schneider, 2008) uses phar-
macophore mapping-like overlaying techniques for a
collection of ligands that bind to the same binding site to
establish a virtual representation of the binding site’s
structure, which is then used as a template for docking
and other structure-based vHTS. This approach has
been used by VirtualToxLab (Vedani et al., 2007) for the
creation of nuclear receptors and cytochrome P450
binding site models in ADMET prediction tools and by
Tanrikulu et al. (2009). in the modeling of the H4
receptor binding site subsequently used to identify novel
active scaffolds (Tanrikulu et al., 2009). In a recent re-
view by Wilson and Lill (2011), these methods are
grouped into a major class of combined techniques
called interaction based methods. A second major class
involves the use of QSAR and similarity methods to
enrich a library of virtual compounds prior to a molec-
ular docking project. This can increase the efficiency of
the project by reducing the number of compounds to be
docked. This is similar to the application of CADD to
enrich libraries prior to traditional HTS projects. This
review also presents comprehensive descriptions of

software packages using a combination of ligand-
and structure-based techniques as well as several case
studies testing the performance of these tools.

As discussed earlier, these methods are often used in
serial where ligand-based methods are first used to
enrich libraries that will subsequently be used in
structure-based vHTS. The most common application
is at the ligand library creation stage through the use
of QSAR techniques to filter out compounds with low
similarity to a query compound or no predicted activity
based on a statistical model. QSAR has also been used
as a means to refine the docking scores of a structure-
based virtual screen. 2D and 3D QSAR can also be used
to track docking errors. This method has been used by
Novartis where a QSAR model is built from docking
scores rather than observed activities, and this model
is applied to that set to provide additional score weights
for each compound (Klon et al., 2004).

Although CADD has been applied quite extensively in
drug discovery campaigns, certain lucrative therapeutic
targets like protein-protein interaction and protein-DNA
interactions are still formidable problems, mainly be-
cause of the relatively massive size of interaction sites (in
excess of 1500 Å2) (Van Drie, 2007). Lastly, accessibility
has also been a problem with CADD as many tools are
not designed with a friendly user interface in mind. In
many cases, there can be an overwhelming number of
variables that must be configured on a case-by-case basis
and the interfaces are not always straightforward. A
great deal of expertise is often required to use these tools
to get desired measure of success. Increasingly, efforts
are being made to develop user friendly interfaces, es-
pecially in commercially available tools. For example,
ICM-Pro (MolSoft L.L.C., San Diego, CA) is a software
package that is designed to be a user friendly docking
tool and replaces the front-end of current docking
algorithms with an interface that is manageable to
a wider audience (Abagyan et al., 2006). More recently,
gamification of the ROSETTA folding program, known
as Foldit (Khatib et al., 2011), has allowed individuals
from nonscientific community to help solve the struc-
ture of M-PMV retroviral protease (Khatib et al., 2012)
and for predicting backbone remodeling of computa-
tionally designed biomolecular Diels-Alderase that
increased its activity (Eiben et al., 2012). The success-
ful application of crowd-sourced biomolecule design
and prediction suggests further potential of CADD
methods in drug discovery.
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