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Abstract——Adrenergic receptors (AR) are G-protein-
coupled receptors (GPCRs) that have a crucial role in
cardiac physiology in health and disease. Alpha1-ARs
signal through Gaq, and signaling through Gq, for
example, by endothelin and angiotensin receptors, is
thought to be detrimental to the heart. In contrast,
cardiac alpha1-ARs mediate important protective and
adaptive functions in the heart, although alpha1-ARs are
only a minor fraction of total cardiac ARs. Cardiac
alpha1-ARs activate pleiotropic downstream signaling
to prevent pathologic remodeling in heart failure.
Mechanisms defined in animal and cell models include
activation of adaptive hypertrophy, prevention of
cardiac myocyte death, augmentation of contractility,
and induction of ischemic preconditioning. Surprisingly,

at the molecular level, alpha1-ARs localize to and signal
at the nucleus in cardiac myocytes, and, unlike most
GPCRs, activate “inside-out” signaling to cause
cardioprotection. Contrary to past opinion, human
cardiac alpha1-AR expression is similar to that in
the mouse, where alpha1-AR effects are seen most
convincingly in knockout models. Human clinical
studies show that alpha1-blockade worsens heart
failure in hypertension and does not improve
outcomes in heart failure, implying a cardioprotective
role for human alpha1-ARs. In summary, these findings
identify novel functional and mechanistic aspects of
cardiac alpha1-AR function and suggest that activation
of cardiac alpha1-AR might be a viable therapeutic
strategy in heart failure.

ABBREVIATIONS: a1-AR, a1-adrenergic receptor; b-AR, b-adrenergic receptor; a1A-subtype, a1A-adrenergic receptor; a1B-subtype,
a1B-adrenergic receptor; a1-blocker, a1-adrenergic receptor antagonist; a1AKO, a1A-adrenergic receptor knockout; a1BKO, a1B-
adrenergic receptor knockout; a1ABKO, a1AB-adrenergic receptor double knockout; aSkAct, a-skeletal actin; AR, adrenergic receptor;
ATR, angiotensin receptor; ALLHAT, Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial; BPH, benign
prostatic hyperplasia; BEST, b-Blocker Evaluation of Survival Trial; cav-3, caveolin-3; CAM, constitutively active mutant; DAG,
diacylglycerol; ETR, endothelin receptor; EMT, extraneuronal monoamine transporter; ERK, extracellular signal–regulated kinase;
GFP, green fluorescent protein; GPCR, G-protein-coupled receptor; HEK, human embryonic kidney; HW, heart weight; IP, inositol
phosphate; IP3, inositol 1,4,5-trisphosphate; KO, knockout; MEK, mitogen-activated protein kinase kinase; MOXCON, Moxonidine
Congestive Heart Failure Trial; MOXSE, Moxonidine Safety and Efficacy Trial; MyHC, myosin heavy chain; NE, norepinephrine;
NFAT, nuclear factor of activated T cells; NRVM, neonatal rat ventricular myocyte; NYHA, New York Heart Association; OCT3,
organic cation transporter 3; PLCb1, phospholipase Cb1; PKC, protein kinase C; PKD, protein kinase D; V-HeFT, Vasodilator-Heart
Failure Trial; WT, wild type.
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I. Introduction

Adrenergic receptors (ARs) bind to and are activated
by the endogenous catecholamine hormones epineph-
rine and norepinephrine (NE). Epinephrine is primar-
ily produced in and released to the circulation from
the adrenal gland, whereas NE is synthesized in and
released by sympathetic nerve terminals in the periph-
eral nervous system and brain. In the heart, the two
main ARs are the b-ARs, which comprise roughly 90%
of the total cardiac ARs, and a1-ARs, which account for
approximately 10% (see section II).
In general, acute activation of cardiac b1-ARs, the

predominant b-AR subtype (80% or more of total b-ARs
in heart), induces positive inotropic and chronotropic
responses, although in heart failure, where sympathetic
activation and catecholamine levels are increased, long-
term activation of b1-ARs exacerbates pathologic remod-
eling (Bristow, 2000; Naga Prasad et al., 2001; Lohse
et al., 2003).
Less is known about cardiac a1-ARs, but studies

from the last thirty years indicate that long-term
activation of cardiac a1-ARs activates beneficial trophic
signaling in the developing heart and that these a1-AR-
mediated trophic effects in the adult, in many ways,
counteract the negative effects of overstimulation of
b1-ARs in heart failure. This review will focus on these
trophic effects of cardiac a1-ARs and how activation of
a1-ARs might be beneficial in heart failure.
There are three a1-AR subtypes, the a1A, a1B, and a1D,

and all three are expressed in the heart in a cell-type
specific manner (section II). All three a1-ARs are
G-protein-coupled receptors (GPCR), and classic a1-AR
signaling mechanisms involve coupling to the Gq/11 (Gaq)
family of G-proteins and activation of phospholipase Cb1

(PLCb1) at the plasma membrane. Activation of PLCb1

cleaves phosphatidylinositol (PI), increasing inositol tri-
sphosphate (IP3) and diacylglycerol (DAG). IP3 binds to
the IP3-receptor to release calcium from intracellular
stores, and DAG activates protein kinase C (PKC).
Other Gq-coupled GPCRs that signal through Gaq,

such as endothelin receptors (ETRs) and angiotensin
receptors (ATRs), are believed to play an important
role in the pathogenesis of heart failure. Hallmarks of
cardiomyopathy with heart failure include contractile
dysfunction (both systolic and diastolic), myocyte
hypertrophy, fibrosis, and increased cardiac cell death
(Anand and Florea, 2003), which can all be worsened
by Gq-coupled receptors (Salazar et al., 2007).
However, it also needs to be recalled that the view

that Gq-coupled receptor signaling is toxic is based in
large part on a transgenic mouse model with Gq

overexpression that markedly exceeds the 2-fold in-
crease found in human heart failure (Adams et al.,
1998; Ponicke et al., 1998; Sakata et al., 1998) and thus
cannot be considered to simulate human pathophysiology.
In human heart failure, the maximal increase in

Gq abundance is 2-fold (Ponicke et al., 1998), and
transgenic mice with 2-fold cardiomyocyte-specific Gq

overexpression have no discernible cardiac phenotype
(Adams et al., 1998; Sakata et al., 1998).

Furthermore, a1-ARs differ from other Gq-coupled
receptors in several important ways, including expres-
sion limited to myocytes within the heart (section II)
and localization and signaling at the nucleus, as discussed
in section III.

Thus, unlike what can be seen with some Gq-coupled
receptors, a1-ARs protect the heart by activating an
adaptive or physiologic hypertrophy, preventing car-
diac myocyte death, augmenting contractile function
in heart failure and inducing preconditioning (section
IV). Finally, clinical trials indicate that blockade
of a1-ARs exacerbates heart failure (section V), which
could be explained by the cardioprotective functions
of a1-ARs identified in cell and animal models.
This review summarizes these data, which span
decades, and emphasizes recent findings from our
laboratories.

II. a1-Adrenergic Receptor Expression in
the Heart

A. a1-Adrenergic Receptor Expression in the Heart in
Animal Models

In mice and rats, all three a1-AR subtype mRNAs,
a1A, a1B, and a1D, are detected in the heart (Rokosh
et al., 1994; Stewart et al., 1994; Cavalli et al., 1997;
O’Connell et al., 2003). Interestingly, among most
species, including mouse, guinea pig, rabbit, pig, and
cow, heart a1-AR levels determined by ligand binding
are relatively constant (mouse: mean of six studies,
;12 fmol/mg protein) (Steinfath et al., 1992a; Cavalli
et al., 1997; Yang et al., 1998; Lin et al., 2001;
O’Connell et al., 2003; Rokosh and Simpson, 2002),
with the exception of rat heart, in which a1-AR levels
are approximately 10-fold higher (rat: mean of four
studies, ;114 fmol/mg) (Steinfath et al., 1992a; Michel
et al., 1994; Noguchi et al., 1995; Stewart et al., 1994).

Determination of cell-type specific expression of
a1-ARs in the heart, or any tissue, is hampered by the
lack of validated, subtype-specific a1-AR antibodies
(Jensen et al., 2009c), which is a general problem with
antibodies for GPCRs, as reviewed (Michel et al., 2009).
However, studies in a1-AR knockout mice demonstrate
that cardiac myocytes express only the a1A- and
a1B-subtypes, based on lack of [3H]prazosin binding
or functional responses in hearts from a1AB-double
knockout mice (a1ABKO) (McCloskey et al., 2003;
O’Connell et al., 2003; Turnbull et al., 2003) as well as
lack of binding to a fluorescent a1-AR antagonist or
signaling in cardiac myocytes isolated from a1ABKO
hearts (O’Connell et al., 2003; Wright et al., 2008).

Ligand binding studies further indicate that the
a1B is predominant, with the a1A- and a1B-subtypes
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expressed in a 1:2–4 ratio in cardiac myocytes (Rokosh
and Simpson, 2002; O’Connell et al., 2003). Despite
the presence of a1D-subtype mRNA, rodent cardiac
myocytes do not appear to express the a1D-subtype
protein by binding (O’Connell et al., 2003). However,
the a1D might be expressed in the coronary vascula-
ture, based on studies demonstrating a1-AR mediated
reductions in coronary flow in isolated a1-AR knockout
hearts (Chalothorn et al., 2003; Turnbull et al., 2003).
This idea is supported by human studies (below).
Conversely, rodent cardiac fibroblasts do not express
a1-ARs (Stewart et al., 1994; O’Connell et al., 2001),
and a1-agonist infusion induces hypertrophy without
fibrosis (Marino et al., 1991), suggesting that a1-AR
activation does not exacerbate fibrosis associated
with heart failure. In contrast with a1-ARs, most
ATRs and ETBRs are in fibroblasts, not cardiac
myocytes (Kim et al., 1995; Gray et al., 1998; Modesti
et al., 1999).
Long-term activation of a1-ARs and other hypertro-

phic agonists increases the a1A-subtype, without
desensitizing a1-mediated inositol phosphate (IP)
turnover or growth, while decreasing a1B-subtype
mRNA and protein levels in cultured neonatal rat
cardiac myocytes (NRVM) and in rats subjected to
aortic banding (Rokosh et al., 1996). Moreover, total
a1-AR levels are not altered in vivo by hypertrophy or
heart failure in rats (Rokosh et al., 1996; Sjaastad
et al., 2003), and a1-AR inotropic effects are main-
tained or increased (Wang et al., 2010), in contrast to
b-ARs that are desensitized and downregulated in
heart failure (Bristow et al., 1982; Bristow et al., 1988).
Partial explanation for the differences in desensiti-

zation of a1-AR and b-ARs might reside in expression
and regulation of G-protein receptor kinases (GRKs).
GRK3 is found exclusively in myocytes, regulates
a1-ARs, and is not upregulated in heart failure (Vinge
et al., 2001, 2007; Aguero et al., 2012). In contrast,
GRK2 and GRK5 that desensitize b-ARs but not
a1-ARs are expressed in many myocardial cell types
and are upregulated in heart failure (Rockman et al.,
1996; Eckhart et al., 2000; Vinge et al., 2001, 2007;
Aguero et al., 2012).

B. Unique Aspects of a1-Adrenergic Receptor
Expression Profiles in Cardiac Myocytes

Recent studies provide unique information on the
expression and distribution of a1-ARs in cardiac
myocytes. First, both the a1A- and a1B-subtypes
localize to and signal at the nuclear membrane, but
not the plasma membrane, in adult mouse cardiac
myocytes (Huang et al., 2007; Wright et al., 2008; Wright
et al., 2012), as reviewed in section III. Second, a1A-
subtype expression and function are graded in adult
cardiac myocytes, from high levels to none, whereas the
a1B-subtype is expressed in all cardiac myocytes (un-
published data).

C. a1-Adrenergic Receptor Expression in
Human Heart

In human heart, all three a1-AR subtype mRNAs are
detected (Jensen et al., 2009a). Furthermore, a1-AR
expression levels in human heart determined by ligand
binding are similar to mouse and most other species
(human: mean of 6 studies, ;12 fmol/mg protein)
(Bohm et al., 1988; Bristow et al., 1988; Vago et al.,
1989; Steinfath et al., 1992b; Hwang et al., 1996;
Jensen et al., 2009a). Human myocardium has the a1A-
and a1B-subtypes, with the a1B predominant, similar
to other species (Jensen et al., 2009a,b), and the a1A
is functional in signaling (R. C. Thomas and P. C.
Simpson, unpublished data). These data suggest that
the mouse is a more appropriate model to approximate
cardiac a1-AR function than the rat, which as men-
tioned above, has roughly 10-fold more a1-ARs.

Competition binding experiments do not detect the
a1D-subtype in explanted human heart (Jensen et al.,
2009a,b). However, the a1D-subtype is expressed and
functional in coronary artery smooth muscle cells and
might cause vasoconstriction (Jensen et al., 2009b).
The a1B-subtype is expressed in coronary artery en-
dothelial cells and might induce vasodilation and angio-
genesis (Jensen et al., 2010).

D. a1-Adrenergic Receptor Levels Increase
Proportionately in Human Heart Failure

In heart failure, b1-ARs are desensitized and down-
regulated. In contrast, radioligand-binding studies in-
dicate that myocardial a1-AR levels are slightly
increased in human heart failure (mean of six studies,
increased from ;12 to ;19 fmol/mg protein) (Bohm
et al., 1988; Bristow et al., 1988; Vago et al., 1989;
Steinfath et al., 1992b; Hwang et al., 1996; Jensen et al.,
2009a). This means that a1-AR levels in the heart,
which normally represent approximately 11% of the
total AR population at baseline (range 2–23%, mean of
six studies), are proportionately increased to approxi-
mately 25% of the total AR population in heart failure
(range 9–41%) (Bohm et al., 1988; Bristow et al., 1988;
Vago et al., 1989; Steinfath et al., 1992b; Hwang et al.,
1996; Jensen et al., 2009a). Given that sympathetic
drive and catecholamine levels are increased in heart
failure (Cohn et al., 1984), this could imply that a1-ARs
sustain adrenergic function when b1-ARs are down-
regulated. In fact, a1-AR-induced positive inotropy,
which at baseline is minimal, can be equal to b-AR-
mediated inotropy in ventricular muscle strips isolated
from human heart failure patients (Skomedal et al.,
1997), as reviewed in more detail below.

E. Conclusions on a1-Adrenergic Receptor
Heart Expression

In summary, a1-ARs constitute a minority of the
total cardiac AR population in humans at baseline, and
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this seems to hold across species, with the exception of
rats where a1-ARs levels are ;10-fold higher than any
other species. This should be considered when interpret-
ing results from studies of a1-ARs in rats, particularly
in cultured NRVMs, the most common cardiac myocyte
culture model.
Cardiac myocytes of all species have all three a1-AR

subtype mRNAs, but only the a1A- and a1B-subtype
receptor proteins are detected. In humans, the a1D-
subtype is present in coronary smooth muscle and
might regulate coronary vasoconstriction, whereas the
a1B-subtype is in coronary endothelial cells and might
regulate vasodilation and angiogenesis. In contrast,
a1-ARs are not expressed by cardiac fibroblasts.
In heart failure, a1-ARs are not downregulated as

are b1-ARs and thus become a greater share (25%) of
ARs in the heart. This increase in a1-ARs could suggest
that a1-ARs have a compensatory or adaptive role in
heart failure, as suggested by studies showing that
a1-mediated inotropy can be similar to b-AR-mediated
inotropy in heart failure (Skomedal et al., 1997). The
idea that a1-ARs might have an adaptive and pro-
tective role in the heart is a central theme of this
review and is discussed in following sections.

III. a1-AR Signaling in Cardiac Myocytes

The following sections review the conventional models
of a1-AR localization and signaling at the plasma
membrane, or “outside-in” signaling, and evidence for
novel models, suggesting that a1-ARs and other GPCRs
signal from the cardiac myocyte nucleus, or “inside-out”
signaling.

A. Conventional Models of a1-Adrenergic
Receptor Signaling

Conventional models of GPCR signaling describe
receptor activation at the plasma membrane leading to
initiation of downstream signaling within the cell,
commonly referred to as “outside-in” signaling. Fur-
thermore, classic models of GPCR function suggest
that GPCRs are expressed on the cell membrane and
are only internalized after receptor phosphorylation
and subsequent desensitization (Drake et al., 2006).
a1-ARs signal through the Gq/11 class of G-proteins,
leading to activation of PLCb1 and increases in
IP3/calcium signaling and activation of PKC (Graham
et al., 1996; Piascik and Perez, 2001). The a1B-subtype
might also signal through Gi (Hu and Nattel, 1995;
Steinberg et al., 1985; Akhter et al., 1997; Melien et al.,
2000; Snabaitis et al., 2005). In NRVM, historically
the primary cell model used to study cardiac a1-AR
signaling, a1-AR-induced increases in IP3 are readily
observed, but in adult cardiac myocytes this is
controversial. The general consensus is that a1-ARs
signal through the Gq/PLCb1-IP3/PKC pathway, but
downstream signaling pathways are diverse, as reviewed

elsewhere (Hein and Michel, 2007; Cotecchia, 2010;
Jensen et al., 2011). To date, over 70 downstream sig-
naling molecules have been implicated in cardiac a1-AR
signaling, using the NRVM model of a1-AR-stimulated
cardiac myocyte hypertrophy (Jensen et al., 2011). Some
data suggest interactions with b-arrestin (Pediani et al.,
2005; Stanasila et al., 2008; Hennenberg et al., 2011) and
Gbg (Vettel et al., 2012).

B. New Model for General G-Protein-Coupled Receptor
Signaling: G-Protein-Coupled Receptors at
the Nucleus

It is now clear that several GPCRs localize to and
signal at the nucleus, or “inside-out” signaling. Nuclear
signaling is seen in several cell types, including
neurons, hepatocytes, and cardiac myocytes, as
reviewed previously (Gobeil et al., 2006; Boivin et al.,
2008; Bkaily et al., 2009; Tadevosyan et al., 2012). The
GPCRs include receptors for prostaglandin E2 in the
brain (Gobeil et al., 2002), angiotensin II (AT1R) in
the brain and in HEK and Chinese hamster ovary cells
(Lu et al., 1998; Chen et al., 2000; Lee et al., 2004),
platelet activating factor in the liver and brain (Marrache
et al., 2002), apelin in the brain (Lee et al., 2004),
bradykinin in HEK cells (Lee et al., 2004), and glutamate
in neurons (O’Malley et al., 2003).

Several recent studies show that GPCRs localize
to nuclei in binucleate adult cardiac myocytes, as
reviewed previously (Tadevosyan et al., 2012). Specif-
ically, ETRs are detected on nuclei isolated from adult
cardiac myocytes, and endothelin stimulates nuclear
calcium transients (Boivin et al., 2003). ATRs and b-ARs
are also detected on nuclei isolated from adult cardiac
myocytes and mediate increased RNA synthesis
(Boivin et al., 2006; Tadevosyan et al., 2010; Vaniotis
et al., 2011). These findings indicate that GPCR local-
ization to the nucleus could regulate important phys-
iologic functions in adult cardiac myocytes. However,
the majority of these other receptors can localize also to
the myocyte plasma membrane; for example, 95% of
ETRs are on the sarcolemma (Boivin et al., 2003; Wright
et al., 2012), so that the relative functional significance
of nuclear versus surface localization is uncertain.

Despite the data reviewed above, the prevalent view
is that GPCRs, including a1-ARs, are localized primar-
ily to the plasma membrane in heart and myocytes.
This impression is based predominantly on radioligand
binding to membrane fractions, binding assays in whole
cells (Filipeanu et al., 2006) and studies with a1-AR
antibodies. Difficulties with these approaches are dis-
cussed in the next section.

C. a1-Adrenergic Receptors in the Nuclei in
Cardiac Myocytes

Cellular localization of signaling molecules deter-
mines function, emphasizing the importance of a1-AR
subcellular localization in cardiac myocytes. The following
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sections review the limitations and advantages of
different approaches to detect a1-AR subcellular localiza-
tion and the evidence that a1-ARs are in the cardiac
myocyte nucleus, derived from studies of localization,
agonist uptake, and signaling. Physiologic implications
of nuclear a1-ARs are also suggested. This novel nuclear
a1-AR signaling paradigm in cardiac myocytes is illus-
trated in Fig. 1.
1. Nuclear Localization of a1-Adrenergic Receptors in

Cardiac Myocytes. Limitations with the techniques
used to detect a1-ARs, radioligand binding and a1-AR
antibodies, might explain the conventional view that
a1-ARs localize mainly to the plasma membrane.
Ligand binding assays typically involve homogeniza-
tion of heart tissue or cultured cells followed by a high-
speed ultracentrifugation to isolate total membrane
fractions. This high-speed ultracentrifugation pulls
down all membranes, and if subcellular markers are
not used, this technique does not distinguish between
plasma, sarcoplasmic, and nuclear membranes (Lin
et al., 2001; Rokosh and Simpson, 2002; O’Connell
et al., 2003). Furthermore, most purified membrane
preparations exclude over 65 to 85% of total heart
a1-ARs that are found in “debris” and low-speed pellets

discarded normally (Simpson, 2006). Whole-cell bind-
ing assays are limited by the lack of radioligands that
do not enter the cell (Filipeanu et al., 2006).

Immunochemical detection, either by immunoblot or
cell/tissue staining, is another commonly used tech-
nique to detect a1-ARs. However, none of 10 commer-
cial a1-AR antibodies are specific for a1-ARs in general
or for any subtype, as documented by the fact that no
antibody detects a band in wild-type (WT) tissue that
is absent in tissue from a1-AR knockout (KO) mice
(Jensen et al., 2009c). This nonspecificity of anti-
GPCR antibodies is a general problem, reviewed
recently, emphasizing that a1-AR antibodies need to
be validated using KO tissue (Michel et al., 2009).
Nonspecificity of a1-AR antibodies calls into question
previous reports with these reagents, for example,
work suggesting a1-AR localization to the plasma
membrane and t-tubules in adult rat cardiac myocytes
(O-Uchi et al., 2008) or a study using immunoprecip-
itation of a1-ARs with potential signaling partners
(Fujita et al., 2001).

An antibody to the 1D4 epitope tag at the C terminus
of the a1A detects surface membrane expression in
heart sections of a transgenic mouse (Lin et al., 2001).

Fig. 1. Model for a1-AR signaling at the nuclear membrane. In adult cardiac myocytes, catecholamine a1-AR agonists (NE/PE) are actively transported
into the myocyte via organic cation transporter 3 (OCT), which can be inhibited by corticosterone. The membrane-permeable a1-AR antagonist prazosin
(and similar derivatives) can cross the plasma membrane to inhibit signaling, whereas the membrane impermeable a1-AR antagonist CGP12177A fails
to inhibit signaling. The model suggests that active a1-ARs localize to the inner nuclear membrane with the ligand-binding domain facing the space
between the outer and inner nuclear membranes (ONM and INM, respectively). On the basis of this orientation, binding of agonist to a1-ARs induces
signaling inside the nucleus, possibly through Gaq, although downstream intranuclear signaling pathways remain to be defined. We propose that
activation of nuclear a1-ARs can induce intranuclear hypertrophic signaling as well as extranuclear signaling, including activation of ERK in caveolae
and survival signaling or phosphorylation of cardiac troponin I at the sarcomere and contractile function. HDAC, histone deacetylase; Ca Ch, calcium
channel; RYR, ryanodine receptor; PTP, mitochondrial permeability transition pore; ER/SR, endoplasmic/ sarcoplasmic reticulum; NR, nucleoplasmic
reticulum; NPC, nuclear pore complex.
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However, it is problematic whether receptor localiza-
tion with 170-fold overexpression simulates that of
endogenous a1-ARs (Lin et al., 2001).
A few studies use membrane fractionation combined

with the caveolar marker caveolin-3 (cav-3) to detect
a1-AR binding in caveolae in NRVMs (Fujita et al.,
2001; Lanzafame et al., 2006). In NRVMs, a caveolar
fraction defined in this way contains most or all
a1-mediated IP turnover (Morris et al., 2006) and 27%
of total a1-AR binding, both a1A and a1B (Lanzafame
et al., 2006). The value of 27% a1-AR binding in
caveolae in NRVMs agrees well with a more recent
study finding 20% of total a1-ARs in adult myocyte
membranes defined by high levels of cav-3 (Wright
et al., 2008).
The contrary notion that a1-ARs localize primarily to

the nucleus arises from three main lines of evidence.
First, 80% of total a1-AR binding in adult mouse
cardiac myocytes is found in nuclear membranes
defined by the marker LAP2 (Wright et al., 2008,
2012). In NRVMs, nuclear a1-AR binding is also
observed (Buu et al., 1993), and 73% of total a1-ARs
are in noncaveolar membranes that might be nuclear
(Lanzafame et al., 2006), in good agreement with the
results in adult myocytes.
Second, BODIPY-prazosin is a fluorescent analog of

the a1-AR antagonist prazosin that binds all three
a1-AR subtypes with equal affinity and fluoresces only
when bound to receptor (Daly et al., 1998; Mackenzie
et al., 2000; Pediani et al., 2005). BODIPY-prazosin
staining of living adult cardiac myocytes identifies
endogenous a1-ARs on the nuclear membrane but does
not detect receptors at the plasma membrane (Wright
et al., 2008). Nuclei isolated from adult cardiac myocytes
confirm positive BODIPY-prazosin staining of endoge-
nous nuclear a1-ARs (Wright et al., 2012).
Third, a reconstitution system, in which a1-AR-GFP

fluorescent fusion proteins are expressed in cultured
adult a1ABKO cardiac myocytes, recapitulates the
nuclear localization of the endogenous a1-ARs (Huang
et al., 2007; Wright et al., 2008, 2012).
Studies in other cells provide some support for the

results in cardiac myocytes. In recombinant cells
expressing a1-ARs, for example, HEK293 cells, all
a1-AR subtypes show some intracellular localization
(Daly et al., 1998; Mackenzie et al., 2000; Chalothorn
et al., 2002). In primary cultures of smooth muscle cells,
endogenous a1-ARs are also found on both the plasma
membrane and intracellular, using a fluorescent ligand,
BODIPY-FL prazosin (Mackenzie et al., 2000).
2. Mechanism of a1-Adrenergic Receptor Nuclear

Localization. The mechanism for nuclear targeting in-
volves nuclear localization sequences embedded in the
protein. These nuclear localization sequences typically
consist of mono- or bi-partite basic residues, usually
lysines and arginines or glycine-arginine repeats (Dono
et al., 1998; Hock et al., 1998; Lu et al., 1998). Nuclear

localization sequences are recognized by a class of pro-
teins known as importins that bind these sequences
and facilitate transport of the target protein to the
nucleus. This importin-mediated nuclear localiza-
tion not only occurs for proteins that target to the
nucleoplasm but for proteins that target the inner
nuclear membrane as well (King et al., 2006; Cook
et al., 2007; Lusk et al., 2007). Importin-mediated
nuclear localization was previously described for the
type 1 parathyroid hormone receptor (Pickard et al.,
2006, 2007) and more recently for the gonadotropin-
releasing hormone type 1 receptor (Re et al., 2010).
Recent experiments identify nuclear localization se-
quences in the a1A- and a1B-subtypes, and mutation of
these sequences results in loss of nuclear localization
for each subtype in adult mouse cardiac myocytes
(Wright et al., 2012).

3. Receptor Orientation in the Inner Nuclear
Membrane. As described above, nuclear membrane
proteins are targeted to the inner nuclear membrane
through nuclear localization sequences, similar to
proteins in the nucleoplasm. Also important is the
orientation of inner nuclear membrane proteins, which
could affect how they signal. For GPCRs, such as
a1-ARs, if the ligand-binding domain faces the inside of
the nucleus, the ligand would have to enter the nucleus
and signaling would be initiated on the cytoplasmic
side in the space between the inner and outer nuclear
membranes. Conversely, if the ligand-binding domain
faces the space between the outer and inner nuclear
membranes, then signaling would be activated inside
the nucleus.

Recent studies with nuclear GPCRs detect signaling
in isolated nuclei, implying that nuclear receptors are
likely oriented with the ligand-binding domain facing
outward and the C terminus facing the nucleoplasm.
ETRs induce calcium transients in isolated nuclei (Boivin
et al., 2003), and b-ARs and ATRs induce transcrip-
tional responses in isolated nuclei (Tadevosyan et al.,
2010; Vaniotis et al., 2011). These studies suggest
that nuclear GPCR signaling is activated inside the
nucleus, thereby indicating an orientation in the
inner nuclear membrane similar to GPCRs at the
plasma membrane where the C terminus faces the
cytoplasm.

4. Catecholamine Uptake in Cardiac Myocytes.
A prerequisite for nuclear a1-AR signaling is that NE
and other a1-AR ligands must traverse the plasma
membrane, transit to the nucleus, and bind to and
activate receptors in a time course consistent with
signaling. In nonneuronal cells, this process is known
as NE “uptake-2” (Obst et al., 1996) and is facilitated
by extraneuronal monoamine transporter/organic cat-
ion transporter 3 (EMT/OCT3) (Zwart et al., 2001;
Schomig et al., 2006). EMT/OCT3 is expressed most
abundantly in heart (Zwart et al., 2001), where it is
present on both the plasma and nuclear membranes in

314 O’Connell et al.



adult cardiac myocytes (Wright et al., 2008). In neonatal
myocytes, uptake of [3H]NE is observed, but the time
scale of nearly an hour before NE is detected in the
nucleus is not sufficiently rapid to account for a1-AR
signaling (Buu et al., 1993).
However, a more sensitive fluorescent-based cate-

cholamine uptake assay shows that catecholamines are
taken up very rapidly in cultured adult mouse cardiac
myocytes. In this system, catecholamine uptake begins
within seconds, is clearly increased by 5 minutes,
peaks at 30 minutes, and is antagonized by addition of
unlabeled NE 15 minutes prior to catecholamine up-
take measurement, indicating specificity (Wright et al.,
2008).
Further consistent with rapid uptake, the intrinsic

uptake kinetics of OCT3, which is the rate at which one
transporter moves a cation, show that OCT3-mediated
cation transport is in the time frame of seconds. Thus,
the uptake kinetics of catecholamines by recombinant
OCT3 expressed in HEK293 cells is a Vmax ;30,000
pmol/mg protein/min and a Km ;900 mM for NE, and
a Vmax;13,000 pmol/mg protein/min and a Km;500 mM
for epinephrine (Duan and Wang, 2010). Catechol-
amine uptake is observed in seconds, with half-
maximum response seen in ;2 minute (Duan and
Wang, 2010). It is likely that the kinetic properties of
the transporter are relatively consistent from cell to
cell and that expression level will dictate the absolute
amount of uptake and OCT3 expression is highest in
heart (Zwart et al., 2001).
In mice, OCT3-mediated heart uptake of the neuro-

toxin cation methyl-4-phenylpyridinium acetate is ob-
served within minutes of infusion (;4000 ng/g tissue
5 minutes after infusion), and this uptake is inhibited
by 75% in OCT3KO mice (Zwart et al., 2001), indi-
cating a rapid and robust uptake system. The pheno-
type of OCT3KO mice is further interesting. Thus,
OCT3KO mice have a trend toward reduced heart size
in males [WT heart weight (HW) 160 mg, OCT3KO
HW 145 mg, n = 7, P = 0.138, a 10% reduction] (Zwart
et al., 2001), reminiscent of the small heart phenotype
seen in male a1ABKO mice (WT HW 147 mg, a1ABKO
122 mg, n = 33–27, P , 0.05, a 17% reduction)
(O’Connell et al., 2003), but the number of OCT3KO
mice analyzed was small (n = 7) (Zwart et al., 2001).
Thus, the kinetics of catecholamine uptake in myo-

cytes (Wright et al., 2008) and the biochemistry and
biology of OCT3 (Zwart et al., 2001; Duan and Wang,
2010) are consistent with a1-AR responses initiated by
agonist activation of nuclear receptors.
In agreement with the idea that a1-AR agonist must

be transported into the myocyte for signaling, there
is a long latency of a1-AR responses after agonist
addition, in contrast to the rapid onset for b-AR
agonism. Specifically, the latency for contractile or
calcium responses to a1-agonism in isolated myocytes
is 2 to 5 minutes in nine studies (Tohse et al., 1990;

Terzic et al., 1992; Gambassi et al., 1998; Zhang et al.,
1998; Woo and Lee, 1999; Ross et al., 2003; O-Uchi
et al., 2005; Luo et al., 2007; Ichishima et al., 2010),
rather than seconds as would be expected for a receptor
at the sarcolemma.

Finally, there is functional evidence that agonist
uptake is required for a1-AR signaling. Inhibition of
EMT/OCT3-mediated catecholamine uptake with cor-
ticosterone, an EMT/OCT3 antagonist, prevents a1-AR
activation of ERK in cultured adult mouse cardiac
myocytes (Wright et al., 2008).

In summary, the kinetics of agonist uptake in myocytes,
EMT/OCT3 biochemistry and biology, including kinet-
ics, heart expression, and inhibition by corticosterone,
and the latency of a1-AR physiologic responses are
all consistent with agonist uptake and activation of
nuclear a1-ARs.

5. Functional Evidence for Nuclear a1-Adrenergic
Receptor Signaling. a1-ARs have numerous signaling
effects in the cytosol, as reviewed later. Thus, if a1-ARs
signal in the nucleus, then that signal must be
transduced out of the nucleus to reach these cytosolic
targets, defining an inside-out (nuclear-to-cytoplasmic)
signaling mechanism. Three sets of data support the
idea that a1-signaling is initiated in the nucleus.
First, CGP-12177A [4-[3-[(1,1-dimethylethyl)amino]2-
hydroxypropoxy]-1,3-dihydro-2H-benzimidazol-2-one
hydrochloride], an a1-antagonist that does not cross
membranes (Staehelin et al., 1983; Levin et al., 2002;
Brahmadevara et al., 2003, 2004), does not block
a1-AR-ERK signaling in cultured adult mouse cardiac
myocytes, whereas the prototypical a1-AR antagonist
prazosin, which freely crosses the plasma membrane,
does block a1-AR-ERK signaling (Wright et al., 2008).
Second, mislocalization mutants of both the a1A- and
a1B-subtype, in which the nuclear localization sequen-
ces are mutated, do not activate ERK in cultured adult
mouse cardiac myocytes (Wright et al., 2012). These
mislocalization mutants are not redirected to the
plasma membrane, which would provide a more crucial
test of the requirement for nuclear localization, but the
mutants do show that nuclear localization is required
for a1-AR signaling in adult cardiac myocytes. Finally,
activation of nuclear a1-ARs leads to the activation of
ERK in caveolae at the plasma membrane (Wright
et al., 2008), and the nuclear export inhibitor leptomycin
B blocks a1-AR-mediated activation of ERK, suggesting
that a1-AR signaling to ERK at caveolae must originate
in the nucleus (Wright et al., 2012). How signals are
transported from the nucleus to cytosolic targets is
uncertain. However, a1-ARs activate PKC, a molecule
known to translocate upon activation, suggesting
a possible mechanism to transmit a signal out of the
nucleus. Taken together, these studies provide func-
tional evidence for a1-AR signaling initiated in the
nucleus.
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6. Localization of Signaling Partners with a1-Adren-
ergic Receptors in Cardiac Myocyte Nuclei. To effect
nuclear a1-AR signaling in cardiac myocytes, a1-ARs
must colocalize with downstream signaling partners in
the nuclear membrane. However, their identities so far
remain unclear.
A fraction of Gaq colocalizes with a1-ARs at the

nucleus, based on immunocytochemistry in a1ABKO
cardiac myocytes expressing a1-AR-GFP fluorescent
fusion proteins, and on subcellular fractionation of
WT adult cardiac myocytes (Wright et al., 2008). In
NRVMs, approximately 56% of Gaq is in caveolar
membranes defined by cav-3, and the remainder is in
noncaveolar membranes, some of which might be nu-
clear (Morris et al., 2006).
A role in nuclear signaling is uncertain for PLCb1, the

classic a1-coupled PLC. PLCb1 is detected in the nuclei
of adult cardiac myocytes using the G12 PLCb1 antibody
from Santa Cruz Biotechnology (Santa Cruz, CA)
(Wright et al., 2008), but this and other commercial
PLCb1 antibodies are not proven specific for PLCb1

using KO tissues. In NRVMs, 91% of PLCb1 is detected
in a caveolar fraction using a Santa Cruz antibody
(Lanzafame et al., 2006), and forced expression of
PLCb1b with an N-terminal enhanced GFP tag detects
localization on the sarcolemma but not the nucleus
(Grubb et al., 2008). Also in NRVMs, expression of
a C-terminal peptide from PLCb1b blocks a1- and
Gq-mediated IP turnover and aspects of hypertrophy
(Grubb et al., 2008; Filtz et al., 2009). Finally, the
substrate for PLCb1, phosphatidylinositol 4,5-bisphos-
phate, is not detected in nuclear membranes (Zhang
et al., 2013). Taken together, these data suggest that
PLCb1 might not be involved in a1-AR nuclear signaling.
An interesting alternate mediator of nuclear a1-AR

signaling is PLC«, which might be regulated by small
GTPases (Rho, Ras, Rap) and Gbg subunits, but not
by Gaq (Lopez et al., 2001). PLC« in NRVMs and heart
is scaffolded to muscle-specific A kinase-anchoring pro-
tein at the nuclear envelope with PKD, one key hyper-
trophic signaling molecule (Zhang et al., 2011, 2013).
Knockdown of PLC« inhibits a1-and Gaq-stimulated
hypertrophy in NRVMs, but has no effect on IP turn-
over, and expression of PLC« causes hypertrophy, an
effect that requires PLC« catalytic activity (Zhang
et al., 2011, 2013). Myocyte-specific PLC« KO also in-
hibits hypertrophy with pressure overload in vivo
(Zhang et al., 2013). Extensive evidence suggests that
PLC« mediates hypertrophy by hydrolysis of phos-
phatidylinositol 4-phosphate (PI4P) at the nuclear
envelope, with generation of DAG and activation of
PKD, but upstream mechanisms are uncertain (Zhang
et al., 2013). Clearly, definition of nuclear a1-AR sig-
naling partners is a promising area for the future.
7. Nuclear a1-Adrenergic Receptor Localization in

Vivo. It is possible that localization observed in isolated
or cultured cardiac myocytes does not reflect the true

localization of a1-ARs in vivo. As mentioned, overex-
pressed a1A-ARs in transgenic mice localize to the plasma
membrane based on immunohistochemical staining for
an epitope tag (Lin et al., 2001). However, very high
receptor levels, about 170-fold over basal, might cause
artifactual localization, and the lack of validated a1-AR
antibodies (Jensen et al., 2009c) make conventional
immunohistochemical approaches problematic.

Conversely, in a different a1A-subtype transgenic
model, in which an a1A-subtype GFP fusion protein is
expressed at a much lower level, approximately 5-fold
over basal, a1-ARs are detected at the nuclei in ven-
tricular tissue sections with a GFP antibody (Wright
et al., 2008). This result with the a1A-GFP transgenic
mice suggests that a1-AR nuclear localization observed
in cultured cardiac myocytes can represent a1-AR lo-
calization in vivo.

8. Pathophysiologic Implications of Nuclear
a1-Adrenergic Receptor Signaling. ETRs, ATRs, and
b-ARs signal in isolated nuclei from adult cardiac
myocytes (Boivin et al., 2003; Tadevosyan et al., 2010;
Vaniotis et al., 2011). However, it is difficult to assign
a functional significance to nuclear signaling by these
GPCRs in cardiac myocytes, because the majority of
ETRs, ATRs, and b-ARs localize to the plasma
membrane (although quantitative ligand binding in
subcellular fractions for ATRs is not possible due to low
level of expression). Conversely, approximately 80% of
a1-ARs localize to the nuclei in adult mouse cardiac
myocytes. Interestingly, in pathologic settings, a1-AR
signaling is clearly protective (sections IV and V),
whereas ETR and ATR signaling can exacerbate path-
ologic remodeling (Harada et al., 1999; Yang et al.,
2004). This raises the possibility that differences in
receptor localization might lead to differences between
physiologic and pathologic signaling. In other words,
nuclear receptors, like a1-ARs, might be protective,
whereas ETRs and ATRs at the plasma membrane
might induce pathologic signaling (Wright et al., 2012).
Although these ideas remain to be tested, differential
localization of Gq-coupled receptors could have signif-
icant implications for their physiologic functions and
for therapeutic targeting of Gq-coupled receptors in
heart disease.

9. Summary of a1-Adrenergic Receptor Nuclear
Localization. Overall, the majority of current data
supports the idea that a1-ARs localize to and signal
from the nuclei in adult cardiac myocytes in vitro and
in vivo. Identification of functional nuclear localiza-
tion sequences in each a1-subtype provides a mecha-
nistic basis to support nuclear a1-AR localization,
oriented with the C-terminal tail in the nucleoplasm.
Ligand uptake into the cell via EMT/OCT3 pro-
vides a mechanism for receptor activation. The sig-
naling mechanisms of nuclear a1-ARs remain unclear,
as do the physiologic implications of nuclear versus
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sarcolemmal signaling by a1-ARs and other Gq-coupled
receptors.

IV. a1-Adrenergic Receptor Physiologic Function
in the Heart

In the heart, AR physiology is largely focused on
acute b-AR mediated regulation of contractile function,
whereas chronic b-AR signaling is maladaptive and
b-AR antagonists are now standard therapy in heart
failure. Short-term a1-AR signaling can increase
contractility, as reviewed below, but this has not been
studied in detail in vivo. On the other hand, many
studies now indicate that chronic a1-AR signaling is
adaptive, protecting the heart from pathologic stress
through activation of physiologic hypertrophy, survival
signaling, augmentation of contractility, and ischemic
preconditioning. These data are described below.

A. a1-Adrenergic Receptors Activate Physiologic or
Adaptive Hypertrophy

Cardiac myocyte hypertrophy is the most common
cellular response in the heart to pathologic stress, but
hypertrophy is not always maladaptive (Frey and
Olson, 2003). Cardiac hypertrophy occurs during
normal physiologic development and in response to
exercise and also as an adaptive response to pathologic
stress. Physiologic or adaptive hypertrophy is charac-
terized by an increase in heart and cardiac myocyte
size without fibrosis and an overall improvement in
function.
In contrast, pathologic or maladaptive hypertrophy

is characterized by an increase in heart and cardiac
myocyte size accompanied by combinations of cardiac
cell death, fibrosis, vessel loss, reduced innervation,
and, most importantly, declining function. Clinically,
cardiac hypertrophy in Framingham adults is corre-
lated with a significantly increased risk of heart failure
and sudden death (Levy et al., 1990). Thirty years of
research from cell culture to genetically modified mice,
summarized below, demonstrates clearly that a1-ARs
can mediate a physiologic or adaptive form of cardiac
hypertrophy that offsets pathologic remodeling in heart
failure.
1. a1-Adrenergic Receptor-Mediated Hypertrophy in

Cell Culture Models. Primary cultures of NRVMs are
the most common cell culture model used to examine
signaling in cardiac myocytes. The original and now
classic experiments (Glembotski, 2013) demonstrated
that catecholamines acting through a1-ARs produce
a direct trophic response in NRVMs (Simpson et al.,
1982; Simpson, 1983, 1985). At the time, there was
debate as to whether catecholamines induced hyper-
trophy through increasing blood pressure or through
a direct action on cardiac myocytes, that is, whether
myocyte hypertrophy was regulated in some way only
by “load” or whether growth factors and their receptors

were involved, as in other types of cells. These papers
were the first demonstration that catecholamines
induce cardiac myocyte hypertrophy directly. This
finding was later confirmed in cultured adult rat and
cat cardiac myocytes (Simpson, 1988; Fuller et al.,
1990; Ikeda et al., 1991; Volz et al., 1991; Clark et al.,
1993).

Cardiac hypertrophy is clearly linked to induction of
gene transcription, and in NRVMs, a1-ARs induce
a pattern of hypertrophic gene transcription charac-
terized by re-expression of genes normally expressed
only in the fetal heart (Simpson et al., 1989). Early
studies identified a group of these “fetal genes” induced
by a1-ARs, including c-myc (Starksen et al., 1986),
atrial natriuretic factor (Knowlton et al., 1991, 1993),
a-skeletal actin (aSkAct) (Bishopric et al., 1987; Long
et al., 1989; Karns et al., 1995), and b-myosin heavy
chain (bMyHC) (Waspe et al., 1990; Kariya et al., 1993,
1994).

A crucial study of endogenous transcription in intact
NRVMs proved that a1-ARs stimulate transcription
not only of a fetal gene (aSkAct), but also all RNA
species, including the mRNA for an adult gene (cardiac
actin), and total RNA (ribosomal and transfer) (Long
et al., 1989). Several subsequent studies focusing on
a1-AR-mediated transcriptional regulation delineated
a host of transcriptional factors and modifiers acti-
vated by a1-ARs in cardiac myocytes, including TEF-1
(Kariya et al., 1993, 1994; Karns et al., 1995; McLean
et al., 2003), GATA-4 (Morimoto et al., 2000; Liang
et al., 2001a,b), Egr-1 (Jin et al., 2000), Elk 1 (McWhinney
et al., 2000), Vgl-4 (Chen et al., 2004), Rlf (Post et al.,
2002), CREB (Markou et al., 2004), Zfp260 (Debrus et al.,
2005), and class 2 histone deacetylase (Vega et al., 2004;
Liu et al., 2009).

Mechanistically, the a1A-subtype is implicated in
a1-AR mediated hypertrophy in NRVMs through the
use of a1-AR subtype-specific pharmacologic agents
(Autelitano and Woodcock, 1998). Several mechanisms
for a1-AR-mediated hypertrophic signaling are pro-
posed, and a multitude of signal transducers are
implicated (Jensen et al., 2011). Certain molecules,
based on frequency in the literature, might be
considered essential or “core” molecules required for
a1-AR-mediated hypertrophic signaling, including PLC
(Filtz et al., 2009; Zhang et al., 2013), PKC (a, d, and «,
three main isotypes activated by a1-ARs) (Henrich and
Simpson, 1988; Kariya et al., 1991, 1993, 1994; Karns
et al., 1995; Haworth et al., 2000; Rohde et al., 2000;
Braz et al., 2002, 2004; Vega et al., 2004; Carnegie
et al., 2008), PKD (Haworth et al., 2000; Vega et al.,
2004; Harrison et al., 2006; Avkiran et al., 2008;
Bossuyt et al., 2008, 2011; Carnegie et al., 2008; Liu
et al., 2009), ERK (Bueno et al., 2000; Xiao et al., 2001;
Barron et al., 2003; O’Connell et al., 2003), and class
2 histone deacetylase (Vega et al., 2004; Backs et al.,
2006, 2008; Harrison et al., 2006; Liu et al., 2009).
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Evidence also exists that transactivation of the EGFR
is involved in a1-mediated hypertrophy (Morris et al.,
2004; Guo et al., 2009; Li et al., 2011; Papay et al.,
2013).
In total, a1-mediated hypertrophy in NRVMs is

characterized by a1A-subtype-mediated activation of
the “fetal gene program” along with general increases
in transcription of all RNA species and protein synthesis
(Simpson, 1985; Long et al., 1989). Because the fetal
gene program is often associated with pathologic
hypertrophy, it was believed originally that a1-ARs
induce a pathologic hypertrophy, similar to high levels
of Gq overexpression (Dorn and Brown, 1999). This
idea proved to be incorrect.
2. a1-Adrenergic Receptor-Mediated Hypertrophy in

Animal Models. Early studies in mice, cats, and dogs
showed that long-term catecholamine infusion in
various species and at doses that do not increase blood
pressure produces cardiac hypertrophy in vivo, which
is “physiological,” in that cardiac function is normal or
improved and there is no fibrosis (Laks et al., 1973;
King et al., 1987; Marino et al., 1991; Patel et al., 1991;
Stewart et al., 1992; Vecchione et al., 2002). Whereas
these studies suggest clearly that activation of ARs
induces cardiac hypertrophy directly, which was de-
bated at the time, the lack of subtype-specific AR
pharmacologic agents limits mechanistic insight. How-
ever, in preliminary experiments, infusion of a sub-
pressor dose of an a1A agonist in mice can increase
fetal gene expression (unpublished data).
The advent of transgenic mouse technology provided

a platform to address AR subtype-specific function in
vivo, and transgenic gain-of function and gene deletion
loss-of-function models have mostly confirmed cell
culture studies indicating that a1-ARs regulate hyper-
trophy, with some prominent exceptions.
Cardiac myocyte-specific transgenic overexpression

of the WT a1A-subtype, even at very high levels (148-
to 170-fold), does not alter heart size, although
a1A transgenic mice eventually develop dilated cardio-
myopathy and die prematurely (Lin et al., 2001;
Chaulet et al., 2006). On the other hand, transgenic
overexpression of constitutively active mutant (CAM)
a1A with the endogenous a1A-promoter induces cardiac
hypertrophy without an effect on systemic blood pressure
(Papay et al., 2013).
Similarly, the a1B-subtype shows a variable ability

to induce hypertrophy when overexpressed, depending
on the model. Overexpression of a CAM of the
a1B-subtype with the a-myosin heavy chain (aMyHC)
promoter at low levels (2- to 3-fold) induces hypertro-
phy (Milano et al., 1994) and exacerbates pathologic
remodeling after aortic constriction (Wang et al., 2000).
Likewise, systemic overexpression of a CAM a1B with
the endogenous a1B-promoter also induces cardiac
hypertrophy, along with hypotension, and a decreased
pressor response, clearly dissociating hypertrophy from

blood pressure (Zuscik et al., 2001). In the same study,
overexpression of a wild-type (WT) a1B with the en-
dogenous a1B-promoter shows a lesser degree of hyper-
trophy (Zuscik et al., 2001). More recently, a different
result was found in that overexpression of the CAM
a1B caused hypertrophy, but only in older mice, and
hypertrophy was associated with fibrosis (Papay et al.,
2013). Furthermore, hypertrophy seen in both the
CAM a1A and a1B mice was not observed when the
mice were interbred to derive a systemic CAM a1AB
transgenic mouse (Papay et al., 2013). In contrast with
these results, relatively high-level overexpression of
the WT a1B with the aMyHC promoter (.40-fold) does
not induce hypertrophy but results in dilated cardio-
myopathy and death (Akhter et al., 1997; Grupp et al.,
1998; Iaccarino et al., 2001; Lemire et al., 2001).

a1-AR gene-deletion models are reviewed in detail
(Simpson, 2006). In brief, heart size is not different in
the a1A-knockout on a mixed FVB/129SvJ background
(a1AKO) (Rokosh and Simpson, 2002) or in the
a1B-knockout on a mixed C57Bl/6/129SvJ background
(a1BKO) (Cavalli et al., 1997). Knockout of the
a1D-subtype, which is not expressed in cardiac myo-
cytes, also has no effect on heart size (Tanoue et al.,
2002; Chalothorn et al., 2003; Hosoda et al., 2005).

However, double knockout of both the a1A- and a1B-
subtypes, which eliminates a1-AR binding in the heart,
on a congenic C57Bl/6J background (a1ABKO) causes
a 15% reduction in heart and cardiac myocyte size
during normal postnatal development (O’Connell et al.,
2003). Mechanistically, ERK activity is reduced 30% in
a1ABKO hearts, and a1-mediated activation of ERK
is absent in cultured a1ABKO cardiac myocytes, sug-
gesting that a1-AR-ERK signaling might regulate
hypertrophic growth during postnatal development
(O’Connell et al., 2003). Importantly, a1ABKO mice
have normal basal blood pressure, normal body and
organ weights, normal home cage locomotor activity,
and normal overall health (O’Connell et al., 2003,
2006). These data show that any effects of the a1A- and
a1B-subtypes on maintenance of basal blood pressure
can be compensated by other receptors, but that heart
growth requires the a1A and/or a1B. Maximal contrac-
tile responses to phenylephrine in a1ABKO isolated
arteries are reduced by 35% in carotid and by 77% in
mesenteric, with little or no changes in pEC50, in-
dicating compensation by a1D (Methven et al., 2009).
We have not tested a1-mediated pressor response in
the intact a1ABKO, but they are reduced in both the
a1AKO and a1BKO (Cavalli et al., 1997; Rokosh and
Simpson, 2002).

Interestingly, a preliminary re-examination of the
a1-AR single knockouts on a congenic C57Bl/6J
background reveals that a1BKO mice have small
hearts, similar to the a1ABKO, suggesting that the
a1B-subtype alone is required for physiologic postnatal
growth of the heart (unpublished data). In support of
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this, subpressor catecholamine infusion does not cause
hypertrophy in an a1BKO on a mixed genetic back-
ground (Vecchione et al., 2002).
Aortic constriction in the a1ABKO mice results in

a worse dilated cardiomyopathy, with fibrosis, apopto-
sis, decreased contractility, and increased mortality
contrasted to WT mice (O’Connell et al., 2006). In-
terestingly, the final degree of hypertrophy in a1ABKO
hearts after aortic constriction is similar to that in WT
hearts, but induction of the fetal gene program is lost
(O’Connell et al., 2006). This shows that the absence of
a1-ARs exacerbates pathologic hypertrophic responses
and that induction of the fetal-gene program can be
uncoupled from pathologic hypertrophy.
3. Summary of a1-Adrenergic Receptor in Hypertrophy.

Early studies in NRVMs demonstrated that the
a1A-subtype induces hypertrophy with activation of
the fetal-gene program and overall RNA and protein
synthesis. In vivo, infusions of subpressor doses of
catecholamines cause a physiologic hypertrophy but
generally do not pinpoint which a1-subtype might be
responsible. Although studies from a1-AR transgenic
mice provide inconsistent results, studies from a1-AR
knockout mice suggest that the a1B-subtype is required
for hypertrophic growth during postnatal cardiac de-
velopment, a period of physiologic heart growth, and
that a1-ARs are not required for pathologic hypertrophy
after aortic constriction. In fact, pathologic hypertrophy
is worse in the absence of a1-ARs.
Therefore, in vivo studies, either with catecholamine

infusion or a1-AR knockout mice, collectively suggest
that a1-ARs stimulate an adaptive or physiologic
hypertrophy, with no decrease in contractile function.
Interestingly, findings from NRVMs suggesting that
a1-ARs induce pathologic hypertrophy based on acti-
vation of the fetal gene program are not supported by
findings in a1ABKO mice. In a1ABKO mice, activation
of the fetal gene program is absent despite significant
hypertrophy and worse cardiomyopathy after aortic
constriction.
A new consideration with regard to the fetal gene

program is that a classic fetal gene, b-MyHC, is re-
expressed only in a minor subpopulation of cardiac
myocytes in the mouse heart after aortic constriction,
and the myocytes with b-MyHC are smaller than the
cells with a-MyHC, not larger (Lopez et al., 2011).
These data question whether fetal genes are even
markers of hypertrophy or pathology (Lopez et al.,
2011).

B. a1-Adrenergic Receptors Prevent Cardiac
Myocyte Death

Cell death, either apoptotic, necrotic, or autophagic,
plays a significant role in the development of heart
failure (Guerra et al., 1999; Kostin et al., 2003;
Wencker et al., 2003; Baines et al., 2005; Foo et al.,
2005; Nakayama et al., 2007; Nishida and Otsu, 2008;

Baines, 2010; Whelan et al., 2010; Nemchenko et al.,
2011). Whereas substantial evidence indicates that
b1-ARs induce cell death, a growing body of research
summarized below indicates that a1-ARs prevent
cardiac myocyte cell death in direct opposition to
b1-ARs.

1. a1-Adrenergic Receptor-Mediated Myocyte Survival
Signaling in Cell Culture Models. In cultured cardiac
myocytes, NE stimulates apoptotic cell death through
activation of b1-ARs, whereas b2-ARs are believed to be
cytoprotective (Mann et al., 1992; Xiao et al., 2004).
Interestingly, several studies indicate that a1-ARs are
also cytoprotective and act antithetically to b1-ARs.
In NRVM, the a1-AR agonist phenylephrine inhibits
apoptosis induced by the b-agonist isoproterenol
(Iwai-Kanai et al., 1999; Zhu et al., 2000), nonhydro-
lyzable cAMP analogs (Iwai-Kanai et al., 1999; Zhu
et al., 2000), hypoxia (Zhu et al., 2000), serum starvation
(Zhu et al., 2000), 2-deoxyglucose (Valks et al., 2002),
and doxorubicin (Aries et al., 2004). Similar results are
observed in cultured adult rat cardiac myocytes, where
NE-induced apoptosis is abolished by the b-AR
antagonist propranolol, but not the a1-AR antagonist
prazosin (Communal et al., 1998; O’Connell et al.,
2006).

Mechanistically, a variety of pathways are impli-
cated in a1-AR-mediated survival signaling in cardiac
myocytes. a1-AR survival signaling requires activation
of ERK and subsequent regulation of Bcl-2 family
members to stabilize the mitochondrial membrane
(Iwai-Kanai et al., 1999; Zhu et al., 2000; Valks et al.,
2002; Communal et al., 2003; Huang et al., 2007;
Wright et al., 2008, 2012). In NRVM, phenylephrine
inhibits apoptosis induced by serum starvation and
hypoxia by preventing downregulation of Bcl-2 and
Bcl-X mRNA and protein levels (Zhu et al., 2000). In
addition, phenylephrine induces the phosphorylation
of Bcl-2 family member Bad at Ser112 and Ser155,
preventing 2-deoxyglucose-induced apoptosis (Valks
et al., 2002). Interestingly, cAMP-dependent protein
kinase (PKA), known to be downstream of b1-ARs, also
stimulates phosphorylation of Bad at Ser136 (Valks
et al., 2002). This finding might suggest that both
b1-AR and a1-AR signaling converge on a single
molecule to modulate cell survival, implying that the
balance between b1- and a1-AR signaling could control
cell fate. However, how the interplay between a1-AR and
b-AR phosphorylation of Bad impacts cardiac myocyte
survival is unclear.

Other studies propose a role for ERK as a regulator
of a1-AR survival signaling. ERK mediates cytoprotec-
tive signaling in cardiac myocytes (Lips et al., 2004),
and a1-AR mediated activation of ERK is a well-
characterized signaling pathway involved in hypertro-
phy (Bueno et al., 2000; Xiao et al., 2001; Barron et al.,
2003; O’Connell et al., 2003). In NRVM, the MEK-1
inhibitor PD098059 [2-(2-amino-3-methoxyphenyl)-4H-
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1-benzopyran-4-one] negates phenylephrine-mediated
survival signaling (Iwai-Kanai et al., 1999). Further-
more, in cultured adult rat cardiac myocytes, NE-
mediated activation of ERK upregulates b1-integrin
and protects cells against b1-AR-mediated apoptosis
(Communal et al., 2003).
The most convincing evidence for ERK in a1-mediated

survival signaling comes from a1ABKO myocytes.
Cultured a1ABKO mouse myocytes have markedly
increased necrosis and apoptosis with toxic stimuli,
including hydrogen peroxide, doxorubicin, and b-AR
stimulation (O’Connell et al., 2006; Huang et al., 2007).
This sensitivity to death stimuli in a1ABKO myocytes
is rescued by expression of the a1A-subtype but not by
the a1B, indicating that the a1A is necessary and
sufficient for myocyte survival (Huang et al., 2007).
Furthermore, rescue is mimicked by expression of
constitutively activated MEK, which increases ERK
activity, and rescue by the a1A is prevented by
dominant negative MEK, which inhibits ERK (Huang
et al., 2007). Together, these experiments define an
a1A-ERK pathway for myocyte survival (Huang et al.,
2007).
Potential mediators downstream of ERK include

p90Rsk, a potential kinase for a1-AR-mediated phos-
phorylation of Ser112 in Bad (Valks et al., 2002), and
the transcription factors GATA4 and nuclear factor of
activated T cells (NFAT) (Pu et al., 2003; Aries et al.,
2004).
Overall, the data from cultured cardiac myocytes

indicate that a1-ARs mediate survival signaling,
potentially through a1A activation of ERK, leading to
regulation of Bcl-2 family members and stabilization of
the mitochondrial membrane, and/or by induction of
GATA4 and NFAT.
2. a1-Adrenergic Receptor-Mediated Myocyte Survival

Signaling in Animal Models. In mice, cats, and dogs,
long-term infusion of subpressor doses of the mixed
a1/b-AR agonist NE produces an adaptive hypertrophy
without increased cell death or fibrosis (Laks et al.,
1973; King et al., 1987; Marino et al., 1991; Patel et al.,
1991; Stewart et al., 1992; Vecchione et al., 2002).
Furthermore, a1-AR stimulation in isolated, perfused
hearts prevents ischemia-reperfusion-induced cell ap-
optosis and necrosis in mice (Tejero-Taldo et al., 2002),
rats (Banerjee et al., 1993; Mitchell et al., 1995; Tosaki
et al., 1995; Meng et al., 1996a,b, 1999; Meldrum et al.,
1997; Imani et al., 2008), rabbits (Bankwala et al.,
1994; Tsuchida et al., 1994; Cope et al., 1997; Baghelai
et al., 1999a,b), and dogs (Kitakaze et al., 1987, 1991,
1994; Node et al., 1997).
However, gain-of-function a1-AR transgenic models

are inconsistent in demonstrating that a1-ARs protect
against cardiac cell death. Cardiac myocyte-specific
transgenic overexpression of the a1A-subtype at high
levels (66-fold) protects against pathologic stress from
pressure overload induced by aortic constriction and

ischemic injury induced by coronary artery ligation,
although the mechanism is linked to a basal hyper-
contractile phenotype rather than prevention of car-
diac myocyte death (Du et al., 2004, 2006). Moreover,
by 1 year, ventricles from these a1A-transgenic mice
show increased fibrosis and apoptotic labeling, and the
mice die prematurely, indicating that long-term, very
high-level a1A-subtype overexpression can be associ-
ated with cell death rather than survival signaling
(Chaulet et al., 2006).

Although transgenic overexpression of the a1B-subtype
shows a variable ability to induce hypertrophy, pro-
longed overexpression of the a1B-subtype in some
models, although not directly linked to increased cell
death, induces a pathologic remodeling (Grupp et al.,
1998; Iaccarino et al., 2001; Lemire et al., 2001; Wang
et al., 2000). The failure of these gain-of-function models
to recapitulate the findings in NRVM or in other animal
models might be linked to the high levels of overexpression
in most of these models or failure of overexpressed
receptors to recapitulate signaling by ligand-activated
endogenous receptors.

Conversely, loss-of-function models clearly indicate
that a1-ARs prevent cardiac myocyte cell death. In
a1ABKO mice, which lack the two a1-AR subtypes
expressed in cardiac myocytes, aortic constriction
induces a worse dilated cardiomyopathy, accompanied
by a significant increase in cardiac cell apoptosis and
fibrosis, leading to decreased function and increased
mortality compared with WT. Cultured a1ABKO
cardiac myocytes have increased susceptibility to
several pro-death agonists, as reviewed in the pre-
ceding section (O’Connell et al., 2006; Huang et al.,
2007, 2008), and this is rescued by adenoviral
mediated reconstitution of the a1A-subtype, but not
the a1B-subtype, in a pathway that requires ERK
(Huang et al., 2007). The absence of this a1A-subtype
ERK survival signaling might explain, at least par-
tially, the negative outcome in a1ABKO mice subjected
to aortic constriction (O’Connell et al., 2006).

In support of the finding that the a1A-subtype is both
sufficient and necessary to prevent cardiac myocyte death,
long-term infusion of a subpressor concentration of the
a1A-subtype-specific agonist A61603 [N-[5-(4,5-dihydro-
1H-imidazol-2yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-
1-yl]methanesulphonamide hydrobromide] prevents cell
death and pathologic remodeling associated with
doxorubicin-induced cardiotoxicity (Chan et al., 2008;
Dash et al., 2011).

