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Abstract

Significance: Innate and adaptive immunity play fundamental roles in the development of hypertension and its
complications. As effectors of the cell-mediated immune response, myeloid cells and T lymphocytes protect the
host organism from infection by attacking foreign intruders with bursts of reactive oxygen species (ROS). Recent
Advances: While these ROS may help to preserve the vascular tone and thereby protect against circulatory
collapse in the face of overwhelming infection, aberrant elaboration of ROS triggered by immune cells in the
absence of a hemodynamic insult can lead to pathologic increases in blood pressure. Conversely, misdirected
oxidative stress in cardiovascular control organs, including the vasculature, the kidney, and the nervous system
potentiates inflammatory responses, augmenting blood pressure elevation and inciting target organ damage.
Critical Issues: Inflammation and oxidative stress thereby act as cooperative and synergistic partners in the
pathogenesis of hypertension. Future Directions: Pharmacologic interventions for hypertensive patients will
need to exploit this robust bidirectional relationship between ROS generation and immune activation in car-
diovascular control organs to maximize therapeutic benefit, while limiting off-target side effects. Antioxid. Redox
Signal. 20, 102–120.

Introduction

Agents of innate and adaptive immunity interact with
reactive oxygen species (ROS) in a complex, bidirectional

relationship to regulate the hypertensive response and the
ensuing end-organ injury. Studies conducted more than 30
years ago hinted at a role for adaptive immunity in hyper-
tension. However, the contributions of inflammatory cells and
mediators to the pathogenesis of cardiovascular disease re-
ceived more attention following the recognition that oxidized
low-density lipoprotein (LDL) could act as a specific antigen
to stimulate an adaptive immune response that accelerates
atherogenesis (15, 165). Population studies in humans then
demonstrated links between elevated markers of inflamma-
tion and the risk of developing hypertension (156), unleashing
a wave of newer studies that have dissected the links between
inflammation, hypertension, and target organ damage with
increasing precision.

Inflammatory cells are potent sources of ROS. Recently,
researchers have started to explore the pathways through
which, cells participating in the innate and adaptive immune
responses potentiate blood pressure elevation and end-organ
injury by driving the elaboration of ROS in cardiovascular

control organs, including the vasculature, the kidney, and the
nervous system. Other studies have characterized a converse
relationship wherein ROS generated within these cardiovas-
cular control organs can promote activation of circulating
immune cells, resulting in a dangerous positive feedback
system (Fig. 1) that exaggerates hypertensive responses fol-
lowing an initial injury signal. In the case of hypertension,
uncovering the relationships between inflammation, ROS,
and blood pressure elevation has posed a challenge due to
the critical role of the kidney in regulating sodium excretion
and, therefore, intravascular volume. Thus, inflammatory
responses or oxidative stress localized to the kidney can
conceivably be the cause or the result of perturbations in
blood pressure. The following review will survey some of the
data implicating immune responses in the pathogenesis of
hypertension and explore how inflammatory mediators and
oxidative stress coordinately potentiate this epidemic disease.

Inflammatory Responses Mediate Hypertension

Epidemiologic studies

A series of epidemiologic studies have observed associa-
tions between levels of inflammatory mediators and
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hypertension in humans (133). Patients with modest eleva-
tions in blood pressure or prehypertension have elevated
circulating levels of tumor necrosis factor-alpha (TNF-a), C
reactive protein (CRP), and leukocytes compared to normo-
tensive controls (24). Circulating levels of CRP and the in-
flammatory cytokine interleukin-6 (IL-6) have both correlated
positively with blood pressure in cross-sectional studies (20,
195). In some populations, higher CRP levels or leukocyte
counts have even predicted the onset of hypertension several
years into the future (129, 156, 174). Hypertensive patients
exhibit elevated levels of adhesion molecules that facilitate the
exit of these mononuclear cells from blood vessels into target
tissues through a rolling process known as diapedesis (20,
167). Chemokines, the mediators that recruit mononuclear
cells via concentration gradients into target organs, are also
upregulated in human hypertension (167). Thus, the cells that
execute immune responses as well as the mediators that can
organize their entry into cardiovascular control organs are
present in excess in patients with hypertension, but these as-
sociation studies cannot discriminate whether blood pressure
elevation is caused by these mediators or whether hyperten-
sion conversely induces adaptive immune responses through
hemodynamic injury.

Early animal studies pointing to immunity’s role
in hypertension

Before the era of transgenic models, early experiments
hinted that immune responses may contribute to blood
pressure elevation and its attendant complications. Although
these studies did not emphasize the roles of individual im-
mune cell populations in mediating hypertension, the exper-
imental designs suggested that activated T lymphocytes were
critical to blood pressure elevation. For example, adoptive
transfer of lymph node cells from a rat made hypertensive by

renal infarction recapitulated the hypertensive response in the
recipient (130). Conversely, mice lacking a thymus, the organ
in which T cells mature through selective processes, were
protected from blood pressure elevation in a model of spon-
taneous hypertension (172), and athymic mice were similarly
unable to sustain chronic blood pressure elevation in a
mineralocorticoid-induced hypertension model (171). More-
over, proliferative responses of lymphocytes correlated with
blood pressure in genetically hypertensive rats, and thymec-
tomy in these animals reduced blood pressure (7). These
studies were prescient in postulating that perivascular
mononuclear cell clusters may impact vascular function, but
predated the recognition that T cells and other immune cell
populations could influence the course of cardiovascular
disease via the generation of ROS.

Adaptive immunity in atherogenesis

Heightened interest in the contribution of inflammatory
responses to cardiovascular disease emerged with the recog-
nition that macrophages carrying pathogenic lipid are present
in atherosclerotic plaques. While macrophages represent a
key component of innate immunity, Hansson and colleagues
further demonstrated that oxidized LDL could act as a neo-
antigen inducing a specific adaptive immune response that
required functional T cells for full disease progression (15,
165). As in atherosclerosis, the vasculature involved in
mounting increased systemic vascular resistance during
chronic hypertension undergoes remodeling, and mononu-
clear cell infiltrates surround large vessels in target organs
damaged by blood pressure elevation, particularly in severe
hypertension (58, 113). Thus, the actions of innate and adap-
tive immune responses in the setting of hypertension began to
receive more intense scrutiny as had occurred in the study of
atherogenesis.

Recent evidence implicating immune responses
in the pathogenesis of hypertension

Against this historical backdrop, a wealth of experimental
evidence has emerged over the past 10 years demonstrating a
critical role for immunity in the pathogenesis of hypertension.
First, broad pharmacologic blockade of proinflammatory
signaling pathways has the capacity to limit end-organ
damage in hypertension and even mitigate blood pressure
elevation in some models. For example, the nuclear factor-jB
(NF-jB) signaling pathway propagates gene transcription for
a host of key inflammatory mediators, and inhibition of this
pathway reduces blood pressure, cardiac hypertrophy, and
renal disease in high-renin hypertension (124). Accordingly,
suppression of the immune system through a variety of ap-
proaches limits NF-jB translocation to the nucleus in several
cell lineages and thereby limits end-organ damage in diverse
models of hypertension (62, 125). These studies raised ques-
tions as to which immune cell lineages and which down-
stream mediators were responsible for translating the
inflammatory stimulus into blood pressure elevation and/or
end-organ injury.

The definitive approach for exploring the functions of im-
mune cell lineages in cardiovascular disease as in traditional
immune-mediated diseases has been through adoptive
transfer of these cells into immune-deficient recipients. This
strategy has established that adaptive immunity plays a

FIG. 1. Oxidative stress and inflammatory responses act
synergistically in the pathogenesis of hypertension. Innate
and adaptive immune responses potentiate blood pressure
elevation and the ensuing end-organ injury by driving re-
active oxygen species (ROS) generation in cardiovascular
control organs, including the vasculature, the kidney, and
the nervous system. Conversely, superoxide generated
within these cardiovascular control organs can promote ac-
tivation of circulating immune cells that exaggerates hyper-
tensive responses following an initial injury signal.
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critical role in experimental hypertension and raises the
specter of a putative neo-antigen that potentiates hyperten-
sion through a precise autoimmune mechanism just as in
atherosclerosis. Mice lacking functional lymphocytes have a
muted blood pressure response to hypertensive stimuli,
which is restored by transfer of T, but not B lymphocytes (58).
CD8 rather than CD4 + T cells appear to be the prohyperten-
sive T cell subpopulation (175). These T cells may promote
hypertension by potentiating vascular dysfunction (58) and/
or sodium retention in the kidney (30), both of which involve
local generation of oxidative stress as discussed below. By
contrast, T regulatory cells, an immunosuppressive T cell
lineage identified most specifically by Foxp3 expression, can
protect from blood pressure elevation and target organ
damage induced by angiotensin II (6, 85). Moreover, although
angiotensin II can directly enhance lymphocyte proliferation
in certain contexts (65, 127), recent studies have uncovered
potentially immunosuppressive effects of type 1 angiotensin
(AT1) receptors on mononuclear cells in the setting of hyper-
tension (31, 200). Thus, whether hypertensive stimuli such as
angiotensin II activate the immune system through direct
stimulation of AT1 receptors on inflammatory cells remain
controversial. Alternative mechanisms through which hy-
pertensive stimuli may trigger immune activation include
signals from the central nervous system (CNS) and/or the
endothelium (62, 107).

The involvement of an adaptive immune response in
propagating hypertension and its associated complications
would suggest that innate immune defenses, including pro-
fessional antigen-presenting cells (APCs) have detected and
processed neo-antigens that promote the targeted clonal ex-
pansion of lymphocytes. Although, Rodriguez-Iturbe and
colleagues have put forth heat shock protein-70 (HSP70) as
one possible antigen (132), definitive studies cataloguing the
antigens triggering immune-mediated hypertension are still
forthcoming. Nevertheless, myeloid APCs may regulate
blood pressure responses through alternative mechanisms
unrelated to their classical APC functions. Mice depleted of
monocytes, which are circulating myeloid precursors to
dendritic cells and macrophages, have a blunted chronic hy-
pertensive response to angiotensin II, and adoptive transfer of
monocytes restores the blood pressure elevation in these an-
imals (191). In turn, mice that are unable to develop splenic
dendritic cells, by far the most potent APC lineage, also have
blunted hypertensive responses to angiotensin II, and yet
transfer of wild-type bone marrow-derived cells into these
animals does not restore the hypertensive response (54).
Macrophages, another critical APC population, also have the
capacity to influence salt-sensitive hypertension by elaborat-
ing the vascular endothelial growth factor-C to drive lym-
phangiogenesis (101). These new lymphatics, in turn, regulate
the nonosmotic storage of sodium. Thus, cells of the innate
immune system may influence blood pressure independently
of their responsibilities as APCs, and below we will discuss
the possible role of ROS in this regard.

To facilitate the recruitment of cells of the innate and
adaptive immune systems into cardiovascular control organs
where they can influence the hypertensive response, chemo-
kines establish gradients attracting these cells from the cir-
culation. Adhesion models in the vasculature supplying these
organs then bind to the inflammatory cells, leading to their
transmigration into the tissue parenchyma. An analogous

process permits entry of inflammatory cells into target organs
where they can potentiate tissue damage instigated by blood
pressure elevation. Thus, the accumulation of T lymphocytes
in the vasculature and the kidneys of hypertensive animals
(58, 125) is accompanied by local upregulation of the proto-
typical T cell chemokine CCL5 (58, 200). Interestingly, genetic
deletion of CCL5 led to an enhanced hypertensive response at
a single time point (188), but the role of CCL5 in maintaining
chronic blood pressure elevation is not well established.
CCL2/MCP-1 is a protypical monocyte/macrophage che-
mokine, and is upregulated in the kidneys during progressive
damage of diverse etiologies (114). Accordingly, blockade or
deletion of the receptor for CCL2 limits monocyte infiltration
into the kidney and vasculature in hypertension and amelio-
rates progressive renal and vascular damage through a blood
pressure-independent mechanism (45, 70, 93). Hypertension
similarly upregulates adhesion molecules, including the in-
tercellular adhesion molecule-1 (ICAM-1) and vascular cell
adhesion molecule-1 (VCAM-1) in the renal and systemic
vasculature, but a role for these molecules in regulating blood
pressure is not clear (62, 113, 125). Thus, despite their para-
mount roles in recruiting T lymphocytes and macrophages
into cardiovascular control organs, chemokines and adhe-
sion molecules appear to regulate tissue injury responses
during hypertension rather than the degree of blood pressure
elevation.

Once immune cells are recruited into cardiovascular con-
trol organs and/or organs targeted for damage by hyperten-
sion, these cells can engage in direct cytotoxic activities that
we will discuss below or elaborate cytokines to shape the local
inflammatory response. Among these cytokines, TNF-a has
been the most widely studied for its role in hypertension.
Pharmacologic blockade of TNF slows the progression of
target organ damage and even limits blood pressure elevation
in some hypertension models (44, 46, 125, 183). Similarly,
TNF-deficient mice have a muted chronic hypertensive re-
sponse to angiotensin II (58, 164). However, the 2 receptors for
TNF, TNFR1, and TNFR2, may have opposing effects on
blood pressure regulation (22), such that, the mechanisms
through which local TNF influences blood pressure are chal-
lenging to reconcile with the global TNF knockout studies
(8, 157, 158).

The data implicating other inflammatory cytokines in the
pathogenesis of hypertension are less robust. Interferon-c
(IFN-c), produced by activated T lymphocytes, is upregulated
in the kidneys of hypertensive animals (29), but in our hands,
genetic knockout studies did not confirm a role for IFN in
mediating blood pressure elevation (unpublished observa-
tions, SDC). IL-1 produced by proinflammatory macrophages
stimulates vasoconstriction in some vascular beds (25) and
triggers generation of endothelin, another hormone that reg-
ulates both vascular function and renal sodium handling (13).
Nevertheless, definitive in vivo data confirming a direct role
for endogenous IL-1 in potentiating hypertension have not
emerged. By contrast, activation of the IL-1 receptor leads to
generation of IL-6, and deficiency of IL-6 does indeed prevent
a full chronic hypertensive response to angiotensin II (87).
Thus, IL-6 appears to contribute to blood pressure elevation
possibly by facilitating sodium reabsorption in the renal col-
lecting duct (91). Altogether, cells of the innate and adaptive
immune systems, the chemokines that recruit them to car-
diovascular control organs, and the inflammatory cytokines

104 CROWLEY



these immune cells produce can have profound effects on the
degree of blood pressure elevation and/or the severity of
target organ damage in the setting of hypertension. As dis-
cussed below, these components of the immune system can
also regulate levels of oxidative stress, which may, in turn,
impact blood pressure and the progression of end-organ
disease.

