Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Feb;71(2):583–585. doi: 10.1073/pnas.71.2.583

Mitochondrial Membrane Potential: Evidence from Studies with a Fluorescent Probe

Henry Tedeschi 1
PMCID: PMC388052  PMID: 4521825

Abstract

The fluorescence of the probe 3,3′-dihexyl-2,2′-oxacarbocyanine (CC6) has been found to indicate potential across cell membranes. Results obtained in the present study using CC6 and Drosophila mitochondria are in agreement with membrane potentials previously measured by Tupper and Tedeschi using microelectrodes. The results of both studies with Drosophila suggest that the potential across the mitochondrial membrane does not play a significant role in oxidative phosphorylation.

Keywords: 3,3′-dihexyl-2,2′-oxacarbocyanine; Drosophila virilis; oxidative phosphorylation

Full text

PDF
585

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakeeva L. E., Grinius L. L., Jasaitis A. A., Kuliene V. V., Levitsky D. O., Liberman E. A., Severina I. I., Skulachev V. P. Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria. Biochim Biophys Acta. 1970 Aug 4;216(1):13–21. doi: 10.1016/0005-2728(70)90154-4. [DOI] [PubMed] [Google Scholar]
  2. Davila H. V., Salzberg B. M., Cohen L. B., Waggoner A. S. A large change in axon fluorescence that provides a promising method for measuring membrane potential. Nat New Biol. 1973 Jan 31;241(109):159–160. doi: 10.1038/newbio241159a0. [DOI] [PubMed] [Google Scholar]
  3. Grinius L. L., Jasaitis A. A., Kadziauskas Y. P., Liberman E. A., Skulachev V. P., Topali V. P., Tsofina L. M., Vladimirova M. A. Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles. Biochim Biophys Acta. 1970 Aug 4;216(1):1–12. doi: 10.1016/0005-2728(70)90153-2. [DOI] [PubMed] [Google Scholar]
  4. HILD W., TASAKI I. Morphological and physiological properties of neurons and glial cells in tissue culture. J Neurophysiol. 1962 Mar;25:277–304. doi: 10.1152/jn.1962.25.2.277. [DOI] [PubMed] [Google Scholar]
  5. Harris E. J., Bassett D. J. Distribution of ammonia and methylamine between mitochondria and suspension medium. FEBS Lett. 1971 Dec 15;19(3):214–216. doi: 10.1016/0014-5793(71)80516-1. [DOI] [PubMed] [Google Scholar]
  6. Harris E. J., Pressman B. C. The direction of polarity of the mitochondrial trans-membrane potential. Biochim Biophys Acta. 1969 Jan 14;172(1):66–70. doi: 10.1016/0005-2728(69)90092-9. [DOI] [PubMed] [Google Scholar]
  7. JOHNSON S. L., WOODBURY J. W. MEMBRANE RESISTANCE OF HUMAN RED CELLS. J Gen Physiol. 1964 May;47:827–837. doi: 10.1085/jgp.47.5.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. JOHNSTONE B. M. Micro-electrode penetration of ascites tumour cells. Nature. 1959 Feb 7;183(4658):411–411. doi: 10.1038/183411a0. [DOI] [PubMed] [Google Scholar]
  9. KEYNES R. D., MARTINS-FERREIRA H. Membrane potentials in the electroplates of the electric eel. J Physiol. 1953 Feb 27;119(2-3):315–351. doi: 10.1113/jphysiol.1953.sp004849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lassen U. V., Sten-Knudsen O. Direct measurements of membrane potential and membrane resistance of human red cells. J Physiol. 1968 Apr;195(3):681–696. doi: 10.1113/jphysiol.1968.sp008482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Liberman E. A., Skulachev V. P. Conversion of biomembrane-produced energy into electric form. IV. General discussion. Biochim Biophys Acta. 1970 Aug 4;216(1):30–42. doi: 10.1016/0005-2728(70)90156-8. [DOI] [PubMed] [Google Scholar]
  12. Mitchell P., Moyle J. Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria. Eur J Biochem. 1969 Feb;7(4):471–484. doi: 10.1111/j.1432-1033.1969.tb19633.x. [DOI] [PubMed] [Google Scholar]
  13. SEKIYA T. Studies on the membrane potential of Ehrlich ascites tumor cell. Gan. 1962 Mar;53:41–57. [PubMed] [Google Scholar]
  14. Tupper J. T., Tedeschi H. Microelectrode studies on the membrane properties of isolated mitochondria. II. Absence of a metabolic dependence. Proc Natl Acad Sci U S A. 1969 Jul;63(3):713–717. doi: 10.1073/pnas.63.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tupper J. T., Tedeschi H. Microelectrode studies on the membrane properties of isolated mitochondria. Proc Natl Acad Sci U S A. 1969 Jun;63(2):370–377. doi: 10.1073/pnas.63.2.370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tupper J. T., Tedeschi H. Mitochondrial membrane potentials measured with microelectrodes: probable ionic basis. Science. 1969 Dec 19;166(3912):1539–1540. doi: 10.1126/science.166.3912.1539. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES