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This is the first study carried out to describe the role of fetal microchimerism (FM) in the pathogenesis of uterine
cancer. The prevalence and concentration of male fetal microchimeric cells (FMCs) were examined in endo-
metrial tissues in relation to subtypes of uterine cancer, and the histological grade and stage of the tumor. FM
occurrence was analyzed in relation to risk factors, including hypertension, obesity, type 2 diabetes, dyslipi-
demia, age at cancer diagnosis, and patient pregnancy history. The prevalence and concentration of FMCs were
examined in endometrial tissues using real-time polymerase chain reaction, SRY and b-globin sequences as
markers for male fetal FMCs and total DNA. The studied group involved 47 type 1 endometrial cancers, 28 type
2 endometrial cancers, and 41 benign uterine diseases. While the prevalence of FM was decreased only in type 1
endometrial cancer, compared with benign uterine disorders (38.3% vs.70.7%; odds ratio [OR] = 0.257, 95%
confidence interval [CI]: 0.105 to 0.628, p = 0.003), FMC concentrations did not differ within examined groups.
The lower FM prevalence was detected in low-grade (grade 1 and grade 2) endometrioid cancer (38.3% vs.
70.7%, OR = 0.256, 95% CI: 0.105 to 0.627, p = 0.003) and in FIGO 1 tumors (40.7% vs. 70.7%, OR = 0.285, 95% CI:
0.120 to 0.675, p = 0.004). No correlation between FM prevalence or FMC concentrations and risk factors was
demonstrated. A lower prevalence of male FM seemed to be associated with better prognoses in uterine cancer
based on tumor subtype, histological grade, and stage of the tumor.

Introduction

Fetal microchimerism (FM) is defined as the long-term
persistence of small numbers of fetal-derived allogeneic

cells in maternal organs and circulation. FM is a naturally
occurring phenomenon accompanying each gestation (Artlett,
2005; Yan et al., 2005; Fleta et al., 2006; Lapaire et al., 2007). Fetal
cells cross the placenta throughout gestation. While the ma-
jority of fetal cells (nucleated erythrocytes, leukocytes, and
trophoblasts) are present in the maternal circulation through-
out gestation, some fetal cells cross the placenta exclusively
during certain stages of pregnancy. For instance, mesenchymal
stem cells can be detected in maternal circulation only during
the 7th and 14th weeks of gestation (Clayton et al., 1964;
Walknowska et al., 1969; Mueller et al., 1990; Campagnoli et al.,
2001). Stem and progenitor cells of fetal origin (hematopoietic
and mesenchymal stem cells, endothelial progenitor cells) can
engraft and proliferate in maternal bone marrow. Afterward,

they settle in target maternal tissues, where, under appropriate
micro-environmental stimuli, they can differentiate into cells
expressing tissue-specific markers and carry out a variety of
functions (Bianchi et al., 1996; Campagnoli et al., 2000; Guetta
et al., 2003; O’Donoghue et al., 2003; Bayes-Genis et al., 2005;
Khosrotehrani and Bianchi, 2005; Nguyen et al., 2006; O’Do-
noghue and Chan 2006; Buemi et al., 2007; Savvidou et al.,
2008; Parant et al., 2009; Luppi et al., 2010). Fetal microchimeric
cells (FMCs) have been recently shown to have diverse and
controversial affects. FMCs can be involved in tissue repair or
take part in inducement of chronic inflammation, leading to
autoimmunity and cancer (Nassar et al., 2012). With regard to
gynecologic malignancies, only a limited number of studies are
available. A study by Cha et al. (2003) was the first to report the
presence of male microchimeric cells in cervical tissues derived
from patients with cervical cancer. Initial studies by Gadi and
Nelson (2007) and Gadi et al. (2008) demonstrated that the
presence of allogeneic FM in peripheral blood mononuclear
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cells in women, who had given birth to a son, contributed sig-
nificantly to the reduction in the risk of breast cancer. They
reported an FM prevalence of 56% in controls and 26% in pa-
tients with breast cancer. Their results suggested that the en-
igma of why some parous women are not afforded protection
from breast cancer by pregnancy, might, in part, be explained
by the absence of FM (Gadi et al., 2008). A contemporary study
by Gilmore et al. (2008) also showed a higher prevalence of male
cells (57% vs. 34%) in the maternal circulation of normal parous
women compared with those with various malignant diseases,
including, but not limited to, gynecologic malignancies, indi-
cating that the absence of male microchimerism might be a risk
factor for developing breast cancer. A study by Kamper-Jør-
gensen et al. (2012) highlighted the opposite effects of FM in
blood samples on later development of breast and colon cancer.
While the detection of male microchimerism was strongly as-
sociated with a reduced risk of developing breast cancer (70%
vs. 40%), they found an increased risk of developing colon
cancer (70% vs. 90%). Gadi (2010) found a protective association
between FM in breast tissue and breast cancer. They reported a
higher prevalence of FM in breast tissues from cancer-free wo-
men compared with unaffected breast tissues from patients
with an invasive breast cancer diagnosis (63% vs. 26%, respec-
tively). The latest study by Dhimolea et al. (2013) reported de-
creased FM prevalence in ductal invasive breast cancer
compared with controls (21.0% vs. 56.0%, p < 0.001).

Uterine cancer is defined as any invasive neoplasm of the
uterine corpus. Invasive neoplasms of female pelvic organs
account for almost 15% of all cancers in women. The most
common of these malignancies, in the United States and
Europe, is endometrial cancer (Schottenfeld, 1995; Olson et al.,
2009). There are two forms of endometrial cancer. Type 1
endometrial cancer represented by low-grade endometrioid
adenocarcinoma, which is thought to be primarily related to
imbalances in reproductive hormones, usually constitutes
more than 80% of all endometrial cancers (Milne et al., 2011)
and has a favorable prognosis. Type 2 endometrial cancer,
considered nonestrogen dependent, represented by serous
carcinoma and cell clear carcinoma, is highly aggressive and is
associated with a worse prognosis. Recently, it has been re-
ported that grade 3 endometrioid carcinomas shared a mo-
lecular pathway with type 2 endometrial carcinomas (Alvarez
et al., 2012). It has also been shown that grade 3 endometrioid
carcinomas had a clinical behavior close to that reported in
type 2 endometrial cancer (Alektiar et al., 2002; Soslow et al.,
2007). That is why some authors start classifying high-grade
endometrioid carcinomas (grade 3) as type 2 endometrial
cancers (Amant et al., 2005; Bakkum-Gamez et al., 2008).

Since it is now universally accepted that carcinosarcomas
are not uterine sarcomas but carcinomas with a sarcomatoid
phenotype, they can also be grouped with high-grade (type
2) uterine carcinomas (Kurman et al., 2011).

Known risk factors for type 1 endometrial cancer include
early menarche, late menopause, anovulation, infertility
and/or nulliparity, obesity, diabetes, and higher lifetime
estrogen exposure (Sherman, 2000; Purdie and Green, 2001;
Kaaks et al., 2002; Akhmedkhanov et al., 2006; Trentham-
Dietz et al., 2006; Wernli et al., 2006; Zagouri et al., 2009). The
only known risk factor for type 2 endometrial cancer is age
( > 60 years), so most of these tumors occur after menopause.

To our knowledge, no study describing the role of FM in
the pathogenesis of uterine cancer has been carried out. For

that reason, we evaluated the prevalence of FM and FMC
concentrations in tumor and control endometrial tissues in a
population of Czech women. Further, we investigated the
relationship between FM and the severity of the disease with
regard to the uterine cancer subtype, the histological stage
and grade of the tumor. The association part of the study
focused on the risk factors, including patient age at diagno-
sis, patient pregnancy history, obesity, hypertension, dysli-
pidemia, and type 2 diabetes.

Materials and Methods

The study examined the presence of FM in frozen and/or
fresh endometrial tissue specimens. The studied control group
involved 41 patients (dysfunctional uterine bleeding, leio-
myomas, endometrial polyps, benign ovarian cysts, prolapsed
uterus, and benign endometrial hyperplasia) aged 36–75 years
(mean 52.4 years). The patients in the control group suffered
from type 2 diabetes (10.3%), hypertension (20.5%), and dys-
lipidemia (2.4%). Relative to BMI, the control group had the
following distribution (38.9% normal range, 16.7% over-
weight, and 44.4% obese). The history of pregnancy in the
control group was as follows: 5 - no pregnancies, 7 - one
pregnancy, 8 - two pregnancies, 9 - three pregnancies, 7 - four
pregnancies, and 5 - five or more pregnancies.

The cancer patient group enrolled 75 patients with uterine
cancer. The group included 47 women with type 1 endome-
trial cancer (17 grade 1 endometrioid adenocarcinomas and
30 grade 2 endometrioid adenocarcinomas) and 28 women
with type 2 endometrial cancer (19 grade 3 endometrioid
adenocarcinomas, 2 clear cell endometrial carcinomas, 3 se-
rous carcinomas, and 4 metaplastic carcinomas). The patients
were diagnosed with uterine cancer at the mean age of 65.5
years (range 44–90 years). Tumor stages according to the
FIGO 2009 classification (54 FIGO 1, 7 FIGO 2, 12 FIGO 3 and
2 FIGO 4) and tumor histological grades (17 G1, 30 G2 and 19
G3) were assessed. The prevalence of type 2 diabetes was
28.2%. The prevalence of hypertension and dyslipidemia in
the uterine cancer group was 56.3% and 16.0%, respectively.

The cancer patients were subdivided according to BMI
(11.3% BMI £ 25, 41.9% BMI > 25, and 46.8% BMI > 30). The
pregnancy history of the uterine cancer group was as fol-
lows: 3 - no pregnancies, 11 - one pregnancy, 28 - two
pregnancies, 19 - three pregnancies, 6 - four pregnancies, and
8 - five or more pregnancies. The study was performed in a
retrospective manner using biological samples collected from
January 2009 to December 2010. All patients who partici-
pated in this study provided written informed consent. The
study was approved by the local ethics committee.

Processing of samples and real-time PCR analysis

DNA was extracted from 25 mg of endometrial tissue
using a QIAamp DNA Mini kit (Qiagen, Hilden, Germany).
In fresh tissue samples, DNA was eluted in 200mL of AE
buffer. To enrich DNA from frozen tissues, DNA was eluted
using 60mL of AE buffer. These two approaches were se-
lected on the base of previous testing, yielding approxima-
tely the same quantity of fetal cells in identical tissues. The
real-time PCR analysis was performed using a 7500 Real-Time
PCR system (Applied Biosystems, Branchburg, NJ) as previ-
ously described. Two protocols produced the best results,
identifying small numbers of male FMCs in uterine tissues.
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15mL and/or 47mL were used as a template for the SRY-spe-
cific polymerase chain reaction. TaqMan amplification reac-
tions were set up in a reaction volume of 50 mL and/or
100 mL using TaqMan Universal PCR Master Mix (Applied
Biosystems). Each sample was analyzed in three replicate
settings for the SRY gene. A patient’s specimen was con-
sidered positive if the amplification signal occurred on a
threshold cycle < 50. The calibration curves for the SRY and
b-globin (GLO) genes were run parallel to each analysis.
The standard curves were prepared using two approaches.
First, DNA from the peripheral blood of a healthy male
donor was isolated, its concentration was measured using a
spectrophotometer (NanoDrop-1000; Witec AG, Switzer-
land) and converted to the number of cells using a con-
version factor (one diploid genome being equivalent to
6.6 pg of DNA). Second, DNA derived from a healthy male
donor of known concentration (converted to the number of
cells using a conversion factor) was spiked to the known
concentration of female DNA. FM was expressed as the
number of FMCs per 105 total cells. Five microliter of DNA
was used as a template for the GLO PCR reaction.

Statistical analysis

The Chi-square test and univariate logistic regression model
were used to compare the absence or the presence of FM
across the groups. One-way analysis of variance (ANOVA)
was used to test possible differences in mean concentrations of
fetal-derived cells in endometrial tissues between groups. A
series of multiple logistic regression analyses were performed
to evaluate the effect of putative risk factors on the prevalence
of FM in the groups of patients with uterine cancer and con-
trols. Similarly, two-way ANOVA analyses were performed to
compare the differences in concentrations of FMCs in endo-
metrial tissues between the uterine cancer group and the
control group in relation to particular risk factor.

In addition, the relationship between FM prevalence or
FMC concentrations in endometrial tissue and the age of the
patient at the time of diagnosis, patient pregnancy history
(total number of pregnancies, including both completed and
uncompleted pregnancies), and the body mass index was
studied using linear regression models.

The significance level was established at a p-value of
p < 0.05. If there was statistical significance with the ANOVA
test, then the Bonferroni’s post-hoc analysis was applied.

Results

The prevalence of male FM in uterine cancer

Overall, a significantly decreased prevalence of male FM
was observed in women who developed uterine cancer
compared with uterine cancer-free controls (44.0% vs. 70.7%;
odds ratio [OR] = 3.076, 95% confidence interval [CI]: 1.365 to
6.933, p = 0.007). However, the difference in concentrations of
fetal-derived cells between uterine cancer and cancer free-
groups did not achieve statistical significance (F = 0.013,
df = 1,114, p = 0.910). Fetal cells were detected at mean con-
centrations of 0.090 and 0.050 per 105 total cells in uterine
cancer cases and controls, respectively.

A significant difference in the prevalence of male FM was
found between uterine cancer patients and the control group.
While the prevalence of male FM between the control group

and type 2 endometrial cancer (70.7% vs. 53.6%; OR = 0.478,
95% CI: 0.175 to 1.301, p = 0.148) did not differ, a lower prev-
alence was detected in patients with type 1 endometrial cancer
(70.7% vs. 38.3%; OR = 0.257, 95% CI: 0.105 to 0.628, p = 0.003),
(Fig. 1A). However, the number of chimeric cells did not differ
within the examined groups (type 1 endometrial cancer: mean
0.146 per 105 total cells vs. type 2 endometrial cancer: mean
0.023 per 105 total cells vs. controls: mean 0.050 per 105 total
cells), (F = 0.429, df = 2,113, p = 0.652), (Fig. 1B).

Association between male FM and the histological
grade of endometrioid cancer

A significant effect of the histological grade of the tumor on
the prevalence of male FM in examined endometrioid cancer
tissues was revealed. A significantly lower prevalence of
male FM was observed in low-grade (grade 1 and grade 2)

FIG. 1. The prevalence of male fetal microchimerism (FM)
in uterine cancer. Results expressed as box plots; upper and
lower limits of the boxes represent the mean – SE (standard
error), upper and lower whiskers represent the mean – 2SD
(standard deviations), mean is indicated by the line in each
box; outliers are indicated by circles and extremes by aster-
isks. The significance level was established at a p-value of
p < 0.05. (A) While the prevalence of male FM between the
control group and type 2 endometrial cancer did not differ, a
lower prevalence was detected in patients with type 1 en-
dometrial cancer. (B) The number of chimeric cells did not
differ within the examined groups (type 1 endometrial can-
cer vs. type 2 endometrial cancer vs. controls).
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endometrioid cancer (38.3% vs. 70.7%, OR = 0.256, 95% CI:
0.105 to 0.627, p = 0.003). The difference in prevalence of male
FM between high-grade (grade 3) endometrioid tumors
and the control group did not reach statistical significance
(42.1% vs. 70.7%, OR = 0.301, 95% CI: 0.097 to 0.934, p = 0.138),
(Fig. 2A).

Mean FMC concentrations in endometrial tissues of pa-
tients with grade 1 endometrioid carcinomas (0.232 per 105

total cells), grade 2 endometrioid carcinomas (0.076 per 105

total cells), and grade 3 endometrioid carcinomas (0.010 per
105 total cells) were assessed. Statistical analyses showed no
association between concentrations of male FMCs and the
histological grade of the tumor within the endometrioid
cancer group (F = 0.579, df = 4,149, p = 0.678), (Fig. 2B).

Association between male FM and the stage
of the uterine cancer according to the FIGO classification

FM prevalence in endometrial tissues differed significantly
depending on the stage of uterine cancer. While the lowest
prevalence of FM was detected in FIGO 1 tumors compared
with the control group (40.7% vs. 70.7%, OR = 0.285, 95% CI:
0.120 to 0.675, p = 0.004), no difference between uterine can-
cer-free tissue samples and FIGO 2 (70.7% vs. 57.1%,
OR = 0.552, 95% CI: 0.107 to 2.848, p = 0.478) or FIGO 3 and
FIGO 4 tumors (70.7% vs. 50.0%, OR = 0.414, 95% CI: 0.119 to
1.437, p = 0.165) was observed (Fig. 3A).

The concentrations of FMCs showed no difference be-
tween groups of patients with uterine cancer (F = 0.324,
df = 3,112, p = 0.808).The mean number of fetal cells per
105 total cells tested for microchimerism was 0.093 in FIGO 1,
0.180 in FIGO 2, and 0.028 in FIGO 3 and FIGO 4 (Fig. 3B).

FIG. 2. Association between male FM and the histological
grade of endometrioid cancer. Results expressed as box plots;
upper and lower limits of the boxes represent the mean – SE,
upper and lower whiskers represent the mean – 2SD, mean is
indicated by the line in each box; outliers are indicated by
circles and extremes are indicated by asterisks. The signifi-
cance level was established at a p-value of p < 0.05. (A) While
the difference in prevalence of male FM between high grade
(grade 3) endometriod tumors and the control group did not
reach statistical significance, a significantly lower prevalence
of male FM was observed in low-grade (grade 1 and grade 2)
endometrioid cancer. (B) No association between con-
centrations of male FMCs and the histological grade of the
tumor within the endometrioid cancer group was found.

FIG. 3. Association between male FM and the stage of the
uterine cancer according to the FIGO classification. Results ex-
pressed as box plots; upper and lower limits of the boxes repre-
sent the mean – SE, upper and lower whiskers represent the
mean – 2SD,meanisindicatedbythelineineachbox;outliersare
indicated by circles and extremes are indicated by asterisks. The
significance level was established at a p-value of p < 0.05. (A)
WhilethelowestprevalenceofFMwasdetectedinFIGO1tumors
compared to the control group, no difference between uterine
cancer-free tissue samples and FIGO 2 or FIGO 3 and FIGO 4
tumors was observed. (B) The concentrations of FMCs showed
no difference between groups of patients with uterine cancer.
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The association study of FM and putative
risk factors for uterine cancer

No relation between hypertension and FM prevalence was
observed (OR = 1.280, 95% CI: 0.561 to 2.918, p = 0.558). Si-
milarly, there was no difference in concentrations of FMCs
(F = 0.075, df = 1,102, p = 0.785) between hypertensive and
normotensive subjects (F1 = 2.344, df = 1,102, p = 0.129) within
the uterine cancer group and the control group (F2 = 0.033,
df = 1,102, p = 0.785).

FM prevalence (OR = 1.046, 95% CI: 0.405 to 2.702, p = 0.925)
and FMC concentrations (F = 0.187, df = 1,102, p = 0.666;
F1 = 0.013, df = 1,102, p = 0.908; F2 = 0.196, df = 1,102, p = 0.659)
were approximately equal in the uterine cancer group and the
control group, relative to type 2 diabetes.

The results indicate no association between the presence of
dyslipidemia and the prevalence of FM (OR = 2.465, 95% CI:
0.702 to 8.652, p = 0.159) or FMC concentrations in endome-
trial tissues (F = 0.003, df = 1,112, p = 0.959; F1 = 0.004,
df = 1,112, p = 0.953; F2 = 0.158, df = 1,112, p = 0.692) in groups
of patients with or without uterine cancer.

There was no significant effect of body mass index, when
patients were subdivided into particular categories involving
norm and overweight/obese patients, on FM prevalence
(OR = 0.473, 95% CI: 0.155 to 1.446, p = 0.189) or FMC con-
centrations in endometrial tissues (F = 1.384, df = 1,90,
p = 0.243; F1 = 0.143, df = 1,90, p = 0.706; F2 = 0.085, df = 1,90,
p = 0.771). In addition, no relationship between both FM
prevalence and the concentration of FMCs in endometrial
tissues and BMI was found in the uterine cancer group
(R2 = 0.0194, p = 0.426; R2 = 0.0092, p = 0.385) or cancer-free
controls (R2 = 0.0522, p = 0.191; R2 = 0.0129, p = 0.239).

Although uterine cancer is more common in patients older
than 60 years of age, the association part of the study focused
on the comparison of FM prevalence and FMC concentra-
tions in endometrial tissues between age-matched groups.
The control group and the uterine cancer group below the
age of 60 also showed the difference in FM prevalence (73.3%
vs. 41.6%; OR = 3.385, 95% CI: 1.137 to 10.077, p = 0.029);
while no differences in FMC concentrations (F = 1.148,
df = 1,57, p = 0.289) were observed. Likewise, the benign
uterine disorder group and the uterine cancer group older
than 60 years of age differed in FM prevalence (63.5% vs.
45.1%; OR = 2.275, 95% CI: 0.584 to 8.862, p = 0.049) but did
not differ in FMC concentrations (F = 1.228, df = 1,55, p = 0.20).
No difference in FM prevalence (controls: OR = 1.571, 95%
CI: 0.361 to 6.842, p = 0.547; cancer patients: OR = 1.056, 95%
CI: 0.414 to 2.692, p = 0.909) and in FMC concentrations
(controls: F = 1.352, df = 1,39, p = 0.259; cancer patients:
F = 0.935, df = 1,73, p = 0.337) was observed within individual
groups with regard to age (below 60 yrs vs. over 60 yrs). Si-
milarly, a linear regression analysis showed no association
between testing positive for FM and concentrations of FMCs
in endometrial tissues versus age at diagnosis in women who
developed uterine cancer (R2 = 0.00047, p = 0.853; R2 = 0.00053,
p = 0.844) or benign uterine disorders (R2 = 0.06941, p = 0.126;
R2 = 0.07944, p = 0.074).

FM prevalence and FMC concentrations in endometrial
tissues were also analyzed in relation to the patients’
pregnancy history (i.e., number of childbirths, spontane-
ous abortions and miscarriages). No association between
either FM prevalence or FMC concentrations and the

number of pregnancies in the uterine cancer group
(R2 = 0.0065, p = 0.496; R2 = 0.000068, p = 0.944) and the
control group (R2 = 0.0013, p = 0.838; R2 = 0.040, p = 0.247)
was revealed.

Discussion

We previously reported considerable inter-individual
variation in the DYS-14 copy number in a group of healthy
men; therefore, we believed that the DYS-14 sequence is not
an optimal marker for male fetal DNA quantification (Hro-
madnikova et al., 2008, 2009). That is why our studies to
assess the prevalence of FM were done preferentially using
the SRY gene as the marker. Unfortunately, a recently dis-
covered sex-independent fetal-specific marker, the hyper-
methylated RASSF1A sequence, cannot be used for fetal
DNA quantification in cancer patients, because hy-
permethylation of the promoter, associated with the inacti-
vation of the tumor suppressor gene, has been frequently
observed in various tumors (van der Weyden and Adams,
2007; Pallarés et al., 2008; Banno et al., 2012).

Overall, FM prevalence is more common in patients with
benign diseases of the uterus than in uterine cancer. With
regard to the individual subtypes of uterine cancer, the
prevalence of FM was different between cancer patients and
controls. Patients with type 1 endometrial cancer were less
likely to be FM positive than uterine cancer-free controls. On
the other hand, the prevalence of FM in those patients with a
more aggressive, faster-growing form of cancer that tends to
have a poorer prognosis, such as type 2 endometrial cancer,
was the same relative to the control group.

The analysis conducted to examine the association be-
tween the prevalence of FM and the histological tumor grade
score revealed significantly decreased prevalence of FM in
low-grade endometrioid adenocarcinomas compared with
controls. Interestingly, no difference in FM prevalence be-
tween high-grade uterine tumors and uterine cancer-free
controls was observed.

Similarly, we observed a lower prevalence of FM in patients
in whom the cancer was restricted to the body of the uterus
(FIGO 1) compared with the control group with benign dis-
eases of the uterus. The results also suggested that there was
no difference in FM prevalence in endometrial tissues within
women in whom the cancer had spread from the body of
the uterus to the supporting connective tissue of the cervix
(FIGO 2) and/or outside the uterus (FIGO 3 + 4) and the
control group with benign diseases of the uterus. Overall, the
present study suggests that better prognoses of uterine cancer
are usually associated with lower prevalence of FM in tumor
tissues compared with control tissues derived from benign
uterine disorders. Interestingly, the concentration of FMCs in
endometrial tissues did not differ between the examined
groups.

It is evident that most women with nonmalignant uterine
diseases harbor FMCs in very low concentrations. This
phenomenon may be associated with ongoing disorders that
are accompanied by local inflammation for which control
patients underwent surgery. Besides hormonal regulation, a
number of other factors involving inflammatory processes
have been reported to regulate uterine myoma (Miura et al.,
2006; Khan et al., 2010). On the other hand, the occurrence of
FM in endometrial tissue may be linked with protection
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against the development of uterine cancer. However, the oc-
currence of FM in women without these reproductive dis-
eases, who could not be used as controls in the study, remains
unclear. The endometrial biopsy is usually performed in
women older than the age of 35 to determine the cause of
abnormal menstrual periods, bleeding after menopause,
bleeding associated with taking hormone replacement medi-
cations, or to screen for endometrial cancer. Normal endo-
metrial tissue is described as proliferative or secretory
endometrium that has the thickness of the uterine lining
comparable to that of a healthy uterus and lacks the presence
of precancerous and cancerous cell growth. However, even
patients with abnormal vaginal bleeding have normal endo-
metrial tissue on biopsy. Moreover, an endometrial biopsy
does not provide a sufficient amount of biological material to
study the occurrence of FM. The only option enabling study is
utilization of biological material from surgery, indicated for
uterine abnormalities identified with an endometrial biopsy.

The occurrence of male microchimeric cells in tumor tis-
sues may be related to their active involvement in the com-
plex process of tumorigenesis, involving tumor initiation and
propagation inclusive of integration into the tumor stroma
(Dubernard et al., 2008), neoangiogenesis, facilitation of me-
tastasis (Nguyen et al., 2009), inducement of immune re-
sponses (Sawaya et al., 2004; Gadi, 2009) followed by
reparation of inflammation damaged tissues, as previously
suggested for certain autoimmune diseases and malignancies
(Lee et al., 2010).

Since very low concentrations of FMCs are present in
uterine cancer tissues and benign uterine disorders, the
identification of their origin, phenotype, and role in ma-
ternal tissues, using the most sensitive currently available
techniques, is relatively unfeasible. Nevertheless, an inves-
tigation of the biological consequences of pregnancy-asso-
ciated FM is fundamental. Recently, reported developments
of highly sensitive symptomatic qPCR assays have opened
up the possibility of analyzing paraffin-embedded tissues
that were previously unusable for chimerism studies (Dhi-
molea et al., 2013). This discovery represents the first step
toward quantification of allogeneic cells in more accessible
biological material for most research centers. The next steps
should be directed toward the development of more precise
techniques for visualization of rare fetal cells in paraffin-
embedded tissues that can be dissected for consecutive
single cell analysis. Incorporation of live cell imaging
techniques, to obtain a better understanding of biological
function, through the study of cellular dynamics, would be
desirable as well.

With these types of advancements, the origin of allogeneic
cells in maternal tissues might be definitely confirmed. Al-
though pregnancy is the most common setting, in which FM
is encountered, microchimerism can also occur after alloge-
neic blood transfusion (Vervoordeldonk et al., 1998; Lapierre
et al., 2007). Microchimeric cells can also be transferred in
utero from a twin and potentially from an unrecognized
(vanished) twin, which is relatively common in healthy
pregnancies (de Bellefon et al., 2010). Sexual transmission
and needle sharing have also been suggested as possible
mechanisms for microchimerism; however, to date, they
have not been well documented (Bloch et al., 2013).

Some health-related lifestyle factors, such as type 2 dia-
betes or insulin resistance, obesity, hypertension, dyslipide-

mia, and increasing age, may be highly relevant to later
uterine cancer development (Grossman et al., 2002; Amant
et al., 2005; Rapp et al., 2005; Friberg et al., 2007; Lucenteforte
et al., 2007; Pallarés et al., 2008; Schmandt et al., 2011; von
Gruenigen et al., 2011; Seth et al., 2012; Chen et al., 2013;
Edlinger et al., 2013). The lower prevalence of male FM (1.6
times) was also observed as affecting the development of
uterine cancer.

We studied the association between FM prevalence and
FMC concentrations in endometrial tissues and putative risk
factors for uterine cancer. However, the association analyses
pointed to no relationship between FM prevalence or FMC
concentrations and appropriate risk factors. It is well known
that multiparous women have a lower risk of developing
hormone-dependent cancers. Several studies have provided
evidence that multiparity might confer a protective effect on
the risk of death from endometrial cancer (Chan et al., 2011;
Cramer, 2012). We tested the possibility that the prevalence
of FM and concentrations of FMCs increased with increasing
numbers of pregnancies. However, the analysis indicated no
trend of increasing FM prevalence and FMC concentrations
associated with higher numbers of pregnancies. On the basis
of these findings, we hypothesized that the protective effect
of multiparity, relative to the onset of uterine cancer, is not
associated with FM.

Conclusion

Low concentrations of FMCs are very common in endo-
metrial tissues derived from patients treated for benign uter-
ine disorders. In cases of uterine cancer, a lower prevalence of
FM was demonstrated. A lower prevalence of FM seems to be
associated with better prognoses in uterine cancer based on
tumor subtype, histological grade, and stage of the tumor. A
lower prevalence of FM was observed in low-grade type 1
endometrial cancer and pT1 tumors. No relationship between
FM prevalence or FMC concentrations in endometrial tissues
and the prevalence of hypertension, type 2 diabetes, dyslipi-
demia, overweight and obesity, age of patients, and total
number of previous pregnancies was demonstrated.
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