Inflammatory Cells Generate Oxidative Stress

The notion that inflammatory cells would potentiate dis-
ease by generating excessive oxidative stress is intuitively
appealing because several immune cell lineages have evolved
precisely to protect the body from foreign invaders by at-
tacking them with bursts of ROS. Within the innate immune
system, neutrophils and macrophages are prototypical cell
lineages, which control infection by generating local oxida-
tive stress. Phagocytosis of microorganisms by a neutrophil
leads to the phosphorylation of the cytosolic components of
NADPH oxidase, p47phox, and p67phox. These components
then combine with other NADPH oxidase components, in-
cluding the cytochrome complex gp91phox and p22phox to
form the active oxidase complex that donates an electron to
oxygen to form superoxide. This superoxide can be further
converted to hypochlorous acid in anticipation of the classic
respiratory burst through which neutrophils destroy invad-
ing microbes by activating proteases such as cathepsin G (147,
155). The normal function of NADPH oxidase in the neutro-
phil and its capacity to generate ROS is thus paramount to its
efficacy in eliminating pathogens. Accordingly, mutations in
components of the NADPH oxidase in humans lead to chronic
granulomatous disease, a syndrome in which children are
overwhelmed by infections due to bacterial and fungal or-
ganisms, especially the catalase-producing bacterium Sta-
phylcoccus aureus and Aspergillus fungal species (76, 105). In
addition to their role in presenting processed antigens to
adaptive immune cells, macrophages act cooperatively with
neutrophils to similarly phagocytose and destroy pathogens,
especially intracellular organisms, through the generation of
ROS (32, 161). Accordingly, defects in NADPH oxidase
function selectively within the macrophage raise the suscep-
tibility to severe mycobacterial infections (14). Given that cells
of the innate immune system protect the host from infection
by elaborating ROS, inappropriate or nonspecific activation of
these innate defenses in response to a hypertensive stimulus
could potentiate blood pressure elevation and/or worsen
target organ damage via misdirected oxidative stress.

One added complexity coloring the potential contribution
of innate immune responses to oxidative stress in hyperten-
sion is that proinflammatory, or classically activated, M1
macrophages produce inducible nitric oxide synthase (iNOS)
(123). In turn, iNOS increases the local availability of NO and
thereby alters the level of oxidative stress at the same time as
the M1 macrophage is directly mediating tissue damage or
vascular dysfunction. Depending on factors at the site of
production, NO can permit vasodilation when generated via
endothelial nitric oxide synthase (eNOS) (9), facilitate sodium
excretion when produced by kidney epithelial cells (166), or
aggravate oxidative damage when the NOS isoforms, un-
coupled from the cofactor tetrahydrobiopterin (BH4), increase
generation of reactive nitrogen intermediates (51). Inversely,
BH4 limits the production of superoxide by eNOS, thereby

blunting the formation of peroxynitrite (ONOO - ) from NO
and superoxide (192). Whether iNOS undergoes coupling is
not clear, but, overall, iNOS in macrophages appears to pro-
mote tissue damage as blockade of NO generation in auto-
immune models is protective (68). Given this level of
sophistication, it is not surprising that macrophages appear to
have variable effects on the pathogenesis of hypertension and
its complications, depending on the context and experimental
approach (31, 84, 93). Indeed, pioneering researchers who
confronted the field of oxidative stress predicted that nitric
oxide might serve dual purposes within the inflammatory
response given its cytotoxic, but also vasodilatory effects
(121).

Within the adaptive immune response, T lymphocytes in
particular have the capacity to enhance levels of oxidative
stress via their natural function of eliminating host cells that
have become infected by invading organisms (Fig. 2). Like
neutrophils and macrophages, activated T cells express
NADPH oxidase to generate ROS within their milieu.

FIG. 2. T lymphocytes mediate cytotoxic injury through
the generation of ROS. CD4 + and CD8 + T cells express
NADPH oxidase to generate superoxide anions in their mi-
lieu. The NADPH oxidase activity also stimulates production
of the tumor necrosis factor-a (TNF-a), which can mediate
proinflammatory signals in neighboring cells. CD8+ cyto-
toxic T cells insert perforin pores in target cell membranes.
Granzyme A and other proteases from the attacking CD8 + T
cells enter the target cell via the perforin pore and induce
oxidative damage in the target cell mitochondria. Mitochon-
drial image by Gretchen Deahl of Allegheny, Health, Educa-
tion & Research Foundation, 2008. Reprinted with permission.
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Conversely, these ROS impact the differentiation and function
of the T cell (71). In addition, once activated, the CD8 + cyto-
toxic T cell binds to a target cell, inserts a pore called perforin
into the target cell’s membrane through which it exocytoses
proteases called granzymes that kill the target cell (61). One
such protease, granzyme A, damages the target cell’s mito-
chondria by generating ROS within the cell’s cytoplasm (104).
Accordingly, this cytotoxic effect can be blocked by a su-
peroxide scavenger. Although the perforin mechanism
constitutes the dominant form of CD8 + T cell-mediated cy-
totoxicity, the Fas ligand is upregulated in the activated CD8 +

T cell by superoxide and mediates apoptosis in the target cell
by binding to Fas in the target cell membrane and thereby
triggering activation of caspases 3 and 8 (40, 168). TNF-related
apoptosis-inducing ligand (TRAIL) from the cytotoxic T cell
similarly induces apoptosis in the target cell acting via cas-
pases 8 and 10 (2) and figures prominently in the pathogen-
esis of vascular inflammation (152). Nevertheless, the CD8 +

T cell typically exhibits exquisite control over the extent of
locally generated oxidative stress as the cytotoxic T cell is
capable of lysing several target cells without injuring itself in
the process.

Both CD8 + and CD4 + T lymphocytes also guide the
adaptive immune response by secreting a cohort of cyto-
kines that trigger increased levels of oxidative stress (Fig. 2).
For example, TNF-a and IFN-c, both produced by T cells and
macrophages, impair the stability of mRNA for eNOS (196)
and cooperatively promote oxidative stress by enhancing
expression of the NADPH oxidase subunit gp91phox (116).
Conversely, activation of NADPH oxidase within T cells also
stimulates production of TNF-a (65). Thus, the adaptive
immune system provides protection for the host organism
by elaborating ROS to destroy cells infected by foreign
pathogens. Accordingly, if a neo-antigen uncovered in the
setting of hypertension misdirects this adaptive immune
response against renal, vascular, and/or neuronal tissues,
the result will be potent elevations of local oxidative stress
within these cardiovascular control organs, inciting further
blood pressure elevation and end-organ damage. Below, we
will review some of the evidence indicating that immune
responses potentiate oxidative stress, and conversely, that
ROS exaggerate inflammatory responses in the setting of
hypertension.

Ironically, while the elaboration of ROS by immune cells
clearly serves a useful cytotoxic function to rid the host of
foreign invaders, the actions of inflammatory responses to
trigger ROS generation may also have evolved as a protec-
tive mechanism to raise blood pressure and thereby prevent
circulatory collapse during severe infection. Septic shock is
the prototypical clinical catastrophe in which the organism is
overwhelmed by systemic bacterial infection. During septic
shock, lipopolysaccharide, also known as endotoxin, from
the bacterial cell wall induces synthesis of nitric oxide,
leading to intractable hypotension (120). Accordingly,
NOS inhibitors can reverse this sepsis-induced hypotension
(134). Thus, endogenous effects of immune cells to potentiate
oxidative stress should similarly raise blood pressure in this
clinical context and thereby guard against circulatory em-
barrassment. Nevertheless, when inflammation triggers
ROS generation in the absence of such a hemodynamic
threat, the result may be a pathologic elevation in blood
pressure.

Inflammatory Cells Drive ROS Generation
in Cardiovascular Control Organs

The vasculature

CRP in vascular inflammation. In hypertension, inflam-
matory responses generate oxidative stress in the vascular
wall leading to endothelial dysfunction and remodeling.
These pathologies may influence the degree of blood pressure
elevation, but also constitute target organ damage resulting
from hypertension. For example, as the classical marker of
inflammation, CRP reduces nitric oxide generation in endo-
thelial cells. The mechanism underlying this effect is inhibi-
tion of eNOS mRNA stability, protein expression, and activity
in vascular endothelial cells, leading in turn to decreased
angiogenesis (184, 187). These effects of CRP on eNOS result
in vasoconstriction and induction of the potent vasoactive
peptide endothelin 1, adhesion molecules ICAM-1 and
VCAM-1, and proinflammatory cytokine IL-6 (186). More-
over, in a vascular injury model, CRP increased ROS gener-
ation and expression of the type 1 (AT1) receptor for
angiotensin II, another potent vasoconstrictor peptide (189).
In human patients with hypertension and metabolic syn-
drome, CRP levels correlate with the level of oxidative stress
in inflammatory cells (198). Thus, in addition to being a critical
marker of inflammation, CRP might also participate in the
pathogenesis of vascular oxidative.

Mononuclear cells generate ROS in the vascular wall.
Once recruited to the vascular wall, myeloid cells and T
lymphocytes can influence vascular damage and function by
directly generating ROS or, perhaps, more importantly, by
altering the local cytokine milieu. As detailed above, myeloid
cells and T cells express activated NADPH oxidase (71)
through which they can exert direct oxidative injury. The
hypertensive hormone angiotensin II further stimulates
NADPH expression in monocytes (59). Accordingly, the
protection from experimental hypertension afforded by se-
lective depletion of circulating monocytes results in attenu-
ated generation of superoxide in the vascular wall (191). In the
setting of angiotensin II-induced hypertension, T cells also
express higher levels of the NADPH oxidase subunits p47phox,
p22phox, and Nox2 (58). Conversely, adoptive transfer of T
cells lacking NADPH oxidase leads to blunted superoxide
generation in the aorta and a muted hypertensive response
during chronic angiotensin II infusion (58). Indeed, the gen-
eration of maximal oxidative stress in the vascular wall during
hypertension requires vascular infiltration of both macro-
phages and T lymphocytes (58, 81). In addition, ROS pro-
duced by macrophages infiltrating the vessel wall permeate
the extracellular matrix and activate matrix metalloprotei-
nases (MMPs) to direct vascular remodeling (141), such that,
the effects of macrophages on vascular responses versus dis-
ease may depend on the layer of the vascular wall in which
these inflammatory cells localize (173). In sum, myeloid cells
and T lymphocytes invade the vascular wall, accentuate local
oxidative stress, and potentiate the blood pressure response to
hypertensive stimuli.

Although mononuclear cells produce superoxide, their se-
cretion of inflammatory cytokines likely has an even more
profound impact to augment vascular oxidative stress. The
role of cytokines in regulating vascular ROS has therefore re-
ceived considerable attention. In vitro, TNF-a stimulates
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hypertrophy of cardiac myocytes that is blocked by antioxi-
dants (126). In vascular endothelial cells, TNF destabilizes
mRNA for eNOS leading to decreased eNOS expression (196)
and reducing NO bioavailability (80). TNF also potentiates
assembly of NADPH oxidase in these cells (197). In vivo, the
protection from hypertension afforded by TNF-a blockade is
associated with reduced generation of superoxide in the vas-
cular wall (58) and reduced vascular stiffness (3), suggesting
that TNF drives endothelial dysfunction and, in turn, blood
pressure elevation through its effects on vascular oxidative
stress. Accordingly, TNF blockade restores endothelial-
dependent vasodilation in humans (102). TNF also induces
expression of ICAM-1 in endothelial cells through a ROS-
dependent mechanism (4). TNF activates NADPH oxidase di-
rectly in vascular smooth muscle cells (VSMCs) (35). TNF and
IL-1 drive superoxide generation from human fibroblasts (112)
and vascular endothelial cells, leading in the latter to upregu-
lation of VCAM-1 (106). Although not considered inflamma-
tory cells per se, platelets contain stores of IL-1 poised to act on
the vascular endothelium to which the platelets adhere
following vascular injury (95), yielding another potential
source of IL-1-induced oxidative stress. The transforming
growth factor-b1 (TGF-b1) stimulates ROS generation in
VSMCs and release of hydrogen peroxide from human fibro-
blasts (159, 176). Thus, cytokines produced by infiltrating
mononuclear cells or cells intrinsic to several layers of the vessel
wall augment local levels of oxidative stress, in turn promoting
recruitment of additional inflammatory cells via expression of
adhesion molecules in the vascular endothelium.

Vascular inflammation induced by aldosterone promotes
oxidative stress. Aldosterone has nongenomic effects to
promote vascular inflammation that could explain some of
the benefits of mineralocorticoid antagonists (MRAs) in
slowing the progression of target organ damage in human
clinical trials (100, 135, 143). While MRAs may provide some
protection due to lowering of blood pressure, recent studies
suggest that aldosterone provokes vascular dysfunction by
accentuating oxidative stress in the vasculature (89, 100). Al-
dosterone enhances expression of NADPH oxidase subunit
p22phox in mononuclear cells, and T cells mediate aldosterone-
induced superoxide generation in the vessel wall (17, 58).
Among the cytokines secreted by T cells is IL-6, which raises
blood pressure (87) and may impart some of aldosterone’s
proinflammatory effects on the vasculature (100). By contrast,
adoptive transfer of T regulatory cells, which suppresses in-
flammation, limits superoxide generation and mononuclear
cell accumulation in the vasculature and kidney during al-
dosterone infusion, such that, the effects of aldosterone to
modulate oxidative stress in the vasculature through T cell
activation depend on the subpopulation of T cells (78).

Aldosterone also regulates ROS generation via non-T cell-
dependent mechanisms. Aldosterone upregulates c-Src in
VSMCs leading to generation of oxidative stress and induc-
tion of inflammation via the mitogen-activated protein (MAP)
kinase pathway (16). In addition, mineralocorticoids can in-
hibit the glucose-6-phosphate dehydrogenase (G6PD) activity
(28, 94). As G6PD is a primary source of NADPH, G6PD in-
hibition causes ROS accumulation, but also uncoupling of
eNOS resulting in further ROS generation in endothelial cells
(88). Accordingly, infusion of the proinflammatory hormone
aldosterone in vivo impairs the G6PD activity and reduces NO

bioavailability leading to increased oxidative stress in the
vessel wall and endothelial cell dysfunction (89). Inversely,
MRA administration or G6PD overexpression during al-
dosterone infusion restores vascular reactivity. As will be
discussed below, the oxidative stress induced by proin-
flammatory signals due to NF-jB translocation, T cell acti-
vation, TNF, aldosterone, and other inflammatory mediators
can then exaggerate the immunologic response in the vessel
well, resulting in a vicious cycle in which inflammation begets
oxidative stress and vice versa with progressive deterioration
in vascular function (Fig. 1).

Autoantibodies elevate placental ROS levels in pre-
eclampsia. While the literature supports a more transparent
contribution of cell-mediated immunity than humoral im-
munity to the pathogenesis of hypertension, B cells may play a
prominent role in blood pressure elevation related to pre-
eclampsia (Fig. 3). Thus, although the adoptive transfer of B
lymphocytes does not restore the chronic hypertensive re-
sponse in Rag1-deficient animals (58), B cell production of
autoantibodies to the AT1 receptor predicts the onset of pre-
eclampsia in humans (38, 39). Regarding a possible mecha-
nism, these autoantibodies stimulate intracellular calcium
signaling that leads to cardiomyocyte contraction (177) and
can reduce uterine blood flow by facilitating the production of
NAPDH oxidase in trophoblast cells (185). Accordingly, pre-
eclamptic animals manifest elevated levels of placental ROS,
and scavenging these ROS with tempol reduces both maternal
hypertension and ischemic damage to the fetus (66). The im-
portance of B cells to the pathogenesis of pre-eclampsia does
not preclude an important contribution of T lymphocytes in
this setting. B cells can function, although weakly, as APCs to
facilitate T cell activation. This interaction also leads to T cell-
dependent B cell activation (131). Moreover, T lymphocytes
from human patients with pre-eclampsia show heightened
levels of activation (115). Finally, in human patients with pre-
eclampsia, circulating mononuclear cells have compromised
uptake of L-arginine that could result in a lack of NO bio-
availability (109). Elevated levels of myeloperoxidase in the
placentas of pre-eclamptic women may consume local NO,
and thereby, further contribute to pathologic NO deficiency
(49). Available data therefore indicate that preventing mala-
daptive oxidative stress induced by autoantibodies in pre-
eclamptic individuals may limit blood pressure elevation and
target organ damage through effects on the vasculature.

The kidney

Inflammatory signals promote generation of oxidative
stress within the kidney leading to distortions in renal sodium
handling that result in blood pressure elevation. The impact of
ROS on renal blood flow and sodium reabsorption provides a
key link between oxidative stress in the kidney and the de-
velopment of hypertension (27, 193), and there are several
inflammatory signals that drive renal generation of ROS.
Dahl salt-sensitive (SS) rats on a high salt diet have robust
infiltration of T cells into the kidney. These T cells have en-
hanced expression of the p67phox, gp91phox, and p47phox

NADPH subunits, and suppression of renal T cell accumula-
tion by a calcineurin inhibitor blunts ROS excretion and
lowers blood pressure (36). Furthermore, tubulointerstitial
damage associated with mononuclear cell infiltration in the
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kidney causes local downregulation of eNOS in genetic and
pharmacologic models of hypertension with subsequent in-
creases in salt sensitivity (74, 75). In the T cells and macro-
phages infiltrating the kidney, NF-jB activation triggers
transcription of TNF-a. Intrinsic kidney epithelial cells simi-
larly have the capacity to elaborate this cytokine (1, 103).
Accordingly, one mechanism linking mononuclear cell infil-
tration, NF-jB activation, and eNOS suppression in the kid-
ney may be enhanced local TNF production. Indeed, recent
evidence has emerged that TNF suppresses eNOS expression
and NO levels in the thick ascending limb via a Rho kinase-
dependent pathway (142). Inversely, blocking activation of
this proinflammatory NF-jB signaling pathway in sponta-
neously hypertensive rats (SHR) attenuates mitochondrial
oxidative stress in the kidney (43). Thus, mononuclear cells
invade the kidney in hypertension, activate proinflammatory
signaling pathways, and augment ROS generation both di-
rectly and via eNOS suppression.

Studies using mycophenolate mofetil (MMF) to suppress
lymphocyte proliferation similarly illustrate a role for im-
mune cells to promote renal oxidative stress. For example,
suppression of immune cell infiltration into the kidney with
MMF during hypertension prevents the salt sensitivity that
results following nitric oxide suppression, consistent with a
role for inflammatory cells to drive sodium retention by

promoting oxidative stress in the kidney (139). Similarly,
MMF reduces the number of superoxide-secreting cells in the
kidney and urinary excretion of the oxidative stress marker
malondialdehyde (MDA) during angiotensin II infusion, also
resulting in subsequent protection from salt senstivity (144).
In human patients with hypertension associated with im-
mune activation, blood pressures correlate with urinary levels
of MDA (63). Finally, treatment of genetically hypertensive
rats with MMF suppresses blood pressure elevation, activa-
tion of NF-jB in the kidney, and renal parameters of oxidative
stress (145, 178). Off-target effects of MMF to block ROS
generation in the endothelium rather than via effects on in-
flammatory cells cannot be completely excluded (82). Barring
that criticism, these models indicate that lymphocytes in the
kidney promote ROS generation and thereby potentiate blood
pressure elevation.

Mouse models of autoimmunity present a novel approach
to illustrate how activation of immune responses drives renal
oxidative stress in the pathogenesis of hypertension.
NZBWF1 mice develop a syndrome mimicking human sys-
temic lupus erythematosus with robust hypertension and
marked ROS generation in the vasculature and kidney (149,
183). Antioxidant therapy with tempol and apocynin abro-
gates renal oxidative stress in this model, lowers blood pres-
sure, and ameliorates renal damage as evidenced by reduced

FIG. 3. Fundamental role of B lymphocytes in the pathogenesis of pre-eclampsia. In pre-eclamptic patients, activated B
cells differentiate into plasma cells that secrete autoantibodies specific for the type 1 angiotensin receptor (AT1 AutoAb).
These antibodies stimulate production of NADPH oxidase in the trophoblast cells of the placenta. In addition, B lymphocytes
acting as antigen-presenting cells (APCs) present processed antigen in the context of a class II major histocompatibility
complex (MHC II) to the T cell receptor (TCR), activating the T cell. Activated T cells display heightened NADPH oxidase
activity. Conversely, CD4 + T cells also potentiate B lymphocyte activation through the same MHC II4TCR interaction in a
process termed T cell-dependent B cell activation. Superoxide (O2

- ) accumulating in the placenta causes vascular endothelial
dysfunction resulting in decreased uterine blood flow and placental ischemia.
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albuminuria (108). Blockade of TNF-a affords similar reduc-
tions in blood pressure, renal NADPH oxidase activity, renal
macrophage accumulation, and proteinuria (183). Thus, ab-
errant activation of immune responses promotes ROS gener-
ation in the kidney culminating in renal damage and
hypertension. These experiments support the possibility that
essential hypertension accrues, in part, from misdirected im-
mune responses against neo-antigens uncovered during an
initial hypertensive insult (132).

Studies with immunodeficient mice also support the notion
that T lymphocytes drive blood pressure elevation through
their effects on kidney function. First, T cell deficiency in the
Rag1 - / - mice mentioned above protects them from miner-
alocorticoid-induced hypertension, a model in which renal
sodium retention drives blood pressure elevation (58). Sec-
ond, scid mice lacking functional T and B lymphocytes have
an exaggerated pressure natriuresis resulting in a blunted
increase in blood pressure during chronic angiotensin II in-
fusion (30). We have also found that anesthetized scid mice
have preserved blood pressure responses to acute angiotensin
II infusion (unpublished observations, SDC), suggesting that
T cells do not potentiate vascular dysfunction in these ex-
periments. Consistent with a role for T cells to incite renal
generation of ROS, scid mice have enhanced eNOS expression
levels in the kidney leading to augmented urinary excretion of
NO and suppressed renal generation of the oxidative stress
marker, 8-isoprostane (30). In addition to direct effects of NO
to promote sodium excretion, upregulation of cyclooxygenase
2 (COX-2) in the scid kidneys culminating in enhanced syn-
thesis of the prostaglandins PGE2 and PGI2 may have also
contributed to the enhanced scid natriuresis in this model (56,
64, 150, 151). In sum, T cells augment oxidative stress in the
kidney resulting in pathologic sodium retention and salt-
sensitive hypertension.

Oxidative stress induced by macrophages in the kidney
contributes to hypertensive renal damage. For example, de-
ficiency of CCR2, the receptor for the macrophage chemokine
CCL2, attenuates macrophage accumulation in the kidney,
blunts renal expressions of nitrotyrosine and gp91phox, and
reduces proteinuria following chronic angiotensin II (93).
Nevertheless, these effects of CCR2 on ROS generation in the
kidney do not regulate the chronic hypertensive response (70,
93). Thus, oxidative stress accruing from the presence of
macrophages in the kidney accentuates target organ damage
through a blood pressure-independent mechanism.