3. Summary of a1-Adrenergic Receptor-Mediated
Myocyte Survival Signaling. Studies in cultured neo-
natal and adult cardiac myocytes show that a1-ARs
mediate survival signaling, most likely through acti-
vation of ERK and subsequent regulation of Bcl-2
family members to preserve mitochondrial membrane
stability, as well as induction of protective transcription
factors, such as GATA4 and NFAT, with their own
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downstream effectors. These findings generally support
early studies in which catecholamine infusion in several
animal models stimulated an adaptive hypertrophy
without cell death or fibrosis. However, gain-of-
function studies in a1A- and a1B-transgenic mouse
models are inconsistent with regard to survival signal-
ing, possibly due to massive levels of overexpression
and/or aberrant signaling by constitutively activated
receptors. More importantly, loss-of-function models,
particularly a1ABKO mice, support the notion that
a1-ARs mediate survival signaling. Furthermore, studies
in cultured a1ABKO cardiac myocytes with reconstitu-
tion of the a1A-subtype define an a1A-subtype ERK
survival signaling pathway, the absence of which could
at least partially explain the maladaptive responses to
pathologic stress in a1ABKO mice.

C. a1-Adrenergic Receptors Augment
Contractile Function

Contractile dysfunction is a major component of and
a causative factor in heart failure progression. Fur-
thermore, as b-AR-mediated inotropy declines in heart
failure due to receptor desensitization and down-
regulation, a1-AR mediated inotropy, which contrib-
utes little to basal contractile function, might function
in a compensatory role to preserve contractile function
in the failing heart.
1. a1-Adrenergic Receptor Activation of Contraction

in In Vitro Models. In many species, a1-ARs induce
a positive inotropic response in left ventricular myo-
cytes, trabeculae, and the perfused heart (Endoh and
Blinks, 1988; Terzic et al., 1992; Turnbull et al., 2003).
However, in mice, the a1-AR inotropic response can be
negative in a few left ventricular preparations, in-
cluding isolated papillary muscles and a minority of
isolated cardiac myocytes (Hirano et al., 2006; Chu
et al., 2013). Interestingly, populations of cardiac
myocytes from the right and left ventricle have a frac-
tion of myocytes that have a positive inotropic response
to phenylephrine and an increased Ca2+ transient,
prominent in the left ventricle, and a fraction of myo-
cytes that have a negative inotropic response to phen-
ylephrine and a decreased Ca2+ transient, mainly in
the right ventricle (Chu et al., 2013).
Another unexpected finding in mouse heart is that

a1-ARs mediate negative inotropy in myocardium from
the normal right ventricle but positive inotropy in left
ventricular myocardium (Wang et al., 2010). Surpris-
ingly, in heart failure caused by myocardial infarction,
a1-AR inotropy in right ventricular myocardium
switches from negative to positive, and a1-AR positive
inotropy in left ventricular myocardium is preserved
(Litwin et al., 1995; Wang et al., 2010). These two
aspects of a1-AR-mediated positive inotropy in heart
failure after myocardial infarction can be interpreted
as adaptive, that is, undiminished inotropy in the left
ventricle (Litwin et al., 1995; Wang et al., 2010) and

the appearance of positive inotropy in the right ventricle
(Wang et al., 2010). Notably, right ventricular failure
predicts worse outcomes in patients with left ventricular
failure (Bleasdale and Frenneaux, 2002).

Interestingly, some find that the a1A- and
a1B-subtypes differentially regulate contraction, with
the a1A-subtype mediating a positive response and the
a1B-subtype a negative response (Gambassi et al.,
1998; Lin et al., 2001; Ross et al., 2003; O-Uchi et al.,
2008).

A multitude of mechanisms are proposed to explain
a1-AR-mediated positive or negative inotropy. Pro-
posed mechanisms include inhibition of outward K+

currents and increased action potential duration (Apkon
and Nerbonne, 1988; Fedida et al., 1989, 1990, 1991;
Ravens et al., 1989; Tohse et al., 1990, 1992; Wang
et al., 1991, 2001; Braun et al., 1992; Sato and Koumi,
1995; Gaughan et al., 1998 ); inhibition of L-type Ca2+

channel current (Chen et al., 1996; Gaughan et al.,
1998; Belevych et al., 2001) or activation (Zhang et al.,
1998; Mohl et al., 2011; Chu et al., 2013); activation of
the Na+/H+ exchanger and intracellular acidification
(Gambassi et al., 1992; Terzic et al., 1992); and reg-
ulation of myofilament Ca2+ sensitivity through phos-
phorylation of myosin light chain and/or cardiac
troponin I (Hartmann et al., 1995; Andersen et al.,
2002; McCloskey et al., 2003; MacGowan et al., 2005;
Wang et al., 2006, 2010).

2. a1-Adrenergic Receptor-Mediated Contraction
in Transgenic and Gene-Deletion Mouse Models.
Cardiac myocyte-specific transgenic overexpression
of the a1A-subtype at high levels (148- to 170-fold)
increases basal contractile function (Lin et al., 2001)
and limits pathologic remodeling from pressure over-
load and ischemic injury (Du et al., 2004, 2006). These
results suggest that the a1A-subtype mediates positive
inotropic responses, in agreement with recent in vitro
studies (Mohl et al., 2011; Chu et al., 2013). Con-
versely, transgenic overexpression of the a1B-subtype
can be associated with depressed contractile function
and pathologic remodeling in the heart (Grupp et al.,
1998; Wang et al., 2000; Iaccarino et al., 2001; Lemire
et al., 2001).

Loss-of-function models suggest that a1-AR-
mediated inotropic responses are not required for basal
contractile function, but might prevent contractile
decline in response to pathologic stress. Basal contrac-
tile function by echocardiography is normal in both
a1AKO and a1BKO mice (Rokosh and Simpson, 2002;
Vecchione et al., 2002). In a similar fashion, basal
contractile function assessed by echocardiography in
a1ABKO mice is similar to WT, although cardiac
output is decreased, due to a slight bradycardia and
reduced left-ventricular volume, and exercise perfor-
mance is impaired, presumably for the same reasons
(O’Connell et al., 2003). Interestingly, calcium sensitivity
is increased and maximal force is decreased in isolated
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muscle strips from a1ABKO mice, suggesting subtle
abnormalities in basal contractile function with long-
term absence of a1-ARs (McCloskey et al., 2003). More
strikingly, contractile function is impaired significantly
by aortic constriction in a1ABKO mice (O’Connell et al.,
2006). This contractile dysfunction might be caused by
both the loss of a1-AR-mediated positive inotropy and the
absence of a1-AR-mediated survival signaling and
adaptive hypertrophic effects, such as increased myo-
sin synthesis. The exaggerated contractile dysfunction
in the a1ABKO confirms that a1-AR-mediated inotropy
could play an important protective role in response to
pathologic stress in the heart.
3. a1-Adrenergic Receptor Activation of Contraction

in Humans. In healthy young women, systemic in-
fusion of the a1-AR agonist methoxamine increases
contractility determined noninvasively (Curiel et al.,
1989). In both healthy patients and patients with New
York Heart Association (NYHA) II–IV heart failure,
infusion of the a1-AR agonist phenylephrine into the
left main coronary artery increases contractility mea-
sured as dp/dt, demonstrating a1-AR inotropy in both
healthy and heart failure patients (Landzberg et al.,
1991). Interestingly, in the same patients, the a1-AR
antagonist phentolamine shows no effect on baseline
contractile function, suggesting that there is little
contribution of a1-AR inotropy to basal contractile
function in humans (Landzberg et al., 1991).
Surprisingly, a1-AR-mediated inotropy can equal

b-AR-mediated inotropy in trabeculae isolated from
failing human hearts (Skomedal et al., 1997). This
suggests that in human heart failure, as b-ARs are
desensitized and downregulated, a1-AR mediated con-
tractility might act in a compensatory role to maintain
contractile function. Similarly, inhalation of the a1-AR
agonist methoxamine improves exercise performance
in patients with significant left ventricular contractile
dysfunction (Cabanes et al., 1992). Furthermore, in a
small cohort of patients with hypotension due to end
stage heart failure, the use of the a1-AR agonist
midodrine is associated with increased contractile
function (Zakir et al., 2009). The authors attributed
the benefit to a modest increase in blood pressure that
resulted from activation of vascular a1-ARs, permitting
up-titration of recommended heart failure medications
(Zakir et al., 2009). However, it is possible that direct
activation of cardiac a1-ARs contributed to this ben-
eficial effect.
4. Summary of a1-Adrenergic Receptor Activation of

Contraction. Studies with isolated myocytes, muscle
strips, and perfused hearts show that a1-ARs can
induce either positive or negative inotropic responses
by altering K+ and Ca2+ currents, intracellular pH, and
myofilament Ca2+ sensitivity. Mouse models confirm
that the a1A-subtype can induce positive inotropic re-
sponses in vitro and in vivo and that a1A-subtype-mediated
inotropy might protect the heart from pathologic

stress. Importantly, a1-AR-mediated positive inotropy
is documented in intact humans and can be equal to
b-AR inotropy in isolated trabeculae from human heart
failure patients, identifying a clinically relevant adap-
tive function for a1-ARs.

D. a1-Adrenergic Receptors Induce
Ischemic Preconditioning

Ischemic preconditioning is an intrinsic protective
mechanism in the heart whereby transient periods of
ischemia protect the myocardium from damage due
to longer bouts of ischemia, and protection can be
observed both early (minutes to hours after ischemia)
and late (hours to days). Pharmacologic agents can also
induce preconditioning, and a1-ARs are among the
most effective (Jensen et al., 2011).

1. a1-Adrenergic Receptor-Mediated Preconditioning
in Animal Models. In several animal models, in-
cluding dog (Kitakaze et al., 1987, 1991, 1994; Node
et al., 1997), rabbit (Bankwala et al., 1994; Tsuchida
et al., 1994; Cope et al., 1997; Baghelai et al., 1999a,b),
rats (Banerjee et al., 1993; Mitchell et al., 1995; Tosaki
et al., 1995; Meng et al., 1996a,b, 1999; Meldrum et al.,
1997; Imani et al., 2008) and mice (Tejero-Taldo et al.,
2002), a1-ARs induce both early and late precondi-
tioning, through a variety of mechanisms including
adenosine release (Kitakaze et al., 1991), activation of
59-nuleotidase activity (Kitakaze et al., 1994; Node
et al., 1997), activation of PKC (Tsuchida et al., 1994;
Mitchell et al., 1995; Node et al., 1997; Meng et al.,
1999), regulation of Bcl2 family members (Baghelai
et al., 1999a), induction of heat-shock proteins and
protein synthesis (Meng et al., 1996a,b), activation of
mitochondrial K-ATP channels (Imani et al., 2008),
and induction of iNOS (Tejero-Taldo et al., 2002; Zhao
et al., 2012). Once again though, poor specificity of
antagonists for the a1-subtypes has made it difficult to
define the a1-AR subtype(s) responsible for ischemic
preconditioning.

However, transgenic overexpression of constitutively
active mutants of the a1A- and a1B-subtypes reveals
that the a1A-subtype, but not the a1B, mediates is-
chemic preconditioning that might not involve PKC
(Rorabaugh et al., 2005). Preconditioning by the a1A in
a rat transgenic model could be mediated by MEK/ERK
phosphorylation and iNOS (Zhao et al., 2012). Similarly,
cardiac myocyte-specific transgenic overexpression
of the a1A-subtype suppresses ischemia-reperfusion-
induced IP3 generation in isolated, perfused hearts
(Amirahmadi et al., 2008). Conversely, cardiac myocyte-
specific transgenic overexpression of the a1B-subtype
does not prevent ischemic preconditioning or prevent
ischemic-reperfusion injury (Gao et al., 2000).

2. a1-Adrenergic Receptor-Mediated Preconditioning
in Humans. In human atrial and ventricular muscle
strips, a1-ARs mediate ischemic preconditioning through
activation of PKC, p38 MAPK, and opening of
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mitochondrial K-ATP channels (Cleveland et al., 1996,
1997; Loubani and Galinanes, 2001, 2002).
3. Summary of a1-Adrenergic Receptor-Mediated

Preconditioning. In short, the data indicate that
a1-ARs, most likely the a1A-subtype based on studies
in mouse and rat, induce ischemic preconditioning and
prevent cardiac myocyte death from ischemic injury.