The CNS

Nuclei within the CNS that regulate cardiovascular re-
sponses contribute to hypertension via the elaboration of ROS.
Lying outside the blood–brain barrier, the circumventricular
organs (CVO) in the brain transmit neuroendocrine signals
between the systemic circulation and cardiovascular control
centers in the brain stem and hypothalamus, including the
paraventricular nucleus (PVN) (33, 37). Neurons in these CNS
nuclei express NADPH oxidase, and reducing superoxide
levels in these nuclei with a targeted approach attenuates the
blood pressure response to hypertensive stimuli (202). Recent
evidence suggests that activation of inflammatory responses
in the PVN contributes to local ROS generation that drives
centrally mediated blood pressure elevation. Specifically,
targeted blockade of the NF-jB signaling pathway via infu-

sion of pyrrolidine dithiocarbamate into the intracerebral
ventricle, infusion of an NF-jB decoy oligodeoxynucleotide
directly into the PVN, or PVN injection with adenovirus
carrying a mutated IjB blunts generation of superoxide and
peroxynitrite within the PVN. Moreover, each of these forms
of NF-jB blockade in the PVN prevents blood pressure ele-
vation in response to systemic angiotensin II infusion (18, 77).
Similarly, targeted activation of NF-jB in the mediobasal
hypothalamus raises blood pressure significantly in obesity-
related hypertension, whereas suppression of the NF-jB
activity in the mediobasal hypothalamus via a dominant
negative strategy lowers blood pressure (137). In vitro exper-
iments localize key NF-jB activation sites within the hypo-
thalamus to the proopiomelanocortin (POMC) neurons (137).
POMC neurons, which project to the PVN, appear to regulate
blood pressure through effects on sympathetic outflow (55,
83). These studies point to a role for cooperative actions of
oxidative stress and inflammation in sustaining the hyper-
tension seen in the metabolic syndrome.

By contrast, mediators that temper inflammation within the
PVN may conversely protect against neurogenic hyperten-
sion by relieving oxidative stress within PVN neurons. The
macrophage migration inhibitory factor (MIF) limits ROS
generation in PVN neurons via thiol protein oxidoreductase
and blunts the chronotropic effects of these neurons (169).
Normotensive, but not SHR increase MIF expression in the
PVN in response to angiotensin II, and injection of MIF into
the PVN of SHRs lowers blood pressure (90). MIF in the PVN
thus protects from hypertension by alleviating oxidative
stress and thereby slowing the heart rate.

Oxidative Stress Provokes Inflammation
in Hypertension

The literature summarized above highlights a clear role for
inflammatory cells and mediators to augment blood pressure
elevation and target organ damage by promoting ROS gen-
eration in the vasculature, the kidney, and the nervous sys-
tem. However, robust evidence has also emerged placing
oxidative stress upstream of inflammatory responses in the
pathogenesis of hypertension. Below, we review the experi-
ments illustrating how elevated ROS levels in cardiovascular
control organs elicit targeted immune responses that poten-
tiate chronic systemic hypertension and its complications.

The vasculature

ROS activate inflammatory signaling pathways. ROS in-
fluence inflammatory responses within the vasculature at the
level of gene transcription by regulating several intracellular
signaling pathways that are central to immunity, including
Nrf2 and NF-jB. Within the vascular wall, Nox4 limits the
level of oxidative stress by promoting eNOS expression and
NO generation (154). Accordingly, Nox4 deficiency permits
ROS accumulation in the vessel wall leading to blunted ac-
tivation of the antioxidant Nrf2 pathway and heightened
vascular inflammation during angiotensin II-induced hyper-
tension (154). Mitochondrial ROS have also been found to
modulate activation of Nrf2 in other cell lineages (69). Simi-
larly, oxidative stress in the cytoplasm of vascular endothelial
cells facilitates the translocation of NF-jB to the nucleus,
where it drives transcription of a broad array of inflammatory
mediators (190). The activation of NF-jB by ROS occurs, in
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part, through the redox factor-1 (Ref-1), a redox modulator
whose N-terminal contains a redox regulatory domain and a
nuclear localization sequence domain. Through these 2 do-
mains, Ref-1 senses rising levels of oxidative stress and acti-
vates key inflammatory signaling cascades, including NF-jB
and AP-1 (48, 96). In the vascular wall, this NF-jB activation
leads to mononuclear cell accumulation via upregulation of
adhesion molecules and chemokines culminating in severe
target organ damage in hypertension (41, 62, 122, 190).

A third transcription factor linking oxidative stress to
vascular inflammation in hypertension is Ets-1. Ets-1 defi-
ciency or knockdown limits induction of the NADPH oxidase
subunit p47phox and vascular superoxide generation in an-
giotensin II-dependent hypertension (128). Accordingly,
Ets-1 - / - animals have blunted vascular ROS levels associ-
ated with reduced expression of the macrophage chemokine
CCL2 and attenuation of macrophage and T cell accumulation
in the vessel wall (199). Ets-1 deficiency prevents angiotensin
II-induced cardiac hypertrophy, but blood pressure elevation
is preserved in these animals (199). Angiotensin II therefore
promotes ROS generation in the vasculature through the Ets-1
signaling pathway, causing augmented vascular inflam-
mation and target organ damage through blood pressure-
independent mechanisms.

Finally, the p38 MAP kinase pathway provides a further
link between ROS generation and vascular inflammation.
Disruption of this pathway via deletion of its downstream
target MAP kinase-activated protein kinase 2 (Mk2) blocks
superoxide generation in the vasculature and delays the blood
pressure increase induced by in vivo angiotensin II infusion
(42). Analogous in vitro studies with VSMCs illustrate Mk2 is
required for delivery of p47phox to the cell membrane and, in
turn, full NADPH oxidase activity. Further, the local induc-
tion of oxidative stress through MAP kinase and Mk2 po-
tentiates vascular inflammation, evidenced by upregulation
of ICAM-1 and CCL2. In sum, ROS trigger activation in the
vasculature of several key proinflammatory signaling path-
ways, including Nrf2, NF-kB, Ets-1, and Mk2. Activation of
these pathways culminates in the expression of chemokines
and adhesion molecules that recruit inflammatory cells into
the vascular wall, resulting in augmented blood pressure el-
evation and/or target organ damage.

Oxidative stress in the vascular endothelium initiates an
inflammatory cascade. The vascular endothelium first sen-
ses changes in blood pressure as shear stress and responds by
triggering adaptive remodeling of the vascular wall. Follow-
ing changes in shear stress, endothelial cells generate ROS that
serve as mechanotransducers, activating proinflammatory
pathways to an extent commensurate with the mechanical
stress that confronts the cell (110, 117, 180). The ROS derive
from NADPH oxidase, NOS, xanthine oxidase, and the mi-
trochondrial electron transport chain in intrinsic vascular cells
(52, 119, 138, 140), infiltrating mononuclear cells (141), and
platelets adherent to an activated vascular endothelium (26,
53). The dominant source of ROS in circulating mononuclear
cells is NADPH oxidase. These ROS directly regulate vascular
remodeling and dysfunction (19, 140). In addition, however,
ROS activate the NF-jB pathway in endothelial cells (118)
and augment expression of the chemokine CCL2 in vascu-
lar smooth muscle (23), leading to further recruitment of
inflammatory cells into the vessel wall and local cytokine

production (67, 190). Conversely, NO inhibits recruitment of
inflammatory cells into the vascular wall (10). To facilitate
infiltration of immune cells into sites of vascular injury, ROS
drive activation of phosphoinositide 3-kinase-c resulting in
upregulation of VCAM-1 (182).

Oxidative stress further provokes local inflammation by
increasing endothelial permeability and thus allowing infil-
tration of proinflammatory neo-antigens that can incite cir-
culating elements of the innate and adaptive immune
responses (12, 162). Among the infiltrating mononuclear cells,
macrophages play a paramount role in guiding vascular re-
modeling (5, 34). Blocking NADPH oxidase limits infiltration
of macrophages into the vascular wall and prevents angio-
tensin II-induced vascular remodeling (97). Similarly, in the
same model, NADPH oxidase-deficient mice have blunted
accumulation of T lymphocytes in the perivascular space and
are protected from blood pressure elevation (58). Indeed,
NAPDH in T cells is required for full T lymphocyte activation
marked by CD69 expression as well as T cell production of the
proinflammatory cytokine TNF-a (58), which in turn can di-
rectly mediate blood pressure elevation and/or target organ
damage as discussed above. In addition, oxidative stress en-
hances T cell proliferation and amplifies production of IFN-c
and IL-2 in activated T cells (58, 60, 181). Thus, ROS produced
in the vasculature recruit macrophages and T cells to invade
the vessel wall and activate these mononuclear cells to po-
tentiate injury signals in hypertension.

Another inflammatory cytokine produced by immune cells
or the injured vasculature is IL-1. IL-1 further stimulates
NF-jB and production of other inflammatory mediators via a
myeloid differentiation protein (Myd88)-signaling pathway
(111). Elegant transplant studies have established that
Myd88 from intrinsic vascular cells is critical for local cyto-
kine and chemokine production, whereas signals via Myd88
in vascular cells and in the infiltrating macrophages facilitate
adaptive vascular remodeling (173). Moreover, Myd88 sig-
nals are required for maximal generation of ROS in the
vascular wall (173). The altered vascular flow model there-
fore represents another context in which ROS are both a
promoter and a product of local inflammatory responses. In
sum, changes in flow through the vessel provoke oxidative
stress in the endothelium, which in turn produces inflam-
matory mediators and recruits mononuclear cells to drive
vascular remodeling.

Cyclophilin A links oxidative stress to vascular inflamma-
tion. A novel mechanism through which oxidative stress
promotes inflammation in the vascular wall involves the
chaperone protein cyclophilin A (CypA). ROS stimulate se-
cretion of CypA from VSMCs (73, 92). In turn, CypA drives
vascular remodeling, recruitment of mononuclear cells, and
upregulation of adhesion molecules in the vascular endothe-
lium to facilitate transmigration of inflammatory cells
through the vascular wall (73, 79, 170). Accordingly, Apoe-
deficient mice lacking CypA were protected from abdominal
aortic aneurysm (AAA) induced by chronic infusion of an-
giotensin II, despite levels of blood pressure elevation similar
to controls (153). Bone marrow transplant studies further il-
lustrated that vascular CypA recruits CD45 + inflammatory
cells into the vessel wall. Through its chaperone function,
CypA also drives activation of MMPs, also key mediators of
vascular injury in the AAA model. Thus, oxidative stress
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induced by angiotensin II in the vasculature increases local
CypA expression, which drives invasion of inflammatory
cells into the vessel wall and activation of MMPs where they
exaggerate vascular injury (153).

The kidney

In his seminal descriptions of vascular damage induced by
malignant hypertension, Harry Goldblatt hypothesized that
arteriolar necrosis in the kidney occurred due to a ‘‘hypo-
thetical toxic substance or substances in the blood which
result from the renal insufficiency’’ (50). In retrospect, some
of these toxic substances were certainly ROS. Moreover,
several of the injured renal vessels shown in Goldblatt’s
panels were surrounded by inflammatory cell infiltrates.
Within the kidney, generation of oxidative stress by hyper-
tensive stimuli provokes a local inflammatory response that
can worsen renal damage and blood pressure elevation
(Table 1). For example, salt loading augments the NADPH
oxidase activity and suppresses eNOS in the kidney leading
to increased renal expression of CCL5 and enhanced NF-jB
activation within the proximal tubule of the nephron, all of
which is reversible with tempol therapy (47, 86, 148). In-
hibition of NO generation causes hypertensive scarring in
the kidney glomerulus known as glomerulosclerosis, de-
tected functionally by the loss of albumin in the urine (9).
Elegant servo-control experiments indicate that the oxida-
tive stress and renal macrophage infiltration seen with NO
inhibition does not depend on blood pressure elevation
(136). Moreover, cytokines induced by ROS such as TNF-a
are directly toxic to the kidney glomerulus (11). Thus, some
of the glomerular damage resulting from oxidant stress-
induced hypertension occurs secondarily through upregu-
lated local inflammatory responses.

By contrast, interventions that limit renal oxidative stress
ameliorate blood pressure elevation and/or inflammatory
kidney damage in models of hypertension. For example, an-
tioxidant therapy in Dahl salt sensitive and SHRs limits renal
expression of chemokines and accumulation of macrophages
in the kidney and in turn lowers blood pressure (146, 179).
Infusion of bradykinin into these hypertensive rats suppresses
the renal NADPH oxidase activity and superoxide generation.
This control of oxidative stress in turn reduces proteinuria,
renal macrophage infiltration, and structural damage to the
kidney glomeruli and tubules (21). Induction of heme oxy-
genase during deoxycorticosterone acetate (DOCA)-salt
hypertension promotes ROS scavenging in the kidney and
accordingly reduces 8-isoprostane excretion, blunts accumu-
lation of mononuclear cells in the kidney, and attenuates renal
structural damage (72). Angiotensin converting enzyme 2
(ACE2) counteracts the oxidative damage in the kidney
caused by angiotensin II, normalizing renal levels of oxidative
stress, blunting T cell accumulation in the kidney, and ame-
liorating renal fibrosis (201). Control of ROS generation in the
kidney therefore provides renoprotection in part by pre-
venting downstream escalation of immune responses.

The CNS

Generation of oxidative stress in key regions of the CNS can
influence systemic inflammation to alter blood pressure re-
sponses and aggravate target organ damage. As discussed
above, the CVO transfer systemic afferent signals to cardio-
vascular control nuclei in the brain stem and hypothalamus.
Preventing degradation of ROS in the CVO via condi-
tional deletion of extracellular superoxide dismutase (ecSOD)
yields a robust blood pressure increase and augments ROS
generation even in the systemic vasculature following

Table 1. Oxidative Stress Potentiates Inflammatory Responses in the Kidney

Model
Oxidant/antioxidant effect

or intervention Inflammatory effects in kidney Reference

Salt-loaded rats Renal NADPH oxidase
induction/eNOS suppression

Proteinuria; TGF-b induction;
NF-jB activation; macrophage
infiltration; CCL5 induction
in proximal tubule

45, 84, 146

L-NAME-infused rats eNOS inhibition Glomerulosclerosis; albuminuria;
macrophage infiltration

8, 134

Dahl salt-sensitive rats Vitamins C and E Attenuation of macrophages in glomeruli
and interstitium; reduced TNF-a and
MCP-1 expression; blunted damage
to glomeruli/interstitium; reduced BP
and proteinuria

175

Spontaneously
hypertensive rats

Antioxidant-rich diet Reduction in infiltration of T cells,
macrophages, and Ang II-producing cells;
blunted BP elevation

144

Bradykinin Infusion (reduces
NADPH oxidase activity)

Reduction in macrophage infiltration,
TGF-b expression, and proteinuria

20

DOCA-salt HO-1 induction (scavenges ROS) Reduced glomerulosclerosis, albuminuria,
mononuclear cell infiltration; lowered levels
of NF-jB, AP-1, TGF-b, and fibronectin

70

Although immune responses clearly induce renal oxidative stress, the converse effects of superoxide to stimulate inflammation in the
kidney are evident in the experiments summarized here.

eNOS, endothelial nitric oxide synthase; NF-jB, nuclear factor-jB; ROS, reactive oxygen species; TNF, tumor necrosis factor; TGF-b
transforming growth factor-b; DOCA, deoxycorticosterone acetate.
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administration of angiotensin II at a dose that does not alter
blood pressure in normal animals (98). This enhanced oxida-
tive stress in the CNS and in the vasculature is associated with
increased expression of activation markers on circulating T
lymphocytes. However, whether the exaggerated T cell acti-
vation accrues from the blood pressure elevation in these CNS
ecSOD knockout mice or directly from the effects of ROS ac-
cumulation in the CVO or the periphery is unclear. Blocking
the hypertensive response of wild-type animals to a higher
dose of angiotensin II with hydralazine prevents circulating T
cell activation, pointing to an important effect of blood pres-
sure to stimulate cell-mediated immune responses (107).

ROS in the CNS also elevate blood pressure by stimulating
the proinflammatory NF-jB signaling pathway within key
CNS nuclei. For example, systemic infusion of angiotensin II
raises gp91phox levels in the PVN of the hypothalamus leading
to enhanced phosphorylation of NF-jB regulator IKKb and
subunit p50, respectively (77) (Fig. 4). As in other cell lineages,
translocation of NF-jB to the nucleus in cells of the PVN
triggers increased generation of the proinflammatory cyto-
kines TNF-a, IL-1b, and IL-6 (77). Production of TNF within
the PVN is associated with enhanced sympathetic nerve ac-
tivation, providing a link between central inflammation and

blood pressure elevation (57). Moreover, injection of IL-1b
directly into the PVN raises blood pressure (99, 160), and
blockade of cytokine production in the PVN with minocycline
attenuates angiotensin II-induced hypertension (160). Anti-
oxidant therapy with tempol introduced directly into the ce-
rebrospinal fluid reverses NF-jB activation and inflammatory
cytokine production within the PVN, in turn, blunting sym-
pathetic outflow and abrogating the hypertensive response to
angiotensin II (77). These studies illustrate that the induction
of the proinflammatory NF-jB signaling pathway in the PVN
and its actions to raise blood pressure depends on local ROS
generation.

ACE2 in the CNS has protective effects to limit local oxi-
dative stress just as in other cardiovascular control organs.
Accordingly, following angiotensin II infusion, ACE2-
deficiency augments ROS generation in the PVN and in the
rostral ventrolateral medulla, whereas ACE2 gene therapy
into the PVN ameliorates this oxidative stress (194). More-
over, these actions of ACE2 to suppress ROS in the CNS
protect against local inflammation as overexpression of ACE2
in the PVN reduces levels of TNF, IL-1b, and IL-6 and in turn
attenuates angiotensin II-induced hypertension (163).

Conclusion

Inflammatory responses heighten oxidative stress, and,
conversely, ROS generation potentiates immune activation
cooperatively in the pathogenesis of hypertension. Separating
these 2 phenomena as we have done is instructive for
clarifying inflammatory cascades and signaling pathways.
However, in the intact organism, the interactions between
oxidative stress and inflammation are in all likelihood con-
stitutively bidirectional (Fig. 1). Pharmacologic interventions
to lower blood pressure commonly improve markers of both
inflammation and oxidative stress in the organ undergoing
analysis such that study designs typically do not reveal
whether ROS lay upstream of immune responses or vice
versa. Experiments that carefully discriminate the effects of
oxidative stress versus those of immunity point to a feed-
forward mechanism in which one begets the other (i.e., Fig. 4).
As we have discussed, oxidative stress induces CypA in the
vasculature leading to vascular inflammation, but CypA de-
ficiency limits ROS generation in the vessel wall. ROS activate
the Myd88 inflammatory signaling pathway in immune cells
and the vasculature, which in turn propagates additional
oxidative stress. ROS generation in the PVN activates NF-jB
leading to inflammatory cytokine production; blocking
NF-jB translocation in the PVN reduces oxidative stress and
lowers blood pressure. The robust interactions between ROS
generation and immune activation would suggest that in-
terventions targeting one may also limit the other. This par-
adigm holds promise for potent therapeutics that may
nevertheless have unintended off-target consequences.
Therefore, future research will need to define with greater
precision the interrelationships during hypertension between
oxidative stress and inflammation in specific cell lineages
within cardiovascular control organs and within specialized
subtypes of myeloid and lymphoid inflammatory cells. For
example, although T lymphocytes in general enhance ROS
generation in the vasculature and the kidney, T regulatory
cells, which tend to suppress inflammation, can limit oxida-
tive stress and blunt the chronic hypertensive response to

FIG. 4. Feed-forward induction of oxidative stress and
nuclear factor-jB (NF-jB) activation in the paraventricular
nucleus (PVN) during angiotensin II-dependent hyper-
tension. Systemic angiotensin II infusion modeling activa-
tion of the renin-angiotensin system raises blood pressure
and induces subunits of the NADPH oxidase complex in
cells of the PVN within the hypothalamus. Superoxide gen-
eration within the PVN triggers phosphorylation of regula-
tors and subunits of the NF-jB signaling complex. Free to
translocate from the cytoplasm to the nucleus of the cell,
NF-jB induces transcription of inflammatory cytokines, in-
cluding TNF-a and interleukin-1b (IL-1b) that drive sympa-
thetic outflow from the central nervous system and further
elevate blood pressure, sustaining a prohypertensive,
proinflammatory cycle.

112 CROWLEY



angiotensin II (6). The human organism utilizes this rare, but
potent population of T regulatory cells to exercise exquisite
control over immune responses. Our analogous interventions
to contain pathologic oxidative stress and inflammation in
hypertensive patients, while preserving important protective
functions of ROS in immune cells, will similarly require
daunting precision.
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Abbreviations Used

AAA¼ abdominal aortic aneurysm
ACE2¼ angiotensin converting enzyme 2

APC¼ antigen-presenting cell
AT1¼ type 1 angiotensin
BH4¼ tetrahydrobiopterin
CNS¼ central nervous system

COX-2¼ cyclooxygenase 2
CRP¼C reactive protein
CVO¼ circumventricular organs

CypA¼ cyclophilin A
ecSOD¼ extracellular superoxide dismutase
eNOS¼ endothelial nitric oxide synthase
G6PD¼ glucose-6-phosphate dehydrogenase

HSP70¼heat shock protein-70
ICAM-1¼ intercellular adhesion molecule-1

IFN-c¼ interferon-c
IL-1¼ interleukin-1

iNOS¼ inducible nitric oxide synthase

LDL¼ low-density lipoprotein
MAP¼mitogen-activated protein
MDA¼malondialdehyde

MIF¼macrophage migration inhibitory factor
MMF¼mycophenolate mofetil

MMPs¼matrix metalloproteinases
MRAs¼mineralocorticoid antagonists
NF-jB¼nuclear factor-jB
PDTC¼pyrrolidine dithiocarbamate

POMC¼proopiomelanocortin
PVN¼paraventricular nucleus
Ref-1¼ redox factor-1
ROS¼ reactive oxygen species
SHR¼ spontaneously hypertensive rats
TCR¼T cell receptor
TGF¼ transforming growth factor
TNF¼ tumor necrosis factor

TRAIL¼TNF-related apoptosis-inducing ligand
VCAM-1¼vascular cell adhesion molecule-1

VSMCs¼vascular smooth muscle cell
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