E. Conclusions: a1-Adrenergic Receptors
Are Cardioprotective

Three fundamental conclusions emerge based on 30
years of studies examining the physiologic function of
a1-ARs in the heart that tend to contradict the con-
ventional wisdom regarding cardiac a1-ARs.
1. a1-Adrenergic Receptors are Cardioprotective and

Prevent Pathologic Remodeling in Heart Failure Unlike
Other Gq-Coupled Receptors. Specifically, the a1A-
subtype induces cardioprotection and positive inotropy,
whereas the a1B-subtype might be required for an
adaptive, physiologic hypertrophy. Cardiac remodeling
mediated by Gq-coupled receptors, such as a1-ARs,
ETRs, and ATRs, is arguably the most significant
physiologic function of these receptors in the heart.
Currently, it is widely believed that all Gq-coupled
receptors mediate a pathologic hypertrophic response.
The idea that Gq-signaling is pathologic is based
primarily on three lines of evidence, as reviewed
previously (Dorn and Brown, 1999; Adams and Brown,
2001). First, Gq-agonists, such as phenylephrine (an
a1-AR agonist), endothelin, and angiotensin, induce
hypertrophy with expression of the “fetal genes” in
cultured NRVM, and re-expression of the “fetal genes”
is classically associated with pathologic ventricular
remodeling, as reviewed previously (Dorn and Brown,
1999). Second, mouse models targeting overexpression
of ETRs or ATRs suggest that these receptors generally
induce pathologic remodeling (Ainscough et al., 2009;
Paradis et al., 2000; Yang et al., 2004). Clinically, ATR
blockers are used to treat heart failure (Chrysant,
2008), although current ETR antagonists have no
proven efficacy for heart failure (Mylona and Cleland,
1999; McMurray et al., 2007). Third, cardiac-specific
transgenic overexpression of Gaq in mice induces
pathologic remodeling with increased cardiac myocyte
apoptosis, as reviewed (Dorn and Brown, 1999; Dorn,
2005). However, high-level Gaq-overexpression is re-
quired for pathology, as reviewed previously (Jensen
et al., 2011). Furthermore, the data summarized in this
section clearly challenge the dogma that all Gq-coupled
receptor signaling is pathologic. Instead, the data
indicate a1-AR signaling can be cardioprotective.
2. a1-Adrenergic Receptor-Mediated Cardioprotective

Signaling Can Explain the Worsening of Heart Failure
with a1-Blockers Observed in Clinical Trials. As
detailed in the next section (section V), a1-blockers
exacerbate heart failure and are associated with worse
outcomes in patients with hypertension (ALLHAT),

heart failure (V-HeFT), and benign prostatic hyperpla-
sia (Cohn, 1993; Cohn et al., 1986; ALLHAT, 2000,
2003; Dhaliwal et al., 2009). Hallmarks of ventricular
remodeling in heart failure include contractile dys-
function (both systolic and diastolic), pathologic hyper-
trophy, and increased cardiac cell death and fibrosis
(Anand and Florea, 2003). Importantly, a1ABKO mice
by virtue of their lack of cardiac myocyte a1-ARs
approximate the use of a1-blockers (O’Connell et al.,
2003). In the a1ABKO mouse model, pathologic stress
from aortic constriction causes hypertrophy with failed
gene transcription, increased cardiac cell death, in-
creased fibrosis, and worsened contractile function,
leading to dilated cardiomyopathy, heart failure, and
ultimately 50% mortality (O’Connell et al., 2003, 2006).
Follow-up studies in cultured a1ABKO cardiac myo-
cytes define a cardioprotective a1A-subtype signaling
pathway, identifying a direct requirement for pro-
tective a1-AR signaling in cardiac myocytes, the
absence of which could at least partially explain the
negative outcomes in a1ABKO mice (Huang et al.,
2007, 2008). Support for the assertion that a1-ARs are
cardioprotective can also be drawn from studies in
gain-of-function models, where a1A-subtype overex-
pression protects against pathologic stress (Du et al.,
2004, 2006; Lin et al., 2001). In combination, these
studies indicate that a1-ARs are both sufficient to
induce and required for cardioprotective signaling. In
summary, these data provide a mechanistic basis to
explain the negative outcomes in clinical trials with
a1-blockers.

3. a1-Agonist Therapies Might Improve Heart Failure
Outcomes. On the basis of the accumulated evidence,
a1-AR activation of adaptive hypertrophy, prevention
of cardiac myocyte death, augmentation of contractil-
ity, and induction of ischemic preconditioning could
prevent worsened outcomes from systolic heart failure.
This provides the foundation of the argument for a1-AR
agonist therapy in heart failure. However, several
counterarguments exist (Jensen et al., 2011). First, in
transgenic models, the a1B-subtype can worsen func-
tion and induce dilated cardiomyopathy (Grupp et al.,
1998; Wang et al., 2000; Iaccarino et al., 2001; Lemire
et al., 2001). However, pharmacology and knockouts
argue against the results seen in certain cardiac
transgenics. Specifically, studies with a1-agonists in
mouse (Chan et al., 2008; Dash et al., 2011) and human
(Cleveland et al., 1996, 1997; Loubani and Galinanes,
2001, 2002), as well as in loss-of-function mouse models
(O’Connell et al., 2003, 2006; Huang et al., 2007) as
reviewed above, support a1-mediated cardioprotective
effects.

Second, a1-ARs induce vasoconstriction, which is
contraindicated in heart failure. However, in mice,
subpressor doses of an a1A-subtype-specific ligand
prevent doxorubicin cardiotoxicity (Chan et al., 2008;
Dash et al., 2011); in humans, some small trials
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indicate a1-ARs agonists might improve function in
heart failure (Cabanes et al., 1992; Zakir et al., 2009);
and numerous studies identify adaptive hypertrophy
with subpressor a1-agonist infusion, as reviewed in the
section on hypertrophy. These data provide a prelimi-
nary proof-of-principle demonstration of the efficacy of
a1-agonists in heart failure, and justify further study.
A third argument against a1-agonist therapy is that

the mixed a1/b-blocker carvedilol has proven efficacy in
heart failure. However, as discussed in the next section
(section V), current evidence suggests that the
a1-blocking properties of carvedilol are not sustained in
long-term dosing (Kubo et al., 2001; Hryniewicz et al.,
2003), and conversely carvedilol might potentiate
a1-AR signaling (Van Tassell et al., 2008).
Fourth, a1-ARs are Gq-coupled receptors, and the

conventional wisdom is that Gq-signaling exacerbates
pathologic remodeling (Jensen et al., 2011). However,
as mentioned already, a1-ARs clearly do not fit this
paradigm. In summary, despite the caveats listed,
a1-AR agonist therapy might present a novel effective
treatment of heart failure.

V. a1-Adrenergic Receptors in Human
Heart Disease

The classic physiologic function of a1-ARs is to increase
vascular smooth muscle contractility and hence blood
pressure. a1-ARs are found in vascular beds through-
out the body, including smooth muscle cells in
arteries of the heart, brain, kidneys, and gut, as well
as in smooth muscle in the prostate and bladder
(Michelotti et al., 2000). By virtue of their ability to
block a1-AR-mediated smooth muscle contractions,
a1-AR antagonists (a1-blockers) are used to treat
hypertension (Lund-Johansen and Omvik, 1991; Frish-
man and Kotob, 1999; Sica, 2005) and benign prostatic
hyperplasia (Caine et al., 1976, 1978; Schwinn and
Roehrborn, 2008; Michel, 2010).
More recently, it has become clear that a1-ARs

might play a significant role in preventing the clinical
progression of heart failure, as reviewed above. Heart
failure is a clinical syndrome of varied etiology in
which the heart cannot pump enough blood to meet the
body’s needs. Heart failure is characterized by neuro-
hormonal augmentation, leading to increased catechol-
amine levels, which are thought to play a causative
role in pathologic ventricular remodeling through
increased activation of ARs. Indeed, increased blood
NE levels are a primary finding in heart failure
patients and predict disease severity and mortality
(Cohn et al., 1984). Whereas this does not establish
a causal relationship between increased NE levels and
induction of heart failure, it was part of the rationale to
block NE activation of ARs for therapy in heart failure.
In fact, clinical trials with b-AR antagonists or

b-blockers, such as Metoprolol CR/XL Randomized

Intervention Trial in Congestive Heart Failure (meto-
prolol) (MERIT, 1999), Cardiac Insufficiency Bisoprolol
Study II (bucindolol) (CIBIS-II, 1999) and Carvedilol
Prospective Randomized Cumulative Survival Trial
(carvedilol) (Packer et al., 2001), show significant
reductions in mortality in patients with heart failure
(Foody et al., 2002; Teerlink and Massie, 1999;
Chatterjee et al., 2013). On the basis of the success of
b-blockers in improving outcomes in heart failure,
b-blockers are standard of care in heart failure therapy
(Hunt et al., 2005). This success has led to the notion
that blocking all AR signaling in heart failure would be
beneficial, and tests of this idea are reviewed below.
Currently, 5.7 million Americans have heart failure,
1 million are admitted to the hospital each year, and
the 5-year survival rate is only 50% (Roger et al., 2011).
Thus, new drugs to treat heart failure are needed
(Simpson, 2011). Here, we review the recent clinical
trials suggesting that some AR signaling, particularly
a1-AR signaling, might be beneficial in human heart
failure. Table 1 summarizes the trials.

A. Antihypertensive and Lipid-Lowering Treatment
to Prevent Heart Attack Trial: An a1-Adrenergic Re-
ceptor Antagonist in Hypertension Increases the Risk
of Heart Failure. The Antihypertensive and Lipid-
Lowering Treatment to Prevent Heart Attack Trial
(ALLHAT) was a large, randomized, double-blind,
active controlled trial initiated in 1994 and funded by
the National Heart, Lung, Blood Institute (ALLHAT,
2000, 2003). ALLHAT was designed to compare new
treatments for hypertension versus older, standard
treatments. Primary outcomes were fatal coronary
heart disease and nonfatal myocardial infarction, and
secondary outcomes included all-cause mortality,
stroke, and combined cardiovascular disease. In one
arm, 24,335 patients with hypertension and at least
one other risk factor for coronary heart disease were
randomized to the diuretic chlorthalidone (15,268) or
the nonselective a1-AR antagonist (a1-blocker) doxazosin
(9067) and were to be followed for 4–8 years.

In 2000, the ALLHAT data safety and monitoring
board stopped this arm of the trial early, citing that
patients on doxazosin had 25% more cardiovascular
events and a significant doubling in the risk of heart
failure versus patients on chlorthalidone (SoRelle,
2000). Although systolic blood pressure was approxi-
mately 3 mm Hg higher in the doxazosin group, the
ALLHAT investigators concluded that this difference
was unlikely to account for the doubling in the risk of
heart failure (Davis et al., 2002; ALLHAT, 2003), and
heart failure events were validated (Piller et al., 2002).
Furthermore, approximately 60% of patients in both
groups were on additional treatments to reduce blood
pressure, but a follow up analysis revealed that the
risk of heart failure was not reduced by this additional
antihypertensive treatment, thereby confirming the
initial findings (Davis et al., 2002). Subsequently, the
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TABLE 1
Summary of clinical trials involving a1-blockers in cardiovascular disease

Trial
Treatment Groups and Patient Numbers

Inclusion Criteria Result Interpretation
Control Groups a1-Blocker Groups

ALLHAT (2000)
(ALLHAT, 2000,
2003; SoRelle, 2000;
Davis et al., 2002;
Piller et al., 2002)

Chlorthalidone
(diuretic) [12.5–25
mg/day (N =
15,268)]

Doxazosin
(a1-blocker)
[2–8 mg/day
(N = 9067)]

Men and women age
55 or older with
hypertension
(systolic 140 mm Hg
and/or diastolic
90 mm Hg, or on
medication for
hypertension) and
at least 1 other risk
factor for coronary
heart disease

Trial stopped early.
Doxazosin increased
cardiovascular
events by 25% and
doubled the risk of
heart failure.

a1-Blockade worsens
outcomes in
hypertension with
cardiac risk factors.

V-HeFT I and II (Cohn
et al., 1986; Cohn,
1993)

V-HeFT I
Placebo (N = 273);

Hydralazine/
isosorbide dinitrate
(direct vasodilators)
[300/160 mg/day
(N = 186)]V-HeFT II

Hydralazine/
isosorbide dinitrate

Enalapril (ACE
inhibitor) (N = 403)

Prazosin (a1-blocker)
[20 mg/day (N = 183)

Male veterans mean
age 58 with
symptomatic heart
failure due to
dilated
cardiomyopathy
(ischemic or
nonischemic), on
digoxin and
diuretics

Prazosin did not
change left
ventricular ejection
fraction or mortality
versus placebo; both
were improved with
hydralazine/
isosorbide.

a1-Blockade shows no
benefit in heart
failure and might
worsen mortality.

Trend toward
increased mortality
at 5 years in
prazosin group
versus placebo,
survival improved
by other
vasodilators.

a1-Blockers in BPH
effect on HF
(Dhaliwal et al.,
2009)

Tamsulosin (58%),
terazosin (40%),
or doxazosin (2%)
(N = 98)

Male veterans with
dilated
cardiomyopathy
admitted with heart
failure (N = 388
overall)

Among the 25% of
patients taking
a1-blockers, most for
BPH, subsequent
hospitalizations for
heart failure were
increased in
patients receiving
a1-blockers without
b-blockers.

a1-Blockade worsens
outcomes in BPH in
the absence of
b-blockade.

COMET
(Carvedilol
or Metoprolol
European Trial)
(Poole-Wilson
et al., 2002, 2003)

Metoprolol tartrate
(b1-selective
antagonist) (50 mg
bid; N = 1518)

Carvedilol (b1/2-,a1-AR
antagonist) [25 mg
bid (N = 1511)]

Men (80%) and women
mean age 62 with
NYHA class II–IV
heart failure due to
dilated
cardiomyopathy
(ischemic or
nonischemic) on
stable therapy

Mortality reduced in
carvedilol group
versus metoprolol.

Carvedilol reduces
mortality, possibly
related in part to
potentiation of
a1-AR signaling.

Subsequent analyses
indicates that
benefit might not be
due to a1-blockade
(Kubo et al., 2001;
Hryniewicz et al.,
2003; Van Tassell
et al., 2008)

MOXSE (Swedberg
et al., 2002)

Placebo (N = 38) Moxonidine
(sympatholytic) [0.3-
1.5 mg bid (N = 227
total)]

Patients NYHA class
II–IV heart failure
due to dilated
cardiomyopathy
(ischemic or
nonischemic)

Moxonidine reduced
plasma NE and
heart rate but
increased adverse
events

Some degree of AR
signaling is
cardioprotective.

MOXCON (Coats,
1999; Cohn et al.,
2003; Pocock et al.,
2004)

Placebo (N = 944) Moxonidine (1.5 mg
bid [N = 990)]

As in MOXSE Trial stopped early Some degree of AR
signaling is
cardioprotective.

Moxonidine reduced
NE and increased
morbidity and
mortality

BEST (Bristow et al.,
2004)

Placebo [3 month (N =
845); 12 month (N =
654)]; Total for
BEST (N = 2708)

Bucindolol (b1/2-AR
antagonist,
sympatholytic) [3
month (N = 841); 12
month (N = 642)]

Patients NYHA class
III–IV heart failure
due to dilated
cardiomyopathy
(ischemic or
nonischemic) on
stable therapy,
subgroup with NE
measured at 3 and
12 months

Bucindolol reduced NE
and increased
mortality.

Some degree of AR
signaling is
cardioprotective.
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ALLHAT results led to the recommendation against
a1-blockers as a primary treatment of high blood
pressure (Messerli, 2001); compliance with this recom-
mendation has been modest (Stafford et al., 2004).
When it was initiated, ALLHAT was the largest trial

yet to compare the efficacy of different methods for
treating hypertension on cardiovascular outcomes. At
the time, it was assumed that lowering blood pressure,
regardless of mechanism, would by itself reduce mor-
bidity and mortality (Messerli, 2000). However, ALLHAT
shows that clinical trials involving new antihyperten-
sive treatments must examine multiple cardiovascular
outcomes.
More importantly, ALLHAT demonstrates that block-

ing a1-ARs has a negative impact on the heart, further
challenging the established dogma that elevated AR
signaling in heart disease is always pathologic. Al-
though ALLHAT does not prove that the negative effect
of a1-blockade is a direct effect on the heart, a direct
effect is supported by studies on the a1ABKO mice and
other animal and human data discussed above.
B. Vasodilator-Heart Failure Trial: An a1-Adrenergic

Receptor Antagonist Does Not Improve Survival in
Heart Failure. The Vasodilator-Heart Failure Trial
(V-HeFT), phase I, was a small trial initiated in 1980
involving 642 men diagnosed with chronic congestive
heart failure. V-HeFT was designed to evaluate the
effects of vasodilators on mortality as the primary
outcome (Cohn et al., 1986). Prior to V-HeFT, studies
indicated that reducing systemic vascular resistance
improved hemodynamics in patients with heart failure
(Cohn and Franciosa, 1977a,b), and V-HeFT was de-
signed to test whether this principal would translate
into clinical benefit. Patients with heart failure and
taking digoxin and a diuretic, a common therapeutic
regimen for heart failure at the time, were randomized
to receive placebo, the a1-blocker prazosin, or the combi-
nation of hydralazine and isosorbide dinitrate. At a mean
follow-up of 2.3 years, the combination of hydralazine/
isosorbide increased cardiac function (ejection fraction)
and reduced mortality, but function and mortality were
the same as placebo for prazosin (Cohn et al., 1986).
In phase II, the angiotensin converting enzyme

inhibitor enalapril was included, and mortality was
tracked in all groups from phase I and II for 5 years. As
in phase I, prazosin showed no benefit in phase II, and
at 5 years, a trend toward increased mortality was
observed (Cohn, 1993). Interestingly, prazosin was the
only vasodilator that failed to show any positive out-
come. Although not as clear-cut as the results from
ALLHAT, the negative results with prazosin in V-HeFT
again suggest that a1-AR blockade is harmful to the
heart and that a1-AR activation is indeed beneficial.
A caveat to consider with both prazosin (V-HeFT)

and doxazosin (ALLHAT) is that both antagonists can
cause myocyte apoptosis, independent of their a1-blocking
activity (Gonzalez-Juanatey et al., 2003). However, the

dose required to cause apoptosis in culture (10 mM)
(Gonzalez-Juanatey et al., 2003) is far higher than the
peak plasma levels attained in clinical use, e.g.,;200 nM
for doxazosin (Fawzy et al., 1999). Furthermore, the con-
cern that the a1-blockers prazosin and doxazosin might
be maladaptive for the human heart via an off-target ef-
fect is largely obviated by the observation of maladaptive
cardiac effects in the a1ABKO, as reviewed above.

C. a1-Adrenergic Receptor Antagonist Therapy in
Benign Prostatic Hyperplasia Might Exacerbate Heart
Failure. In the prostate, a1-ARs mediate smooth mus-
cle contraction, which is the basis for a1-blocker use in
benign prostatic hyperplasia (BPH). Currently, esti-
mates indicate that 9.5 million men over 65 are di-
agnosed with benign prostatic hyperplasia (Vaughan,
2003), with common comorbidities for hypertension
(87%) and a previous admission for heart failure (40%)
(Dhaliwal et al., 2009). The U.S. Food and Drug Ad-
ministration has approved five a1-blockers for BPH:
silodosin (Rapaflo), an a1A-subtype-selective antagonist,
and the nonselective a1-antagonists terazosin (Hytrin),
doxazosin (Cardura), tamsulosin (Flomax), and alfuzo-
sin (Uroxatral).

A recent meta-analysis of 388 men with heart failure
revealed that cotreatment with an a1-blocker increased
the risk of heart failure hospitalizations, unless pa-
tients were concurrently treated with a b-blocker for
heart failure (Dhaliwal et al., 2009). Given that only
two-thirds of patients in this trial were being treated
with a b-blocker (Dhaliwal et al., 2009) and had the
common comorbidities of BPH, hypertension, and heart
failure, there is reason for concern regarding the safety
of a1-blockers in BPH.

D. Carvedilol: A Nonselective b1/2-Adrenergic Re-
ceptor/a1-Adrenergic Receptor Antagonist for Heart
Failure. Carvedilol is a nonselective b1/2-AR/a1-AR
antagonist indicated for the treatment of heart failure
based on its efficacy as established in several trials, for
example, Carvedilol Prospective Randomized Cumula-
tive Survival Trial (Packer et al., 2001, 2002) and US
Carvedilol (Packer et al., 1996), as reviewed previously
(Teerlink and Massie, 1999; Foody et al., 2002; Wollert
and Drexler, 2002; Chatterjee et al., 2013). Interest-
ingly, the Carvedilol or Metoprolol European Trial
suggested that carvedilol extended survival relative to
metoprolol, a b1-AR selective antagonist, in patients
with NYHA Class II–IV heart failure (Poole-Wilson
et al., 2002, 2003). Among other explanations for the
benefit provided by carvedilol (Bristow et al., 2003),
one hypothesis is that by blocking both b2- and a1-ARs,
as well as b1-ARs, carvedilol confers additional benefit
over selective b1-AR antagonism alone (Poole-Wilson
et al., 2002).

As a mixed acting b1/b2/a1-blocker, carvedilol is
proposed to block a1-mediated vasoconstriction to ac-
count for the added benefit. Indeed, in HEK cells ex-
pressing the human a1-subtypes, carvedilol has higher
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binding affinity for the a1B and a1D than for b-ARs or
the a1A and selectively inhibits a1B- and a1D-sub-
type-specific calcium transients (Koshimizu et al.,
2004). However, the idea that benefit with carvedilol
relies on its a1-blocking properties might seem coun-
terintuitive, given the failure of the a1-blocker prazosin
to improve mortality in V-HeFT (Cohn et al., 1986;
Cohn, 1993). Indeed, a1-mediated vasopressor re-
sponses are not reduced during chronic treatment with
carvedilol (Kubo et al., 2001; Hryniewicz et al., 2003).
These studies show that chronic carvedilol treatment
does not inhibit a1-AR-mediated vascular contraction
and further suggest that the long-term benefits of
carvedilol are not likely due to a1-AR antagonism.
In another smaller study of patients with heart

failure, the blood pressure responses to a1-AR agonist
infusion (phenylephrine) were actually increased in
patients receiving carvedilol (Van Tassell et al., 2008).
These data were interpreted to mean that chronic
carvedilol treatment actually potentiates a1-mediated
vasoconstriction (Van Tassell et al., 2008). Although
this was a small study, an effect on the heart is also
possible, and the implications are that carvedilol might
provide an added benefit in heart failure through aug-
mented a1-AR signaling.
E. Sympatholytics: Reducing Norepinephrine Levels

Does Not Improve Heart Failure. If the central tenet
of heart failure therapy for the last several decades is
correct, namely that increased catecholamine signal-
ing exacerbates heart failure, then by extension,
reducing catecholamine levels should improve heart fail-
ure outcomes. Following that logic, both the Moxonidine
Safety and Efficacy Trial (MOXSE) (Swedberg et al.,
2002) and the Moxonidine Congestive Heart Failure
Trial (MOXCON) (Cohn et al., 2003) examined the ef-
fects of the sympatholytic imidazoline receptor ago-
nist moxonidine on mortality in heart failure. MOXSE
examined 268 patients with New York Heart Associ-
ation class II–IV systolic heart failure and found that
moxonidine reduced heart rate and modestly improved
ejection fraction but increased adverse events.
MOXCON, the larger of the two trials, also targeted

patients with New York Heart Association class II-IV
systolic heart failure. After enrolling roughly 1900
patients, the trial was stopped early due to increased
mortality in the moxonidine group (Coats, 1999; Cohn
et al., 2003; Pocock et al., 2004).
Another clinical trial showed that the b1/b2-blocker/

sympatholytic agent bucindolol increased mortality as-
sociated with pronounced NE reduction in the b-Blocker
Evaluation of Survival Trial (BEST) (Bristow et al.,
2004). In total, the failure of these trials suggests that
some catecholamine signaling is beneficial in heart
failure. Although the mechanism whereby sympa-
tholysis leads to increased mortality is uncertain, it
is possible that decreasing catecholamine levels ab-
rogates the cardioprotective effects of a1-AR signaling.

F. Conclusions and Implications: Are Myocardial
a1-Adrenergic Receptors Cardioprotective in Humans?
In summary, one large clinical trial and several smaller
studies show that a1-blockers or a reduction in NE lev-
els worsens outcomes in patients with hypertension or
heart failure, as summarized in Table 1. One implica-
tion of these results is to force a reconsideration of the
notion that all AR signaling in heart failure is path-
ologic. Although b-AR blockade is clearly beneficial in
heart failure, the negative results of trials involving
sympatholytics indicate that reducing NE levels ex-
cessively can be harmful. Perhaps more importantly,
another implication of these results would be to sug-
gest that myocardial a1-ARs are protective, based on
the negative results in trials with a1-blockers. None of
the trials involving a1-blockers were designed to
address mechanisms whereby a1-AR inhibition wor-
sens heart failure. However, as discussed in section
IV, a1-ARs are clearly cardioprotective in cell and an-
imal models.

VI. Final Summary

The functional significance of cardiac a1-ARs has
dramatically advanced over the last 30 years since
a1-ARs were first demonstrated to have a direct trophic
effect on cardiac myocytes (Simpson, 1983). Clinical
data now show that a1-blockers cause heart failure in
hypertensive patients and possibly in patients taking
a1-blockers for BPH. These clinical data imply a pro-
tective function for cardiac a1-ARs, and data indicate
that unlike b1-ARs, a1-ARs are not downregulated in
human heart failure but are proportionally increased,
available to mediate protective signaling in heart fail-
ure. In fact, studies in cultured myocytes and animal
models show that a1-ARs are cardioprotective and pre-
vent pathologic remodeling in heart failure. The mech-
anisms are multifactorial, including activation of adaptive
or physiologic hypertrophy, prevention of cardiac myocyte
death, augmentation of positive inotropic responses,
and induction of ischemic preconditioning. Importantly,
these studies provide a mechanistic basis to explain the
failure of a1-blockers in humans. Perhaps most surpris-
ing is the finding that a1-ARs localize to and signal at
the nuclear membrane in adult cardiac myocytes and
engage “inside-out” signaling to regulate a1-AR cardio-
protective signaling. Overall, these findings raise several
new questions regarding the functional role of cardiac
a1-ARs. Perhaps the most important are whether ac-
tivation of cardiac a1-ARs, especially the a1A subtype,
might be a viable therapeutic strategy in heart fail-
ure and how nuclear a1-AR signaling might differ
functionally from a1-AR signaling at the plasma
membrane.
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