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Oxidative Stress in Hypertension: Role of the Kidney
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Abstract

Significance: Renal oxidative stress can be a cause, a consequence, or more often a potentiating factor for
hypertension. Increased reactive oxygen species (ROS) in the kidney have been reported in multiple models of
hypertension and related to renal vasoconstriction and alterations of renal function. Nicotinamide adenine
dinucleotide phosphate oxidase is the central source of ROS in the hypertensive kidney, but a defective anti-
oxidant system also can contribute. Recent Advances: Superoxide has been identified as the principal ROS
implicated for vascular and tubular dysfunction, but hydrogen peroxide (H2O2) has been implicated in di-
minishing preglomerular vascular reactivity, and promoting medullary blood flow and pressure natriuresis in
hypertensive animals. Critical Issues and Future Directions: Increased renal ROS have been implicated in renal
vasoconstriction, renin release, activation of renal afferent nerves, augmented contraction, and myogenic
responses of afferent arterioles, enhanced tubuloglomerular feedback, dysfunction of glomerular cells, and
proteinuria. Inhibition of ROS with antioxidants, superoxide dismutase mimetics, or blockers of the renin-
angiotensin-aldosterone system or genetic deletion of one of the components of the signaling cascade often
attenuates or delays the onset of hypertension and preserves the renal structure and function. Novel approaches
are required to dampen the renal oxidative stress pathways to reduced O2

- � rather than H2O2 selectivity and/or
to enhance the endogenous antioxidant pathways to susceptible subjects to prevent the development and renal-
damaging effects of hypertension. Antioxid. Redox Signal. 20, 74–101.

Introduction

Scope of the review

The involvement of oxidative stress and reactive oxy-
gen species (ROS) in hypertension has been extensively

studied. Comprehensive reviews on the generation and ac-
tions of ROS in vascular and cardiac systems have been
published recently (88, 104, 192, 193, 199, 203, 204, 242, 255,
317, 319). These publications have emphasized the contribu-
tion of pro- and antioxidant enzymes, the signaling pathways
involved, and the approaches for prevention and treatment of
hypertension with the use of antioxidants drugs. This Forum
will focus on the physiological and pathophysiological ac-
tions of ROS produced in the kidney and its blood vessels and
their contribution to the development and maintenance of
hypertension. Where data were not available in renal tissues,
brief mention will be made of the important ROS pathways in
systemic blood vessels.

Overview of renal ROS and hypertension

ROS-generating and metabolizing systems. ROS are
generated as a normal product of cellular metabolism (204).
ROS, such as superoxide anion (O2

- �), hydrogen peroxide
(H2O2), and hydroxyl anion (OH - �), are reactive byproducts
of mitochondrial respiration or oxidases, including nicotin-
amide adenine dinucleotide phosphate (NADPH) oxidase,
xanthine oxireductase (XOR), and certain arachidonic acid
oxygenases (316). ROS can be formed also by nitric oxide
synthases (NOS) after depletion of the NOS substrate l-argi-
nine or the cofactor tetrahydrobiopterin (BH4) or during
partial inhibition of NOS by antagonists such as asymmetric
dimethylarginine. While superoxide dismutase (SOD) is one
of the major defense systems to remove O2

- �, catalase, per-
oxiredoxins (Prxs), glutathione peroxidase (GPX), and thio-
redoxin (Trx) reductase, all are important to metabolize H2O2

(59, 76, 321). ROS also may be scavenged by antioxidant
molecules such as tocopherols or ascorbate. The excessive
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production or decreased metabolism of ROS can lead to oxi-
dative stress that alters the redox state in the tissue, resulting
in redirection of redox-regulated signaling pathways and ul-
timately cellular dysfunction or damage (315, 316).

Nitric oxide, ROS, endothelial dysfunction, and hyperten-
sion. Oxidative stress can be a cause, a consequence, or a
potentiating factor for hypertension. Increased production of
O2

- � in the vasculature impairs endothelium-derived relax-
ation factor/nitric oxide (EDRF/NO) and increases vascular
smooth muscle cell (VSMC) contraction and proliferation, and
attraction of inflammatory cells (75, 137, 161, 191, 294). Since
the kidney contributes to the long-term control of blood
pressure (BP) and this is, in part, dependent on NO (341)
whose activity is regulated in the renal blood vessels and tu-
bules by O2

- � (317), it is important to understand the renal
mechanisms of generation and metabolism of ROS, their in-
teraction with NO, and their relationship to hypertension.

Renal oxidative stress. An increased production of ROS
in the kidney can initiate hypertension. For example, mice
with the SOD-3 isoform knockout ( - / - ) had higher basal BP
compared with wild-type ( + / + ), which was associated with
increased production of O2

- � and inactivation of NO in the
kidney (304). ROS also can accelerate the development of
hypertension. For example, conscious SOD-3 ( - / - ) mice had
an earlier and more rapid increase in BP with a slow-pressor
infusion of angiotensin II (ANG II) than their wild-type
( + / + ) littermates, even though both achieved similar levels
of BP after about 10 days (304). The lack of consistent findings
of hypertension in SOD knockout models may relate to many
factors. Some studies (38, 53, 89, 128, 243) reported tail-cuff
measurements of BP, which lack precision. Others were lim-
ited to blood vessels or studied in animals under anesthesia
(49, 53, 144). Those that used telemetry measurements of BP
have reported no changes in SOD-1 ( - / - ) (28) or increased
BP in SOD-3( - / - ) (304) conscious mice. Importantly, these
inconsistent conclusions cannot be explained simply by the
different SOD isoforms, since, for example, SOD-3 ( - / - )
mice were reported to be hypertensive in one study (304), but
normotensive in another (89). ROS promote or mediate hy-
pertension initiated by many processes, such as activation of
the renin-angiotensin-aldosterone system (RAAS) in rats with
the two kidney, one clip (2K,1C) model of Goldblat renovas-
cular hypertension (305). This was related to an activated
neutrophil oxidase (NOX)-derived O2

- � production and a
reduced metabolism of O2

- � by SOD (29, 304). Dietary salt
loading increased renal and vascular ROS in many salt-
sensitive models (24, 31, 136, 245, 315). This implies that oxi-
dative stress contributes to both the renal and vascular
mechanisms of both salt-independent and salt-sensitive hy-
pertension (138, 179, 317).

Mechanisms of hypertension and renal ROS. Increased
renal ROS production contribute to the development and
progression of hypertension (2, 62, 159, 187, 245, 303, 304,
310) by increasing renal vasoconstriction (132), renin release
(307), renal afferent nerve activity (31), contraction of af-
ferent arterioles to increased renal perfusion pressure
(myogenic response), or to ANG II (153), endothelin-1 (ET-1),
and thromboxane prostanoid receptor (TP) activation (293).
ROS also cause dysfunction of glomerular cells and pro-

teinuria (73, 239, 246, 274, 330). Increased O2
- � in the kid-

ney leads to vascular dysfunction and disrupts water and
sodium (Na + ) homeostasis (104, 193, 267, 317). Vascular
O2

- � reacts with endothelium-derived NO and directly
promotes vasoconstriction (167). The generation of O2

- � in
specific nephron segments in response to endogenous va-
soconstrictors such as to ANG II increases (264) or decreases
(224) tubular Na + reabsorption, depending on the nephron
site studied.

Intrarenal expression of pro- and antioxidant systems
and hypertension

NADPH oxidase. NADPH oxidase is the predominant
source of renal O2

- �. NOX proteins are homologs of the
phagocytic NADPH oxidase and are distributed widely in the
renal vessels, glomeruli, and nephron segments, as summa-
rized in Table 1 (27, 88, 170, 204, 254). NOX3 and NOX5 are
expressed in the fetal, but not in the adult, kidneys (37).
NOX1, NOX2, and NOX4 are expressed in the adult kidney.
NOX4 is predominant in endothelial and tubular cells.
All these NOX proteins require the chaperone protein p22phox

and entail phosphorylation and/or upregulation of several
cytoplasmic subunits (Rac1/2, p47phox, p67phox, p40phox, and
Poldip2) for activity (88, 172). These subunits are demonstrated
in most of the nephron segments, either by mRNA/protein
expression or by physiologic experiments (Table 1).

Specific NADPH oxidase subunits in the kidney are
implicated in the development of hypertension in animal
models. Thus, p67phox was required for salt-sensitive hyper-
tension (62), p22phox and p47phox for ANG II-induced hyper-
tension (103, 153, 191, 207) and for genetic hypertension in
spontaneously hypertensive rats (SHR) (29, 265), and Poldip2
for hypertension in models of chronic kidney disease (CKD)
(150).

Studies using gene-deleted ( - / - ) mice and pharmaco-
logical inhibitors implicate NADPH oxidase-dependent
ROS generation in the kidney cortex in increased renal vas-
cular resistance (RVR), enhanced mitochondrial respira-
tion, and decreased efficiency of O2 usage for Na + transport
(TNa/QO2) in models of hypertension (301) and CKD (150).
NADPH oxidase-dependent ROS generation in the renal
medulla is limited by the availability of O2 (34). Medullary
ROS enhance tubular Na + reabsorption and diminish pres-
sure natriuresis (209). Indeed, there are increased ROS and
decreased NO, activities in the renal outer medulla in
many hypertensive and salt-sensitive models (41, 209). An
increased expression of p67phox in the renal outer medulla
of the Dahl salt-sensitive (DS) rat mediates increased
NADPH oxidase activity, salt-sensitive hypertension, and
renal injury (62).

Activation of NADPH oxidase by p47phox in the renal af-
ferent arteriole leads to endothelial dysfunction, the devel-
opment of an endothelium-dependent constrictor factor
(EDCF) response, enhanced contractility to ANG II, ET-1, and
TP agonists, and enhanced myogenic responses to increased
renal perfusion pressure (2, 129, 153, 193).

NADPH oxidase-derived O2
- � has nephron-specific effects

on tubular Na + transport and fluid reabsorption (217, 224,
264). ROS decrease Na + reabsorption in the proximal tubule
(PT) (224), but increase Na + reabsorption in the loop of Henle
(LH) and in distal segments of the nephron (177, 264, 272).
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Activation of specific isoforms of NOS has the opposite effects
at these nephron segments.

Enhanced production of O2
- � by NADPH oxidase in the

macula densa (MD) diminishes NO signaling and increases
tubuloglomerular feedback (TGF) responses (312). These
likely contribute to enhanced preglomerular vasoconstriction
and reduced glomerular filtration rate (GFR) that would re-
strict the rapid elimination of a salt load and predispose to salt
sensitivity (70, 165, 207, 312).

Superoxide dismutases. Increased ROS in the kidney
results not only from overproduction by prooxidants en-
zymes but also from decreased metabolism by antioxidant
enzymes (187, 245, 304). The ability of an intact antioxidant
system to reduce or remove ROS is a key step in the limita-
tion of tissue injury. Indeed, antioxidant enzymes are heavily
expressed in the kidney where they restrict the levels of ROS
and limit hypertensive tissue injury (29, 75, 304). The major
scavenging system for removal of O2

- � is the SOD family of
enzymes that catalyzes the dismutation of O2

- � to H2O2.
H2O2, more stable than O2

- �, induces a vasorelaxation that
has been ascribed to the endothelium-derived hyperpolariz-
ing factor (72, 166), upregulated eNOS (72), and to blunted
myogenic responses (150). H2O2 contributes to the ANG II-
dependent hypertrophic and remodeling responses in blood
vessels (75).

Three SOD isoforms are detected in the normal kidney: the
copper–zinc containing SOD (SOD-1), located predominately
in the cytoplasm; the manganese-containing SOD (SOD-2) in
the mitochondria; and the extracellular SOD (SOD-3) in the
extracellular space, where it is anchored by a heparin-binding
domain that is required for its full activity (67, 208, 210, 215,
278, 279, 342).

Studies have reported the distribution of the different SOD
isoforms along the nephron using immunohistochemical or in
situ hybridization techniques (67, 208, 210, 215, 278, 279, 342).
These have yielded somewhat different conclusions depend-
ing on the species studied. (67, 208). A high level of SOD-3
immunoreactivity in the mouse is observed on the cortical and
juxtamedullary PT and in VSMCs of renal blood vessels,
whereas medullary areas are only weakly reactive, and glo-
meruli are not stained (66, 215). Although rats have a dimin-

ished tissue SOD-3 expression, it is demonstrated clearly in
the rat kidney (29, 303). SOD-1 is expressed in the kidney of
rats and dogs (278, 279). Its immunoreactivity in the dog
kidney is prominent in the cortical thick ascending limb
(cTAL) while, in the rat kidney, it is confined to the PT. SOD-1
represents *60% to 80% of total SOD activity in the kidneys
of several species (181), but only about 30% of total SOD ac-
tivity in the vasculature, where it preserves endothelial NO
activity (28). Wild-type mice and transgenic mice expressing
the human SOD-2 isoform have high levels of SOD-2 immu-
noreactivity in the mitochondria of all tubular cells. However,
only transgenic mice have prominent SOD-2 immunoreac-
tivity in endothelial cells (ECs), VSMCs, and interstitial and
glomerular cells (210).

Generation and metabolism of O2
- � in hypertension. A

growing body of evidence supports the hypothesis that both
overproduction of O2

- �, notably by NADPH oxidase and
mitochondria, and reduced O2

- � metabolism by SOD and
other antioxidant enzymes can initiate or potentiate the de-
velopment of hypertension. Two weeks of salt loading or 2
weeks of prolonged ANG II infusion both increase renal oxi-
dative stress by increasing O2

- � generation via NADPH oxi-
dase and decreasing O2

- � metabolism via SOD (29, 138, 317).
Since salt loading reduces renin release and ANG II, several
hypotheses can be proposed to explain the mechanisms in-
volved in O2

- � production induced by ANG II or high salt.
Some studies reported selective changes in the expression of
NADPH oxidase components or SOD isoforms in the kidney
after salt loading or ANG II infusion. Salt loading increases
the expression of NOX2, NOX4, p22phox, p47phox, and p67phox

and decreased SOD-1 and SOD-2 (15, 32, 71, 138, 187),
whereas ANG II acting via AT-1 receptors (AT1R) increases
the renal expression of NOX2, NOX4, p22phox, p47phox,
p67phox, Rac1, and SOD-2 and decreased expression of SOD-3
(29, 30, 62, 70, 90, 93, 129, 138, 153, 187, 207, 312). Other studies
reported increased mitochondrial generation of H2O2 by the
medullary thick ascending limb (mTAL) cells in response to
increased tubular flow that secondarily increased NADPH
oxidase activity (213). A paradoxical activation of the in-
trarenal RAAS observed in DS rats fed high-salt diet (142)
could represent another mechanism of NADPH oxidase

Table 1. Distribution of NADPH Oxidase Subunits Along the Nephron (mRNA and/or Protein)

GLOM

AA EA Podo MC PT TAL JGA/MD DT CCD MCD

NOX1 * N/A + +
NOX2 O N/A + + + + + –
NOX4 * N/A + + + + + +
P22phox * N/A + + + + + + + –
P40phox N/A N/A +
P47phox O N/A + + + + + + + –
P67phox N/A N/A + + + + + + + –

Data compiled from the reviews: (88, 203, 254).
OPresumed by physiologic experiments (28).
+ , present; – , weak; N/A, no data available.
*mRNA detected in preglomerular vascular smooth muscle cells of WKY rats (170).
AA, afferent arteriole; EA, efferent arteriole; GLOM, glomerulus; Podo, podocytes; MC, mesangial cells; PT, proximal tubule; TAL, thick

ascending limb; JGA/MD, juxtaglomerular apparatus/macula densa; DT, distal tubule; CCD, cortical collecting duct; MCD, medullary
collecting duct; NADPH, nicotinamide adenine dinucleotide phosphate; NOX, neutrophil oxidase; WKY, Wistar Kyoto.
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activation in the kidney in salt-sensitive hypertension. Salt
loading increased ET-1 production in the collecting duct (CD)
of normal rats and mice (173). However, DS rats had lower
medullary levels of ET-1 and endothelin receptor type-B (ETB)
receptor in response to a salt load than Dahl salt-resistant (DR)
rats (269). Since ET-1 negatively regulates Na + reabsorption
in the CD, the increased Na + transport at this site provides
another potential pathway for salt-dependent renal oxidative
stress. The activation of parallel pathways may explain the
very severe hypertension and renal damage caused by an
infusion of ANG II into rats fed a high-salt diet.

As reviewed comprehensively (319), short- or long-term
administration of polyethylene glycol covalently linked to
SOD (PEG-SOD) to increase cellular uptake or SOD-mimetic
compounds such as the redox-cycling nitroxide tempol de-
creases oxidative stress, improves vascular and renal func-
tion, and lowers the BP in conscious or anesthetized rats and/
or mice in genetic, salt-sensitive or -resistant, ANG II-dependent
or -independent models of hypertension (28, 134, 245, 251, 319).

Welch et al. (304) reported decreased SOD activity and de-
creased SOD-3 expression in the kidney cortex of mice after 12
days of ANG II infusion at a slow-pressor rate. In contrast, Fukai
and Harrison (75) reported increased SOD-3 expression in blood
vessels from mice infused with ANG II at pressor rates. ANG II
infusion in the rat decreased the renal cortical mRNA for SOD-3,
yet increased SOD-2 (29). Renal expression of SOD-1 and SOD-2
was unchanged in SHR, but SOD-3 was significantly decreased
(2). The expression of SOD-1 and SOD-2 was reduced in the
renal medulla of DS rats compared with DR rats (187). SOD-2 is
inactivated rapidly by nanomolar concentrations of peroxyni-
trite (ONOO- ). Guo et al. (95) reported that the nitrotyrosine
content of SOD-2 in the kidneys of rats increased 13-fold after 2
weeks of infusion of ANG II at a pressor rate, and that renal
SOD-2 activity was decreased by 50%, despite unchanged pro-
tein expression. This was ascribed to post-transcriptional mod-
ification by tyrosine nitration, which decreases the SOD-2
activity and increases oxidative stress in the kidney during ANG
II-induced hypertension. Thus, there are site-specific effects of
ANG II or salt loading on SOD isoform expression within the
kidney and blood vessels.

Oxidative stress in the renal medulla has been assigned
an important role in the development of hypertension (41). In-
creased medullary ROS induced by prolonged SOD inhibition
are associated with reduced medullary blood flow (MBF), re-
duced Na+ excretion (UNaV), and hypertension (175, 176).

Collectively, these studies demonstrate that a defective
renal SOD system contributes to increased renal oxidative
stress and hypertension, but the patterns of altered SOD iso-
form expression vary with the hypertensive model.

Genetic deletion of SOD isoforms has provided excellent
models to study the effects of a prolonged compartmental
increase in O2

- � on BP and renal function. Mice with genetic
deletion of SOD-1 or SOD-3 do not show obvious phenotype
changes, but are more sensitive to tissue damage during ox-
idative stress despite some compensatory upregulation of
other SOD isoforms (89, 304). In contrast, SOD-2 ( - / - ) mice
have severe phenotypes, with embryonic or neonatal lethality.
The absence of SOD-2 is not compensated by overexpression of
SOD-1 (40). Thus, SOD-2 is essential for life (155, 163, 257).
Viable SOD-2 ( + / - ) mice have *50% reduction in SOD-2
activity in the kidney (289) without compensatory upregula-
tion of the other SOD isoforms (290).

Basal levels of BP are normal (28, 144) (Fig. 1A, panels a and
b) or modestly reduced (53) (Fig. 1A, panels c and d) in SOD-1
( - / - ) mice, but are not changed significantly in SOD-2
( + / - ) mice (Fig. 1B, panels a and b) (35, 243). The BP is
unchanged (49, 128) (Fig. 1C, panels a and b) or modestly
elevated (Fig. 1C, panels c and d) (304) in SOD-3 ( - / - ) mice.

Several studies have reported the BP response to a pro-
longed infusion of ANG II in the SOD gene-deleted mice.
Carlstrom et al. (28) reported an unchanged basal mean ar-
terial pressure (MAP), but a much accelerated rise of MAP
during a slow-pressor infusion of ANG II into SOD-1 ( - / - )
mice, although the final levels of BP after 2 weeks were not
different from SOD-1 ( + / + ) mice (Fig. 2A). SOD-2 ( + / - )
mice had similar BP as wild-type mice after ANG II infusion
(38, 243)(Fig. 2B). SOD-3 ( - / - ) mice had a higher basal
level of MAP, but a similar response to ANG II in one study
(304) (Fig. 2C), but an enhanced rise in BP to a rather high-
rated ANG II infusion in another (89) (Fig. 2D). The RVR also
was significantly higher in anesthetized SOD-3 ( - / - ) mice
(304).

Jung et al. (128) studied the effect of SOD-3 gene deletion on
the development of ANG II-induced and in 2K,1C hyperten-
sion in mice. After renal artery clipping, both SOD-3 ( - / - )
and wild-type mice had impaired endothelium-dependent
vascular relaxation, reduced vascular NO, and elevated O2

- �.
However, SOD-3 ( - / - ) mice had higher BP after 2 and 4
weeks of renal artery clipping, and after 1 week of ANG II
infusion at a pressor rate. These effects were ameliorated by
human recombinant SOD-3 and by the SOD mimetic tyron.
This study demonstrated that the increased BP and limited
NO bioavailability in the absence of SOD-3 were due to en-
hanced O2

- �. These data demonstrate that a primary increase
in tissue O2

- � could enhance BP and RVR, and the rate of BP
rises with ANG II, but the final degree of change is modest.
Moreover, some studies did not detect a rise in basal BP in
SOD-1-, SOD-2-, or SOD-3-gene deleted mice. Thus, these
studies in aggregate demonstrate only modest and inconsis-
tent effects of lifelong enhanced O2

- � produced by gene de-
letion of SOD isoforms in mice. They indicate that prolonged
increases in O2

- � do not necessarily lead to hypertension, but
may accelerate the development of hypertension, for example,
with ANG II infusion.

Overexpression of specific SOD isoforms mitigates oxida-
tive stress and hypertension in some (28, 63, 160, 198), but not
all, studies (5, 63). Adenoviral gene transfer of human SOD-3
(AdECSOD) into SHR increased SOD-3 expression in the
blood vessels and in the kidney, reduced the vascular O2

- �

(39), and improved the endothelial function and vascular re-
activity. AdECSOD reduced the BP and Na + balance, im-
plying that both renal and vascular extracellular oxidative
stress contributes to hypertension in the SHR. AdECSOD also
improved endothelial function and increased vascular NO
availability in the SHR stroke-prone (SHRSP) model (63). The
injection into SHR of human recombinant SOD-1 containing a
heparin-binding domain to mimic the vascular binding of
SOD-3 decreased BP, whereas SOD-1 lacking this domain had
a little effect (198). Overexpression of SOD-2 improved en-
dothelial function in deoxycorticosterone acetate (DOCA)
salt-hypertensive rats (160) and protected PT cells in vitro
from mitochondrial injury and apoptosis induced by adeno-
sine triphosphate (ATP) depletion (43). Perfused afferent ar-
terioles isolated from transgenic mice overexpressing SOD-1
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had a reduced sensitivity and contractile responsiveness to
ANG II (28).

These studies demonstrate that maneuvers that increase
SOD activity could prevent oxidative stress and mitigate the
development of hypertension (319). The importance of each
SOD isoform depends on its location, the origin of the oxi-
dative insult, and the species studied, but most studies concur
in identifying O2

- �as the villain. Therefore, SOD mimetic
agents might represent a rational strategy to prevent renal
oxidative stress, high BP, and its consequences (319).

Other antioxidant enzymes. Catalase, GPX, Trx, and Prxs
metabolize H2O2 to water and O2. Their dysregulation leads
to the accumulation of H2O2, which interacts with transition
elements to form the highly reactive OH - � by Fenton reaction.

H2O2 is a mediator of cardiovascular and renal dysfunction
and hypertension (36, 267, 268) and produces vasodilation
(80), vasoconstriction (81), or a biphasic effect depending on
the vascular bed (35, 44, 80).

Catalase is a 240-kDa homotetrameric heme-containing
protein located predominantly in the peroxisome and ex-
pressed abundantly in the liver, lungs, and kidneys. Catalase
deficiency results in overexpression of mitochondrial ROS and
functional mitochondrial impairment (118). Catalase over-
expression protects against H2O2 toxicity, whereas catalase
deficiency exacerbates oxidative injury (110, 118, 140, 331).

Basal levels of H2O2 in the rat renal medulla are twofold
higher than in the renal cortex (36). Exaggerated levels of
H2O2 are reported in the renal medulla in several models of
hypertension. They are implicated in the rise of BP, since

FIG. 2. Blood pressure
during prolonged infusion
of ANG II in the SOD gene-
deleted mice. Mean – SEM
values of blood pressure in
conscious mice. (A) SOD-1
( + / + ) and ( - / - ) mice; (B)
SOD-2 ( + / + ) and ( + / - )
mice; (C, D) SOD-3 ( + / + )
and ( - / - ) mice. *p < 0.05,
**p < 0.001 compared to wild-
type mice. Redrawn from
Refs. [A (28); B (38), C (304), D
(89)]. ANG II, angiotensin II.

FIG. 1. Effects of knockout of
SOD isoforms on blood pres-
sure in mice. Mean – SEM val-
ues of blood pressure in
conscious or anesthetized mice.
p < 0.05 compared to wild-type
mice. Redrawn from Refs.: A [a
(144); b (28); c, d (53)]; B [a (38); b
(243)], C [a (49); b (128); c, d
(304)]. MAP, mean arterial pres-
sure; SOD, superoxide dis-
mutase; NS, not significant.
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intramedullary microperfusion of catalase reduced the H2O2

concentrations and moderated the hypertension, whereas
intramedullary microperfusions of tempol or PEG-SOD were
not fully effective (36, 267, 268).

Reduction of cellular glutathione (GSH) concentrations in
rats by administration of buthionine sulfoximine caused
progressive hypertension (292, 321). GPX not only metabo-
lizes H2O2 but also converts toxic lipid peroxidation prod-
ucts into lipid alcohols in the presence of GSH. The reaction of
O2

- � with arachidonate (AA) forms lipid peroxides, termed
isoprostanes (240). Isoprostanes, prostaglandin (PG) endo-
peroxides, cyclooxygenase (COX) metabolites of hydro-
xyeicosatetraenoic acid (HETE), the stable mimetic U-46,619,
and perhaps even prostacyclin (61), in addition to throm-
boxane A2 (TxA2) all activate the TP. The TP is expressed in
ECs and VSMCs and in the kidney (291). ANG II infusion in
the mouse increases the generation of isoprostanes and TxA2.
Remarkably, studies in TP ( - / - ) mice demonstrated that this
receptor mediates not only the ANG II-induced increases in
BP and RVR but also the oxidative stress (133). Increased
production of renal eicosanoids activating TP receptors en-
hances Cl - reabsorption in the LH (311) and augments TGF
responses (311). Thus, these multiple effects indicate that li-
gands for this receptor or oxidative stress increase TP activity
(287) that may blunt the pressure natriuresis and contribute to
salt sensitivity (321, 346).

The Trx system comprises Trx, thioredoxin reductase
(TrxR), and Prx. These abundant proteins from different
family members are widely distributed through the cyto-
plasm, mitochondria, and other cell compartments (59, 211).
This system has been implicated in the regulation of the cel-
lular redox state, DNA synthesis, cell proliferation, and apo-
ptosis (74). Three Trxs have been identified in mammalian
cells: Trx1, located in the cytoplasm and the nucleus; Trx2 in
the mitochondria; and Trx3 in spermatozoa (211). The TrxR is
a selenocysteine-containing flavoprotein with three isoforms
that control the activity of Trxs and thereby the cellular redox
state. TrxR1 is located in the nucleus and the cytoplasm,
whereas TrxR2 and TrxR3 are located in the mitochondria
(211). The proteins of the Trx system are expressed in both ECs
and VSMCs (59). Trx reduces Prxs, which in turn reduce H2O2

to H2O (59). Prxs compose a large antioxidant gene family that
uses conserved cysteine (Cys) residues at the sites of perox-
idation. The Prx1 and Prx2 isoforms are expressed in the cy-
toplasm, Prx3 and Prx5 in the mitochondria, and Prx4 in the
endoplasmic reticulum (281). Mitochondrial Trx systems
(Trx2, TrxR2, and Prx3) protect cells from mitochondrion-
dependent ROS and apoptosis (59, 74, 314). Trx proteins are
abundant in the renal tubules (52), especially in PTs and distal
tubules (DTs), while lower levels are reported in glomerular
cells (54, 211).

There are only limited studies of Trx and TrxR in hyper-
tension. The Trx system is upregulated (58) or down-
regulated (277) in hypertension, depending on the tissue, the
stimulus, and the model. Decreased Trx expression was ob-
served in the aorta, heart, and kidneys of SHR and SHRSP
and was related to the hypertension (277). In contrast, Trx
expression was increased in the hearts of mice infused with
ANG II at a slow-pressor rate (58). Trx1 expression in human
umbilical vein endothelial cells was enhanced by low
concentrations (10–50 lM) of H2O2, but was degraded by
higher concentrations (100–500 lM) (98, 99). Transgenic mice

overexpressing EC-specific Trx2 (Trx2Tg) have reduced
mitochondrial and total oxidative stress and increased NO
activity and endothelium-dependent relaxations and lower
basal BP. An infusion of Nx-Nitro-l-arginine methyl ester (L-
NAME) increased the BP more in Trx2Tg mice than in wild-
type mice, thereby implicating increased NO availability in
the lower basal BP of these mice (347). Overexpression of
human Trx2 in ANG II-infused mice limited the increased
NOX2, p22phox, p47phox, and Rac-1 expression, diminished
vascular and mitochondrial ROS, improved the endotheli-
um-dependent vascular relaxation responses, and attenuated
the hypertension (314). Since Trx2 is limited to the mito-
chondria, this implies that mitochondrial ROS contribute to
decrease NO availability and increase NADPH oxidase ac-
tivity and thereby sustains the oxidative stress (74, 314).
Thus, inhibition of the renal Trx system could represent an
additional mechanism to increase oxidative stress and lipid
peroxidation and to impair endothelium-dependent relaxa-
tion in preglomerular vessels and perhaps exacerbate hy-
pertension, but further studies are required.

In summary, the Trx system has been a focus of study in
vascular biology where it has been shown to preserve NO
bioavailability and endothelial function and to improve BP in
ANG II-induced hypertension (74, 314, 347). Studies in the
kidney are more limited, but generally concur in concluding
that an impairment of the renal Trx system contributes to the
impairment of NO activity associated with hypertension
(277).

ROS and Renal Hemodynamics

Action of renal ROS on hemodynamics

Renal blood flow (RBF) determines GFR and tubular Na +

delivery and thereby is an important component of body salt
and fluid homeostasis. The regulation of RBF by ROS has been
studied extensively. A reduced RBF, or an altered intrarenal
blood flow distribution, has been implicated in the develop-
ment and maintenance of hypertension (236, 266, 317). In-
creased RVR attributable to ROS has been reported in genetic
hypertension in the SHR, renovascular hypertension in the
2K,1C Goldblatt model and in the reduced renal mass (RRM)
model of CKD, and in the model of ANG II-infused rats and/
or mice (134, 251, 303, 305, 317). Infusion of ANG II at a slow-
pressor rate increases the RVR in rats and mice before hy-
pertension (134, 317) and is accompanied by increased renal
and vascular ROS, increased renal excretion of lipid perox-
idation products, and increased renal tyrosine nitration, im-
plying ONOO - generation (29, 103, 133, 134, 216, 294, 312,
317). The coadministration of tempol prevents those events,
reinforcing the evidence for involvement of O2

- � in ANG II-
dependent hypertension (134, 301–303).

ANG II acting on AT1Rs enhances the generation of O2
- �

by NADPH oxidase and the release of AA by phospholipase
A2. AA is metabolized by COXs to PG endoperoxides (PGG2

and PGH2), which are further metabolized by enzymes, in-
cluding thromboxane synthase to TxA2, or oxidized by O2

- �

to 8-isoprostane F2-alpha (8-iso). PGH2, TxA2, and 8-iso all
activate TP (191). Welch and colleagues (33) reported that
hypertension was maintained in rats at the ANG II-dependent
phase of 2K,1C Goldblatt hypertension by AT1R and by COX-
1 products that activated the TP (311). The TP also is impli-
cated in the ANG II slow-pressor response, since rats given TP
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antagonists or TP ( - / - ) mice do not develop oxidative
stress, renal vasoconstriction, or hypertension (133, 308).
These prohypertensive effects of TPs were hypothesized to
include increased pre- and postglomerular resistance and
enhanced TGF responses (133).

Therefore, renal hemodynamics and GFR depend on the
interaction of several elements, including ANG II, PGs, and
TP activation, all of which can interact with ROS and NO to
regulate the tone of the afferent and efferent arterioles.

Tubuloglomerular feedback

TGF regulates the glomerular arteriole resistance. There is a
vasoconstrictive response of the renal afferent arteriole during
increased NaCl delivery to, and reabsorption by, the MD
segment. The proximal tubular fluid flow that yields 50%
activation of TGF (set point) is close to the ambient rate
measured by micropuncture. Thus, a reduction in tubular
fluid flow will reduce TGF and vasodilate the afferent arte-
riole. TGF is a unique renal mechanism whereby vasocon-
striction is regulated by tubular NaCl transport, and thereby
the renal hemodynamics is adjusted to maintain the body
fluid volume and BP. The MD cells at the junction of the thick
ascending limb (TAL) of the LH are activated by reabsorption
via the luminal Na + /K + /2Cl - transporter type-2 (NKCC2).
This leads to the elaboration of positive (notably adenosine,
ATP and vasoconstrictor PGs) and negative (notably NO and
vasodilator PGs) signaling molecules, which adjust the tone of
the renal afferent arteriole. Ren et al. (238) reported an efferent
arteriole vasodilation in response to reabsorption of fluid by
the MD that was mediated by adenosine receptors type-2.
Thus, activation of TGF may reduce single-nephron glomer-
ular filtration rate (SNGFR) both by increasing afferent arte-
riole vasoconstriction and by decreasing efferent arteriole
vasoconstriction.

The myogenic response is a stretch-activated contraction of
VSMC in the interlobular and afferent, but not efferent, arte-
rioles. Myogenic and TGF responses together coordinate renal
autoregulation whereby the RBF and the GFR remain stable
despite changes in the renal perfusion pressure within a
physiological range. ROS interact with and/or mediate both
the myogenic and the TGF components of renal autoregula-
tion and RVR, hypertension, and associated renal damage.

TGF- and MD-mediated renin release both have been im-
plicated in the short- and long-term regulation of renal he-
modynamics and in salt and water balance. Activation of TGF
increases the afferent arteriolar resistance and reduces the
SNGFR. Resetting of TGF by neuronal NOS (nNOS) in the MD
during changes in BP or salt intake likely contributes to effi-
cient excretion of excessive NaCl excretion (17, 282).

NaCl reabsorption in the MD stimulates nNOS-derived
NO production, which puts a brake on TGF responses (217,
288, 322). Microperfusion of the tubular lumen of the
MD of Sprague-Dawley or Wistar Kyoto (WKY) rats with
nonspecific NOS inhibitors (NG-methyl-l-arginine acetate
[L-NMMA] and L-NAME) or with a specific nNOS inhibitor,
7-nitroindazole (7-NI), enhances TGF responses (309, 310,
322), while perfusion with an NO donor blunts TGF (312).
Blockade of nNOS reduces GFR and causes hypertension in
rats (214, 310).

Increased MD levels of O2
- � that enhance TGF responses

contribute to renal vasoconstriction, salt retention, and hy-

pertension, for example, during ANG II infusion or in the
SHR. Thus, SHR, compared with WKY, have increased renal
expression of eNOS and nNOS (Fig. 3A, B), yet paradoxically
enhanced TGF responses (Fig. 3C) and diminished blocking of
TGF by juxtaglomerular apparatus ( JGA)-derived NO, as
indexed from the increase in TGF during blockade of nNOS
by luminal 7-NI added to the artificial tubular fluid (Fig. 3D).
Tempol or vehicle was perfused into the star vessel (efferent
arteriole) to reach the peritubular capillaries surrounding the
test nephron to correct oxidative stress (Fig. 3E). The effects of
tempol on NO signaling in the JGA again were assessed from
the changes in TGF during luminal 7-NI. There were no sig-
nificant tempol-induced changes in the response to luminal
7-NI in normotensive WKY rats, implying no interference in
NO signaling by O2

- � (Fig. 3F). In contrast, tempol micro-
perfused into the efferent arteriole and peritubular capillaries
of the SHR increased the TGF by circa 40%. This effect in SHR
nephrons was prevented by 2 weeks of administration of the
ANG II type-1 receptor blocker (ARB) candesartan, but not by
equivalent lowering of BP with hydralazine, hydrochlorothi-
azide, and reserpine (Fig. 3G). Welch et al. (310, 311) conclude
that AT1R-mediated increases in O2

- � in the JGA of the SHR
enhance TGF by preventing its buffering by MD-derived NO
from nNOS. This reflects NO bioinactivation by O2

- � in the
JGA of the SHR. In other studies, systemic silencing of the
p22phox gene during ANG II infusion reduced renal ROS, and
prevented progressive hypertension (191) and moderated the
TGF responses (207). Fu et al. (70) reported that activation of
AT1R by ANG II mediated NOX2-dependent O2

- � produc-
tion in the MD cells, whereas basal O2

- � generation was
sustained by NOX4. Thus, increased NOX2-derived O2

- �may
inactivate nNOS-derived NO in the MD and eNOS-derived
NO in the afferent arteriole in hypertensive models. This
could account for the enhanced TGF responses that contrib-
uted to renal vasoconstriction and renal Na + retention (70,
312, 316, 320, 321).

Arteriolar constriction and dilation

ROS regulate renal hemodynamics both directly, through
vasoconstriction, and indirectly, through reducing NO activity
(3, 175, 250). ROS are generated in microvessels and in genetic
models such as the SHR and in the kidney in response to both
short-term and prolonged infusions of ANG II, or other va-
soconstrictors such as ET-1 or TP agonists (29, 226, 294). Thus,
vasoconstriction produced by the TP activator U-46,619 on
rabbit isolated, perfused afferent arteriole is moderated by
coincubation with tempol, but enhanced by L-NAME (251).

ROS have been implicated in the acetylcholine-stimulated
release of COX-1 and COX-2-derived EDCFs in renal afferent
arterioles of rats or rabbits with ANG II or 2K,1C renovascular
hypertension (250, 293, 294, 305). The EDCFs activates the TP
on afferent arteriolar VSMCs to cause vasoconstriction.
Tempol, COX-2 inhibitors, or TP antagonists, all improved
endothelium-dependent relaxations and eliminated endothe-
lium-dependent contractions in these models. Prolonged ad-
ministration of a COX-2 antagonist or tempol also reduced the
BP, increased the RBF, and restored the endothelial function of
renal arteries of the 2K,2C renovascular hypertensive rats
(283). These studies implicate intrarenal and afferent arteriolar
ROS in the generation of an EDCF that caused TP-dependent
renal vasoconstriction and contributed to hypertension.
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Adenosine receptors type-1 (A1AR) on afferent arterioles is
required for TGF responses (21). Adenosine enhances the
long-term constrictor effects of ANG II on preglomerular
vessels (27, 69, 156). Lee et al. (156) reported that the infusion
of ANG II at a slow-pressor rate in mice leads to hypertension
and increases Na + reabsorption that depends in part on
A1ARs. A1AR ( - / - ) mice have blunted arteriolar and BP
responses to L-NAME and ANG II (79). Gao et al. (79) propose
that NO decreases, and ROS increases, adenosine production,
and that adenosine mediates some of the renal effects of O2

- �

vasoconstriction. The p47phox component of NADPH oxidase
is required for a full hypertensive response to ANG II (93).
Likewise, Lai et al. demonstrated that p47phox also is required
for increased BP and RVR in mice infused with ANG II (153).
Studies by Carlstrom et al. (28) and Lai et al. (153) have in-
vestigated the roles of O2

- �, H2O2, and NO on mouse isolated
afferent arterioles. Both ANG II and increased perfusion
pressure augmented afferent arteriolar ROS generation (153).
Genetic deletion of SOD-1 increased O2

- � and enhanced the
response to ANG II by 89% and the sensitivity by > 1000-fold
(Fig. 4A). This was attributed to bioinactivation of NO, since,
in the presence of L-NAME, ANG II contractions became
similar in SOD-1 ( + / + ) and in ( - / - ) arterioles (28). The O2

- �

generated by ANG II requires the p47phox component of
NADPH oxidase, since arterioles from p47phox ( - / - ) mice
had diminished response to ANG II (Fig. 4B) and diminished
ROS generation (153). Similarly, myogenic contractions of
mouse afferent arterioles to increased perfusion pressure were
diminished by PEG-SOD, but not by PEG-catalase (CAT) (Fig.
4C), and by maneuvers that blocked NADPH oxidase (154).
However, unlike the response to ANG II, neither blockade of
NO with L-NAME nor genetic deletion of eNOS affected the
myogenic contractions (Fig. 4D) (153). These studies indicate

that eNOS-derived endothelial NO potently inhibits the re-
sponse to ANG II, but that this blunting is potently inhibited
by O2

- �. In contrast, myogenic responses do not depend on
the endothelium and therefore are modulated by O2

- � inde-
pendent of NO (28). Carlstrom et al. (27) reported that NOX2 is
required for contractile responses of the afferent arteriole to
ANG II and/or adenosine and is implicated in prolonged
ANG II-induced hypertension in mice. Ren et al. (236) re-
ported that NOX2-derived O2

- � contributes to the enhanced
myogenic response, and hence to the high preglomerular re-
sistance, of SHR, but these authors did not detect an effect
of O2

- � on myogenic responses of afferent arterioles from
WKY rats.

In summary, inactivation of NO by increased renal O2
- �

production enhances afferent arteriole tone, Na + reabsorp-
tion, and TGF responses, all of which contribute to hyper-
tension (178–180, 310). ROS antagonizes the effects of eNOS-
derived NO to increase renal plasma flow by dilating the
glomerular arterioles. MD O2

- � prevents the effects of NO
formed via nNOS in the MD to blunt TGF and reduces afferent
arteriole vasoconstriction. Therefore, an increase in the in-
trarenal ROS can have importance on renal hemodynamics
that could lead to hypertension (284, 350).

Afferent arterioles from a rat model of type-1 diabetes
mellitus (T1DM) are dilated (286). Pharmacological studies
demonstrated that this could be ascribed to activation of
ATP-sensitive K + (KATP) channels and Kir1.1/Kir3.x inward-
rectifier K + channels in VSMCs. Activation of membrane K +

channels should hyperpolarize the VSMCs, inactivate the
voltage-gated Ca2 + channels, and thereby lead to vasodila-
tion. The activation of the K + channels in T1DM rat arterioles
is attributed to oxidative stress, which is prevented in rats
given tempol (286). This is an important result, since it

FIG. 3. Interaction between
macula densa derived nitric
oxide and superoxide in the jux-
taglomerular apparatus of the
SHR. Comparison of protein ex-
pression for eNOS (A) and nNOS
(B) and the change in tubuloglo-
merular feedback (TGF) with 7-
nitroindazole (7-NI) in WKY rats
(open bars, n = 6) and SHR (solid
bars, n = 6) (C, D). (E) represents
the experimental protocol for the
subsequent study. (F, G) represent
the effects of efferent arteriolar
tempol on TGF responses to 7-NI
compared to vehicle in WKY rats
and SHR after 2 weeks of vehicle,
candesartan (3 mg/kg/24 h), or
hydralazine plus hydrochlorothi-
azide plus reserpine (30, 10, and
0.2 mg/kg/24 h). ***Significance
of change: p < 0.001. Redrawn
from (310, 311). Veh, vehicle; HHR,
hydrochlorothiazide, hydralazine
and reserpine; Cand, candesartan;
JGA, juxtaglomerular apparatus;
NOS, nitric oxide synthase; nNOS,
neuronal NOS; SHR, spontane-
ously hypertensive rats; WKY,
Wistar Kyoto.
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provides a mechanism for diabetes hyperfiltration. It is un-
usual in demonstrating that prolonged ROS can cause afferent
arteriole vasodilation, and provides a novel mechanism to
explain it.

Renal autoregulation

RBF and GFR are efficiently buffered against changes in the
renal perfusion pressure by a coordinated response of the
renal afferent arteriole and the interlobular artery. At least
three mechanisms participate in autoregulation of RBF: a fast
myogenic response, a slower TGF response, and a third, very
slow component of uncertain causality (131, 256). Just and
Arendhorst (130) demonstrated that the myogenic response in
the mouse kidney contributed 60%, TGF 40%, and the third
mechanism 5% to RBF autoregulation. Apocynin attenuated
the myogenic responses, which implicates O2

- �, and this was

independent of NO. Similar conclusions were drawn by Lai
et al. (154) (Fig. 4C, D).

Renal autoregulation is impaired in the RRM, DOCA/salt,
and DS rat models of hypertension and in salt-supplemented
SHRSP (109, 169, 194, 230, 247, 252). The glomerular capillary
hydraulic pressure (PGC) and the blood flow in cortical glo-
meruli of SHR are maintained during elevation of the renal
perfusion pressure by highly effective autoregulation (121,
233, 317). This suggests that SHR have increased preglo-
merular vascular resistance, which is consistent with the
studies showing narrowed afferent arterioles (206, 317), with
enhanced myogenic vasoconstriction (120) and augmented
TGF responses (206, 310, 317). The connecting tubule tubu-
loglomerular feedback (CTGF) might modulate RBF auto-
regulation. The CTGF is activated by Na + reabsorption in
the connecting tubule (CNT) and leads to vasodilation the
afferent arteriole (297). Thus, the CTGF counteracts the

FIG. 4. Mean6SEM values for contractions of mouse isolated and perfused renal afferent arterioles. (A, B) depicts dose–
response effects of bath addition of ANG II. In (A) are shown responses of afferent arterioles from normal wild-type mice,
mice with deletion of SOD-1, or normal mice after the bath addition of 10 - 4M of l-nitroarginine methyl ester. In (B) are
shown responses of p47phox knockout and wild-type mice. (C, D) depict the effects of graded increases in the afferent
arteriolar perfusion pressure. In (C) are shown the responses of the afferent arteriole from normal mice after incubation with a
vehicle, pegylated SOD, or pegylated catalase. In (D) are shown the responses of arterioles from wild-type mice or endothelial
nitric oxide synthase or p47phox gene-deleted mice. *p < 0.05, **p < 0.01, and ***p < 0.005 compared to wild-type or vehicle.
Redrawn from Refs. [A (28); B, D (153); C (154)]. WT, wild-type mice; L-NAME, Nw-Nitro-l-arginine methyl ester; PEG-SOD,
polyethylene glycol covalently linked to SOD; PEG-CAT, polyethylene glycol covalently linked to catalase.
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vasoconstrictive effects of macula densa TGF by decreasing
the afferent arteriole resistance in responses to increased NaCl
delivery (296). NaCl reabsorption and consequently activa-
tion of the CTGF are mediated by the thiazide-sensitive Na + /
Cl - cotransporter and by the amiloride/benzamil-sensitive
epithelial Na + channel (ENaC) in the CNT (297). The role of
the CTGF has not been investigated in hypertensive animals.
However, Ren et al. reported that the intratubular perfusion of
ANG II enhanced the CTGF through activation of AT1R, in-
creased NaCl reabsorption mediated by the ENaC (235),
which led to dilation of afferent arterioles mediated by protein
kinase C (PKC)-dependent NOX2-derived O2

- � production.
Coperfusion of ANG II with tempol, apocynin, or a NOX2
inhibitor blocked the effect of intratubular ANG II (237). Thus,
activation of the CTGF by NOX2-dependent generation of
tubular O2

- � could limit ANG II-induced vasoconstriction of
afferent arterioles and preserve the GFR by activation of
NADPH oxidase. This would constitute an unusual effect of
renal ROS to limit renal vasoconstriction, autoregulation, and
the development of hypertension.

Overall, these data imply that increased renal ROS in hy-
pertensive animals enhance myogenic and macula densa TGF
responses and the contraction of afferent arterioles to ANG II,
ET-1, and TP activation. Oxidative stress leads to the elabo-
ration of an EDCF that activates TP on VSMC whose activity
also is enhanced by ROS. This is accompanied by blunted
EDRF/NO (28, 79, 151, 293) and augmented TGF responses
(207, 310, 312), all of which contribute to a renal vascular
prohypertensive pathway activated during oxidative stress.

Intrarenal distribution of blood flow

Renal medullary ROS generation contributes to the devel-
opment of hypertension in several models by direct effects of
H2O2 and by limiting NO bioavailability. Medullary ROS re-
strict the medullary perfusion and Na+ excretion, and increase
BP (3, 36, 52, 175, 176, 197, 209, 217, 222, 267, 284). Vascular H2O2

enhances eNOS expression and enhances the activity of NOS
and NO generation by cultured ECs (23, 56). NO generation was
markedly increased in the medulla of rats infused with ANG II
at a subpressor rate (195, 351). However, this response was
blunted in the medulla of DS rats, which have an impaired NOS
expression and activity (275). The unchanged levels of O2

-�

found in the renal medulla of rats during ANG II infusion were
ascribed to the reaction of O2

-�with the high level of NO to form
ONOO- (52, 222, 348). Hypertension in DS rats is accompanied
by a reduced medullary expression of SOD-1 and SOD-2 that
could contribute to enhance O2

-� (187). ANG II infusion in-
creases O2

-�generation in the mTAL, which interacts with NO
in the vasa recta to mediate a tubulovascular crosstalk that
culminates in a reduced MBF and reduced UNaV (52).

Further studies implicate medullary H2O2 in salt-sensitive
hypertension. Thus, the intramedullary infusion of SOD in-
hibitors, such as diethyl thiocarbamate, reduces the MBF and
raises the BP (175), yet the intramedullary infusion of tempol
did not reduce the BP unless coinfused with catalase to reduce
H2O2. (36, 268). Although catalase expression is increased in
the kidneys of SHR (265, 346), its activity is decreased (346).
Catalase overexpression reduced the pressor response to
ANG II in mice (331), and intramedullary catalase infusion
prevented the hypertension accompanying an intramedullary
infusion of H2O2 (175).

Sousa et al. (267) reported a selective increase in AT1R and
NOX4 expression and in medullary H2O2 in rats infused with
ANG II at slow-pressure rates. Intraperitoneal administration of
PEG-CAT caused only a transient fall in BP that was attributed
to a normalization of renal angiotensinogen (AGT) levels, which
are rate limiting for ANG II generation in the kidney (141).
Apparently, elevated levels of H2O2 generated during pro-
longed ANG II stimulate the intrarenal RAAS, but inhibit the
systemic RAAS (175, 268, 331). Mice overexpressing AGT in the
PT are hypertensive independent of the plasma renin concen-
tration, reinforcing the concept that a selective activation of the
renal RAAS causes hypertension probably by enhancing ROS,
renal vasoconstriction, and Na + retention (65).

An elevation of renal perfusion pressure during hyperten-
sion may directly increase ROS production in the renal me-
dulla, MBF and NaCl delivery to, and reabsorption by, the
TAL (125). Jin et al. (125) reported that a short-term increase of
renal perfusion pressure enhanced the production of both NO
and H2O2 in the outer medulla of rats. The increased NO was
attributed to the pressure-induced increase in MBF that en-
hanced vascular shear stress and to the increased H2O2 with
higher flow rates through the mTAL. These studies suggest
that increased renal perfusion pressure creates oxidative
stress within the outer medulla of the kidney that leads to
generation of the medullary H2O2 that contributes to salt-
sensitive hypertension, while increased levels of medullary
NO counteract these effects and restrain the salt sensitivity
and hypertension (125). Thus, H2O2 in the renal medulla ra-
ther than O2

- � has been identified as the major ROS mediat-
ing hypertension.

ROS in the Glomerulus

The direct effects of ANG II on kidney cells have been
studied extensively (16, 168, 329). Both podocytes and me-
sangial cells (MC) generate ANG II in response to overpro-
duction of ROS, whereas ROS are produced by ANG II.
Indeed, ANG II is implicated in glomerular hypertension,
disruption of the glomerular filtration barrier (GFB), and
proteinuria in several hypertensive models (73, 239, 246, 274,
330). This provides a potential for an ANG II-initiated, feed-
forward production of glomerular ROS (249, 329). On
the other hand, podocytes express angiotensin-converting
enzyme 2 (ACE-2), which can metabolize ANG II to angio-
tensin-(1–7) (102). Thus, ACE-2 may provide a brake on this
feed-forward process.

Podocyte injury or dysfunction has been implicated as an
initial event in glomerulosclerosis and proteinuria (313). Al-
though ANG II-induced oxidative stress contributes to po-
docyte injury, the mechanisms have not been elucidated
completely. ANG II enhances ROS generation in podocytes,
promotes podocyte autophagy through mitochondrial gen-
eration of ROS, decreases nephrin expression, and induces
apoptosis (55, 124, 239). Prolonged infusion of ANG II into
rats at a slow-pressor rate induced A1AR-dependent hyper-
tension, proteinuria, and podocyte injury and decreased ne-
phrin expression and caveolin-1 phosphorylation (239). Thus,
ANG II-induced ROS generation could interrupt the crosstalk
between caveolin-1 and nephrin that is required to maintain
the integrity of podocytes and the GFB.

Aldosterone also has been implicated in ROS-dependent
podocyte injury and MC proliferation (20) and also may be
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involved in a feed-forward signaling between ROS and the
RAAS (20, 139, 202, 212). Tempol preserved podocyte func-
tion and attenuated glomerulosclerosis in rats with aldoste-
rone plus salt-induced hypertension (202). Mice lacking
the guanylyl cyclase-A (GC-A) receptor for natriuretic pep-
tides and given aldosterone and a high-salt diet increased
oxidative stress, podocyte injury, and albuminuria, which
were ameliorated by tempol or an ARB (212). The authors
attributed the renoprotective properties of the GC-A system
to a local inhibition of the RAAS and oxidative stress in po-
docytes, independent of BP.

Although the major site of action of aldosterone is the
CD, it also activates mineralocorticoid receptors (MR) on po-
docytes. Shibata et al. (259) reported proteinuria and decreased
nephrin and podocin expression in uniphrectomized rats in-
fused with aldosterone and fed a high-salt diet. The BP, renal
ROS production, NOX2, p47phox, p67phox, Rac-1 and Sgk1 (an
effector kinase of MR) all were elevated by aldosterone. This
was related to ROS, since all these effects were normalized by
tempol but not by nonspecific correction of hypertension.

ROS mediate the MC proliferation, migration and pro-
duction of extracellular matrix (ECM) induced by ANG II
or aldosterone (73, 90, 168, 189). ANG II increases NADPH
oxidase-dependent O2

- � generation in MC and increases
production of ECM proteins such as fibronectin, which are
implicated in the development of glomerulosclerosis (115).
MR activation by aldosterone induces NADPH-dependent
ROS generation in MC that leads to translocation of p47phox

and p67phox. MR antagonists ameliorate glomerular injury
and decrease proteinuria in several animal models of hyper-
tension, independent of changes in BP (189, 202, 241). Thus,
intrarenal ANG II and aldosterone signaling via the MR both
elicit renal oxidative stress that is widely implicated in the
pathogenesis of hypertension and associated renal damage in
animal models.

ROS and Renal Tubular Transport

Proximal tubule

NADPH oxidase-derived ROS can reduce renal tubular
Na + transport in the PT either directly or by reducing NO
activity. Although there is enhanced Na + and fluid uptake in
PT of young SHR (4, 280), Panico et al. (224) reported reduced
reabsorption in the PT of adult SHR and relate this to in-
creased intratubular NADPH oxidase-derived O2

- �. An in-
tratubular perfusion of tempol, apocynin or systemic
silencing of p22phox with a siRNA restored PT reabsorption in
adult SHR nephrons, thereby implicating NOX-derived O2

- �

production in the reduced PT fluid reabsorption (224). This
was ascribed to increased expression of the Na + /H + ex-
changer regulatory factor (NHERF2), which inhibited the
Na + /H + exchanger (NHE3) activity (Fig. 5). The authors
suggest that downstream sites of Na + reabsorption, increased
by O2

- �, would compensate for the dysfunction in the PT and
thereby account for the similar Na + and water excretion in
both WKY and SHR. While NOX4 is the primary source of
O2

- � in the PT (87, 88), the increase in PT reabsorption in the
SHR by luminal apocynin implicates other NOX isoforms that
required p47phox, such as NOX1 or NOX2 (224). Inhibition of
PT fluid reabsorption by O2

- �may be secondary to limitation
of NO, since fluid reabsorption is enhanced by NO and re-
duced by the intratubular perfusion of a nonspecific or by an

nNOS- or an iNOS-specific inhibitor (10, 199). Moreover,
iNOS ( - / - ) and nNOS ( - / - ) mice but not eNOS ( - / - )
mice had reduced PT reabsorption (298, 299).

There are normal distributions of NHE3 and sodium-
phosphate-cotransporter (NaPi2) proteins in the PT of young
SHR, while in adult SHR, and in other some hypertensive rat
models, the transporters are relocated from the luminal brush-
border into the cytoplasm. This may contribute to decreased
PT Na + and fluid reabsorption (174, 185, 334, 338).

It is not yet clear whether O2
- � and/or NO regulate luminal

expression of sodium transporters in the PT. While hyper-
tension causes a pressure-natriuresis, the infusion of ANG II
causes an anti-natriuresis (157, 158, 185, 349). The infusion of a
nonpressor concentration of ANG II enhanced renal ROS
production (29) and translocated NHE3 and NaPi2 to the
apical microvilli in the PT, which should increase Na + and
water reabsorption (157, 158). On the other hand, the infusion
of pressor concentrations of ANG II had the opposite effect
(185). A nonpressor infusion of ANG II was confirmed to
simulate NHE3 activity in the PT brush border and in TAL
cells (149, 328).

Blockade of A1ARs reduces Na + transport in the PT and
leads to natriuresis. Thus, the increased expression and function
of A1ARs in the PT of rats during salt restriction may contribute
to enhance PT reabsorption. (146, 323). Activation of A1AR
augmented Na+ transport in human immortalized PT cells
(HK-2) (276). H2O2 increased A1AR expression in smooth
muscle cells of hamsters by activating NFj-B (200). It will be
important to determine the precise role of ROS and other related
systems such as adenosine on tubular Na + reabsorption.

A defect in the dopaminergic system of the PT has been
implicated in the development of hypertension. Dopamine
acting on D1-like and D2-like receptors decreases Na +

transport in volume-expanded states. Nevertheless, D2-like
receptor activation can increase Na + transport in volume-
depleted states. The exact mechanisms whereby D2-like re-
ceptors regulate ion transport have not been established.
There is reduced renal expression and/or impairment of do-
pamine receptors in several models of hypertension, such as
the DS rats and the SHR (12, 270, 339, 343). D-1-like receptor
function was impaired in the PT of volume expanded SHR
and was implicated in a decreased natriuresis and the de-
velopment of salt-sensitive hypertension (270, 343). This im-
pairment was attributed to oxidative stress since it was
corrected by tempol (12, 127). Indeed, D1, D3 and D5 were all
impaired in the PT of SHR (Fig. 5) (127, 343–345). Increased
renal O2

- � and G protein-coupled receptor kinase type 4
(GRK4) in SHR induced the phosphorylation of D1 and D3
receptors in the PT, uncoupling them from their G protein
effector protein and thereby preventing their activation (Fig.
5) (343). The activation of AT1R by ANG II impaired the D5
receptor (345). ANG II via AT1R stimulated the NADPH ox-
idase-dependent O2

- � production in the PT of SHR and in-
creased the expression of the NHE3 inhibitor factor
(NHERF2), which decreased Na + reabsorption in the PTs of
SHR by inhibition of NHE3 (Fig. 5) (224). Since the D1, D3 and
D5 receptors negatively regulate AT1R and oxidative stress
(Fig. 5), their impairment in the in the PT of SHR would result
in enhanced effects of ANG II that would account for the
decreased Na + reabsorption.

The interaction of D1-like with D2-like receptors regulates
Na + reabsorption in the PT and Na + excretion (60, 335). The
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impairment of D1 receptor function in the PT and in the TAL
of SHR (117, 201, 343) leads to increased luminal NHE3 and
NaPi2, and basolateral Na/HCO3

- co-transporters and Na + -
K + -ATPase that together account for enhanced PT reabsorp-
tion (117, 127, 201, 343).

D2 ( - / - ) mice have hypertension that is in part depen-
dent on oxidative stress. There is increased renal expression
of NOX1, NOX2 and NOX4 and NADPH oxidase activity in
D2 ( - / - ) mice (8). DJ-1, a multifunctional protein with
antioxidant properties is required for the D2 receptor sig-
naling (Fig. 5). Renal silencing of DJ-1 gene in mice increases
NOX4 expression and NADPH oxidase activity and in-
creases the BP (45). D5 ( - / - ) mice have hypertension that is
dependent on oxidative stress (335). There is increased renal
expression of NOX2, NOX4, p47phox and enhanced NADPH
oxidase activity (335). D5 ( - / - ) mice also are salt sensitive
and have higher expression of AT1R in the kidney (345).
D3( - / - ) mice also have increased renal AT1R expression
but only a mild hypertension (344). This is attributed to a
renal upregulation of D5 receptors, which prevents oxida-
tive stress in D3 ( - / - ) mice (300). Thus, stimulation of D1-
like and D2-like receptors activates antioxidant pathways
while their impairment during hypertension exacerbates the
oxidative stress induced by ANG II and its effects on Na +

reabsorption.

Loop of Henle

The apical Na + /K + /2Cl - cotransporter type-2 (NKCC2)
in the TAL accounts for 70–80% of transcellular Na + re-
absorption whereas the NHE3 accounts for the remainder.
The energy is provided by the basolateral Na + -K + -ATPase
that maintains a low intracellular Na + concentration. O2

- �

activates a signaling pathway in the mTAL that includes
PKC-alpha and NKCC2 to enhance Na + transport (217, 264).
Although NADPH oxidase is the main source of O2

- � in
TAL, xanthine oxidase (XO), COX and CYP 450 enzymes also
are expressed in this segment and might contribute to O2

- �

production (86). NOX2 and p47phox were identified as the
main sources of O2

- � generation in the TAL in response to
ANG II or increased luminal flow (114, 254, 264). Feng et al.
(62) reported that disruption of the gene for p67phox

decreased medullary NADPH oxidase-dependent O2
- � pro-

duction and attenuated salt-sensitive hypertension in DS rats.
However, Hong and Garvin (113) reported that flow-induced
production of O2

- � in the TAL was dependent on NOX4 but
not on NOX2.

NO is a major regulator of NaCl transport in the TAL.
Studies in isolated, perfused TAL demonstrated that NOS-3
derived NO inhibits NKCC2 and NHE3 at this site (85,
218, 219). The NKCC2 inhibition was mediated by a

FIG. 5. Hypothesis for proximal tubule signaling via reactive oxygen species after ANG II type-1 receptor or dopamine
receptor activation or inhibition in hypertension. Activation of AT1R stimulates the NADPH-oxidase dependent
O2

- $production, which increases the expression of the NHE3 inhibitor factor (NHERF2) and decreases Na + reabsorption in
the proximal tubule by inhibition of NHE3. Superoxide (O2

- $)- and G-coupled receptor kinase type 4 (GRK4)-dependent
phosphorylation (P)/uncoupling of D1 and D3 leads to an impairment of these receptors, while AT1R impairs the D5
receptor (for explanation, see text). Drawn after Refs. (127, 224, 343–345). AT1R, angiotensin II receptor type-1; PLD,
phospholipase D; GRK4, G-protein-coupled receptor kinase type 4; cAMP, 3¢-5¢-cyclic adenosine monophosphate; P, phos-
phate; PKA, phosphokinase A; PLC, phospholipase C; PKC, protein kinase C; NHE3, Na + /H + exchanger; NHERF, Na + /H +

exchanger regulatory factor; NADPH, nicotinamide dinucleotide phosphate.
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phophodiesterase-mediated degradation of 3¢-5¢-cyclic aden-
osine monophosphate (cAMP) whereas the inhibition of
NHE3 was attributed to direct effect of NO (85). A high salt
diet decreases NaCl reabsorption in the TAL. This is attrib-
uted both to an increased medullary osmolality and to release
of ET-1, which through ETB receptors increased NOS-3 ex-
pression and NO-dependent inhibition of NKCC2 (108).
Impairment of NO has been shown to increase NaCl re-
absorption at this nephron segment in models of salt sensitive
hypertension, which may thereby contribute to salt-dependent
increases in BP (82).

T1DM is often associated with hypertension, salt sensitivity
and oxidative stress (45, 171, 271). Studies report increased
Na + transport and oxygen consumption in diabetic rats (11,
231). Yang et al. (333) reported increased Na + transport and
O2 consumption in the mTAL of diabetic rats. This was as-
cribed to a NADPH oxidase- and PKC-dependent increase in
O2

- �, which entails NKCC2 and Na + -K + -ATPase.
Renal production of 20-HETE is elevated in SHR, DOCA-

salt or ANG II-infused rats and contributes to hypertension
(111, 123, 196, 324). Roman and colleagues (196) reported that
reduced 20-HETE production in the TAL of DS rats contrib-
uted to elevated Na + reabsorption. The reduction of 20-HETE
is dependent on ROS (111). Induction of 20-HETE synthesis
improved pressure-natriuresis and attenuated the develop-
ment of hypertension in DS rats (324). Thus, ROS generally
enhance Na + reabsorption in the TAL, in part via reduction in
20-HETE production and contributes to hypertension.

DT and CD

The ENaC in the distal nephron and cortical collecting duct
(CCD) is responsible for much of the Na + reabsorption in this
segment. It provides the final renal tubular adjustments of
Na + reabsorption that are important for Na + balance and
thereby play a critical role in the regulation of BP (273). ANG
II activation of AT1Rs in the CCD of rats increased ENaC
activity by NOX-dependent ROS generation (272). Aldoster-
one increased ENaC activity in A6 distal nephron cells by
O2

- � generation, which reduced the inhibitory effects of NO
on the ENaC (340). H2O2 generated in the CCD during a high
NaCl intake stimulated the ENaC by diminishing its inhibi-
tion by arachidonic acid (272). These limited data imply that
ROS-induced stimulation of the ENaC might be the result of
diminishing the inhibitory factors acting on this Na + channel.
ET-1 inhibits Na+ transport in the CD via activation of ETB

receptors and reduces ENaC expression and activity and
Na+ -K+ -ATPase and thereby Na + reabsorption (84). This
entails the generation of NOS-1 dependent NO and accumula-
tion of prostaglandin E2 (22, 143). ET-1 production in the CD
was increased by elevated Na+ intake and associated with na-
triuresis (173). Paradoxically, medullary levels of ET-1 and ETB

receptor expression were lower in DS rats than in DR rats
on a high salt diet (269). However, renal expression of the
ENaC was increased in DS rats (7) and this could represent
a mechanism for the development of salt-sensitive hypertension.

Pressure-natriuresis

The kidney maintains the extracellular volume and BP by
modulation of the pressure-natriuresis mechanism. An in-
crease in pressure-natriuresis is accomplished by a vascular
component, which has been related to an increased MBF

leading to a decreased medullary solute gradient and an in-
creased renal interstitial hydrostatic pressure both of which
inhibit Na + reabsorption and a primary tubular component,
which has been with associated decreased Na + reabsorption
in the PT and TAL (83, 91, 244)

A shift of the pressure-natriuresis relationship to higher
pressures occurs in many models of hypertension. The
pressure-natriuresis was the outcome of opposing effects of
ROS and NO, particularly in the renal medulla (41, 209).
Inhibition of oxidative stress with tempol increases pressure-
natriuresis and diminishes salt-sensitivity (94, 186, 312),
whereas prolonged inhibition of NOS with L-NAME inhibits
pressure-natriuresis and causes salt-sensitive hypertension
(341). Thus, the balance between O2

- � and NO determines
the effectiveness of pressure-natriuresis and thereby the set
point of BP.

ROS, tubular transport, and hypertension

Collectively, the studies linking ROS to tubular transport
and hypertension suggest that O2

- � decreases Na + and fluid
reabsorption in the PT largely by decreasing NO availability,
while O2

- � increases Na + reabsorption in TAL and distal
segments. NADPH oxidase was identified as the main source
of O2

- � in the tubules. However, increased Na + delivery or
ANG II both enhanced H2O2 production in medullary seg-
ments (213) and increased Na + reabsorption in the mTAL
(213) and CDs (272). NOX2 and NOX4 generate O2

- � in the
kidney, but their specific roles and sites of action are not yet
well defined.

ROS, Renal Oxygenation, and Hypertension

PO2 and TNa/QO2 in the renal cortex and medulla

A reduction in renal tissue PO2 in the models of hyper-
tension has been attributed to increase O2 usage for Na +

transport (TNa/QO2) (150, 303, 305, 312, 318). Welch et al. (301)
reported a lower PO2 in the kidney cortex and the outer me-
dulla of SHR that was dependent on renal AT1R and O2

- �,
since it was normalized by an ARB or tempol, whereas non-
specific correction of hypertension was less effective (57, 301,
302). The PO2 also was reduced in rats infused with ANG II at
a slow-pressor rate (303) and in the clipped kidney of the
2K,1C rat (305). Tempol restored the PO2 levels and TNa/QO2

in both these models, whereas an ARB or an angiotensin-
converting enzyme inhibitor (ACEi) had no effects in the
clipped kidney of 2K,1C rats (223). Interestingly, baseline
cortical PO2 was reduced in the clipped kidney in the early
phase of 2K,1C, but it was restored in the chronic model,
perhaps because a high BP and lack of autoregulation main-
tained the blood supply to the clipped kidney and the fall in
the GFR limited Na + filtration and reabsorption, thereby re-
ducing renal work and O2 demands (223). Mice with 5/6
nephrectomy and a prolonged RRM also had reduced PO2

levels and TNa/QO2, especially in the renal medulla, which
were corrected by tempol (150). The authors propose that
tempol enhanced NO bioavailability in the renal medulla and
thereby improved the mitochondrial efficiency and MBF
(150). Prolonged inhibition of ANG II by an ACEi or an ARB
in rats reduced age-related renal mitochondrial O2

- � pro-
duction and improved O2 usage (47). These studies suggest
that an enhanced mitochondrial O2

- � in several models of
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hypertension may have reduced NO sufficiently to disinhibit
and uncouple mitochondrial respiration, increase QO2, but
limit ATP production, and consequently to decrease TNa/QO2.
Indeed, inactivation of NO signaling by O2

- � is reported in
the kidney of the SHR (310) in the clipped kidney of the 2K,1C
rat (9, 19, 262, 263, 317) and the kidney of the ANG II-infused
rat (9, 19, 50, 262, 263, 317). Since physiological levels of PO2

limit NADPH oxidase-dependent O2
- � generation in the renal

medulla (34, 301), the relative hypoxia may put a brake on
severe medullary oxidative stress. Renal hypoxia also may
contribute to the development of hypertension (184). Renal
oxidative stress associated with upregulated Poldip2 and
SOD accounted for the renal medullary hypoxia in a mouse
model of RRM (150) and has been postulated to contribute to
hypertension and progressive loss of function in patients with
CKD (64).

Renal Nerves

Efferent and central effects

Activation of the sympathetic nervous system (SNS) raises
the BP, enhances renal Na + reabsorption, reduces RBF, and
increases renin secretion (92). ROS increase SNS activity by
decreasing NO bioavailability within the central nervous
system (26, 31).

The efferent sympathetic renal nerves are distributed
throughout the renal vasculature and tubular segments in the
cortex and outer medulla, with high innervation along the
afferent and efferent arterioles (145). b1-adrenergic receptors
(b1AR) predominate on VSMCs of renal microvessels and MD
epithelium, where they inhibit ROS generation and lead to
vasodilation (18). Activation of b1AR by norepinephrine (NE)
protected renal afferent arterioles of ANG II-infused rabbits
from the enhanced contraction induced by increased ROS
generation that was mediated by a-1 adrenergic receptors
(295). Thus, a- and b-adrenergic receptor signaling can have
opposite effects on renal microvascular ROS.

Afferent and renorenal reflex

The renal afferent nerves are mainly located in the renal
pelvis, where they are activated by chemical stimuli, for ex-
ample, high NaCl concentrations and physical stimuli, for
example, increased renal interstitial pressure (145). The sig-
nals from the renal afferent nerves converge to brain centers
involved in the control of arterial pressure (145). Unilateral
renal denervation leads to ipsilateral natriuresis and contra-
lateral increased renal sympathetic nerve activity (RSNA) and
antinatriuresis. This has been termed the renorenal reflex.

Hypertension and renal nerves

Renal denervation prevents or attenuates hypertension in
many models, including SHR, SHRSP, ANG II-induced,
DOCA–salt, and 2K,1C hypertension (51). Renal denervation
of rats early after renal injury prevented the enhanced NE
secretion from the posterior hypothalamic nuclei (PH), the
increased RSNA, and hypertension, thereby implicating the
renal afferent nerves in centrally mediated neurogenic hy-
pertension (31, 336). The central sympathetic activation after
renal afferent nerve activation is dependent on ROS, since it is
prevented by intracerebroventricular (ICV) infusion of tempol
(31). A convenient model is produced by an intrarenal injec-

tion of phenol in rats. This enhances NE secretion from the PH
and RSNA, and leads to hypertension that is prevented by
denervation of the kidneys or by ICV injection of tempol or
PEG-SOD (337). Several brain nuclei in this model have in-
creased expression of NOX2, NOX4, p22phox, and p47phox,
whereas interleukin-1b and nNOS are decreased (31, 42, 104,
225, 232, 337). A vitamin E-enriched diet attenuated activation
of the SNS and hypertension initiated by intrarenal injection
of phenol (25).

O2
- � is elevated in the sympathetic ganglia of DOCA–salt-

hypertensive rats, and this is attributed to ET-1 stimulation of
the ETB receptors (46). The authors propose that O2

- � could
inactivate NO in the SNS and thereby increase the activity of
sympathetic neurons and the release of vasoactive sub-
stances, resulting in vasoconstriction and hypertension. In
other studies, an acute intravenous infusion of tempol caused
a transient decrease in the BP, heart rate (HR), and RSNA in
both DOCA–salt-hypertensive rats and SHR (26, 325–327).
In DOCA–salt rats, the effect of tempol on BP, but not on
HR and RSNA, was attenuated after NOS inhibition with
NG-nitro-l-arginine (L-NNA). These studies suggest that the
inactivation of NO by O2

- � in peripheral sympathetic nerves
may contribute directly to the increase in BP in hypertensive
animals.

In contrast, ICV infusions of tempol do not decrease BP in
WKY rats or SHR (261). These studies suggest that the ICV
action of tempol on the SNS could involve NO-dependent and
NO-independent pathways, while the systemic effects of tem-
pol involved peripheral vasodilation and reflex activation of the
SNS. Thus, ROS can activate the SNS both by increasing the
central sympathetic drive and by facilitating peripheral SNS
signaling. Microinjection of an AT1R antagonist into the rostral
ventrolateral medulla decreased BP and peripheral sympathetic
nerve activity in SHR, but not in WKY rats (6). These studies
support the hypothesis that ROS may activate the SNS at the
levels of renal afferents, central nuclei, and peripheral sympa-
thetic nerves and thereby contribute to hypertension.

The Renin-Angiotensin-Aldosterone System

Renin and aldosterone release

Renin release is regulated by systemic and intrarenal sig-
nals. There is growing evidence that oxidative stress regulates
renin expression and release (48, 77, 78, 119, 306). ANG II
stimulates the production of cytokines, which are strong in-
hibitors of renin release (112). TNF-a inhibits renin expression
and release through oxidative stress (48, 119).

The juxtaglomerular ( JG) cells of the renal afferent arteriole
are the primary site of storage for prorenin, activation of renin,
and renin release. Renin release is stimulated by sympathetic
activation of b1-adrenergic receptors on JG cells, decreased
renal afferent arteriole stretch, and decreased NaCl delivery to
the MD or by specific hormones and peptides (148, 229). The
short-loop feedback inhibition of renin secretion by ANG II
involves oxidative stress. Galle et al. (77) reported that JG cells
isolated from mice had enhanced renin release when the tis-
sue O2

- � was increased. (77, 78, 119). Itani et al. (119) dem-
onstrated that renin-expressing JG cells exposed to TNF-a and
H2O2 had a time- and dose-dependent reduction in renin
mRNA and renin promoter activity that was corrected by an
antioxidant N-acetylcysteine (NAC). Interestingly, an effec-
tive antihypertensive dose of tempol increased the plasma
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renin activity in SHR, implying that inhibition of renin re-
lease did not contribute to the fall in MAP. Overall, these
studies suggest that O2

- � enhances, whereas H2O2 inhibits,
renin expression and release, but further studies are needed
due to the complexity of the factors involved in the JG cell
function.

Aldosterone participates in the control of BP by central ac-
tions that lead to activation of the SNS, vascular actions that
led to vasoconstriction, and renal actions that lead to enhanced
Na + reabsorption. Excessive aldosterone synthesis or release
increases Na + reabsorption by renal DTs and raises the BP
(285). Aldosterone promoted renal and cardiovascular dis-
eases associated with hypertension (20, 285). Aldosterone re-
lease from the zona glomerulosa of the adrenal cortex is driven
by ANG II and [K + ]. The pressor responses induced by pro-
longed aldosterone infusion and salt supplementation in rats
were mediated by central AT1R and ROS, since they were
inhibited by ICV administration of an ARB, apocynin, or
tempol (285). Moreover, the pressor effects of a systemic in-
fusion of low dose of ANG II also were dependent on central
MR, since they were abolished by the ICV infusion of an MR
blocker or an aldosterone synthase inhibitor (116). These
studies disclose a crosstalk between ANG II and aldosterone in
the brain to sustain hypertension that involved a central pro-
duction of ROS. Fujita and Nagase (258) demonstrated that
salt-dependent augmentation of ANG II effects in the kidney
depended on renal MR/Rac1 activation. They proposed that a
crosstalk between ANG II and aldosterone contributes to hy-
pertensive kidney injury (135, 260). ANG II induced the syn-
thesis and release of aldosterone in the adrenal cortex cells by
activation of AT1Rs and increased CYP11B2 expression and
activity (13, 205, 234) that were mediated by H2O2 derived
from NOXs and mitochondria (234). Pretreatment with NAC,
PEG-CAT, a NOX inhibitor, or an ARB prevented the ANG II
stimulation of aldosterone release. These studies demonstrate
that oxidative stress is an important regulator of the RAAS in
the kidney, brain, and adrenal glomerulosa cells.

MD versus afferent arteriole mechanisms

The afferent arteriole is the effector site of TGF and renin
secretion. ANG II enhances the afferent arteriolar constriction
with TGF activation (188) and enhances the activity of the
luminal NKCC2 in the MD (147), which generates the signal
for TGF. Adenosine activity on AT1Rs enhances the afferent
arteriolar response to ANG II (152). A1AR inhibition reverses
the enhanced renal vasoconstriction in ANG II-infused rats
(68). AT1AR ( - / - ) mice have an absent TGF response and
attenuated effects of ANG II in reducing renal function and
increasing RVR (79, 100, 253). Gao et al. (79) demonstrated that
A1ARs increased afferent arteriolar contractility by increasing
ROS generation. Therefore, an interaction between adenosine
acting on A1AR and ANG II acting on AT1R modifies the
degree of vasoconstriction induced by these agonists through
increased arteriolar ROS. This would contribute to the de-
velopment of hypertension by sensitizing TGF and the reac-
tivity of preglomerular vessels.

Angiotensin type 1 and 2 receptor expression

Angiotensin II type 1 and 2 receptors (AT1Rs and AT2Rs)
are demonstrated throughout the rat kidney (190, 221). AT1R

protein is expressed on renal blood vessels, glomeruli, PTs,
and DTs, especially in the outer medulla (106, 183). The
highest expression of AT1R is found in the renal cortical
vasculature and in the S3 segment of PT (190). Two AT1R
subtypes are identified in rodents (122, 190, 248), AT1AR and
AT1BR, but due to the high homology, their precise function in
the kidney has not yet been fully defined. The mRNA for
AT1AR and AT1BR is demonstrated in the glomeruli, tubules,
and vessels from the renal medulla of rats (190). The AT1AR
receptor has the highest homology with the human AT1R (42).

AT1AR ( - / - ) mice have a similar basal afferent arteriolar
diameter to wild-type mice, but reduced constrictive re-
sponses to ANG II, whereas the diameter of efferent arterioles
is higher in the AT1AR ( - / - ) mice, and they do not respond to
Ang II (105). Kidney-specific AT1AR ( - / - ) mice infused with
ANG II at a slow-pressor rate had no increases in BP. How-
ever, transplantation of a wild-type mouse kidney into sys-
temic AT1AR ( - / - ) mice restored the responses to ANG II
(42). AT1AR/AT1BR ( - / - ) mice have renal microvascular
dysfunction, tubular injury, and interstitial inflammation
despite a lower BP (220). These mice have enhanced renal
expression of renin, AGT, NOX2, p40phox, p67phox, and XO,
but decreased expression of NOX4. The authors attributed the
increased NADPH oxidase components in the kidney to the
infiltration of inflammatory cells. The cause for the paradox-
ical renal inflammation and dysfunction in mice lacking
AT1Rs has not been determined.

AT2Rs are expressed on the renal vasculature, PTs, DTs,
and CDs of rats, whereas glomeruli and mTAL are negative
(190). AT2R regulates renal AT1R expression and function via
the NO/cyclic guanine monophosphate (cGMP) pathway
(332). Stimulation of AT2R reduced inflammation and in-
creased renal production of NO and cGMP in the clipped
kidney of 2K,1C hypertensive rats (182). Overexpression of
AT2R in VSMC (126) or stimulation of AT2R in PT cells from
rats (332) decreased AT1R expression. On the other hand, PT
cells from AT2R ( - / - ) mice had increased AT1R expression.
Inhibition of AT2R enhanced the upregulation of renal
NADPH oxidase subunits by ANG II (29). Thus, there is
extensive reciprocal regulation of AT1R and AT2R in the
kidney that determines the expression of the NADPH oxidase
isoforms.

AT2R ( - / - ) mice have high BP, decreased renal function,
impaired water and Na + handling, augmented vasopressor
response to ANG II, and increased expression of AT1R in the
kidney. AT2R activation in the TAL decreased Na + re-
absorption by an NO-mediated reduction of the NKCC2 co-
transporter activity (107). NKCC2-dependent transport is
impaired in the TAL of DS rats with oxidative stress, which
may contribute to Na + retention and salt-sensitive hyper-
tension (113).

Recent studies have emphasized the importance of ANG II
receptors in the nuclei and mitochondria of renal cells in
modulating intracellular oxidative stress (1, 96, 162, 164, 227).
Activation of AT1R in the isolated nuclei from the rat renal
cortex was linked to increased ROS generation (228), whereas
the activation of the AT2R and ANG II (1–7) receptors
increased NO generation (97). Studies employing im-
munoelectron microscopy demonstrated AT2R bound to
ANG II in the mitochondria of mouse kidney cells (1). An
AT2R agonist stimulated the production of NO in the renal
mitochondria and inhibited respiration in the heart
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mitochondria (1). These findings reinforce the role of AT2R in
buffering the intracellular actions of AT1R on ROS production
and extended this to the mitochondria and nuclei. These re-
cent studies identify an intracellular RAAS system in the
kidney that modulates nuclear and mitochondrial oxidative
stress in hypertension.

ROS, hypertension, and the RAAS

Activation of the RAAS causes a widespread increase in
ROS in the kidney via NADPH oxidase, mitochondrial
dysfunction, decreased NO availability, and decreased anti-
oxidant enzymes. This is implicated in Na + retention, vaso-
constriction, and hypertension. Moreover, ACE inhibitors,
AT1R blockers, and MR antagonists decreased oxidative
stress and ameliorated hypertension and protected the kidney
in several hypertensive models (14, 15, 29, 57, 73, 157, 223, 302,
305, 308, 312, 334).

Increased ANG II generation of ROS is implicated in the
development of hypertension in several mouse or rat models,
including ANG II infusion at a slow-pressor rate (134, 216),
prolonged NOS inhibition (214), salt sensitivity (101, 187),
SHR (301, 306), 2K,1C rats (305), and salt-dependent hyper-
tension in DOCA-salt rats (328).

The renal AT1R is a key element for the development of
hypertension. (177, 224, 294, 305). Activation of this receptor
engages renal afferent and efferent arteriolar vasoconstric-
tion and decreased relaxation, limits the GFR and RBF,
increases Na + and fluid reabsorption, decreases pressure
natriuresis, and augments TGF (177, 224, 294, 305). Many of
the AT1R signaling pathways are antagonized by AT2R.
AT1R activation in the kidney enhances the expression and
stimulated the assembly of NADPH oxidase subunits and
decreases antioxidant enzymes, resulting in increased ROS
(29, 191, 304), whereas AT2R activation stimulates NO pro-
duction and counteracts the effect of AT1R activation (29,
274). Aldosterone causes glomerulosclerosis and proteinuria
by activation of the MR linked to ROS. Salt intake potentiates
the deleterious effects of ANG II and MR activation via in-
creasing ROS in the kidney, even with a suppressed systemic
RAAS (135). Thus, a crosstalk between ANG II and MR
in the kidney that both engage ROS could contribute to
the renal hemodynamic alterations and injury involved in
hypertension.

Innovation

This Forum reviews the most recent publications in basic re-
search focusing on the contribution of renal oxidative stress to
hypertension. Studies have shown that, on one hand, NADPH
oxidase/O2

-� is an essential requirement for hypertension dur-
ing slow-pressor infusion of ANG II. On the other hand, pro-
longed O2

-� tissue excess from knockout of SOD-1 or SOD-3
either does not change BP or increase it modestly, but does en-
hance BP with ANG II infusion. These and other studies suggest a
critical modulating, but not necessarily mediating, role for ROS in
hypertension development.

Conclusions

The kidney plays a crucial role in the development of hy-
pertension. Current treatments utilizing ACE inhibitors,
ARBs, and renin inhibitors have been effective in reducing BP,

but do not fully prevent the progressive loss of kidney function
in CKD. The therapeutic role of effective antioxidant strategies
in human hypertension and CKD remains to be explored.

Studies with isolated preglomerular microvessels or renal
cells have distinguished between the direct vascular actions of
ANG II and those exerted by the high BP. Studies of micro-
perfusion of vascular and tubular segments in vitro or in vivo
have defined a clear role for ROS in mediating many of the
effects of the renal RAAS on renal Na + transport, TGF, RBF,
and GFR. The development of knockout mice with global or
site-specific deletion of a target gene has demonstrated that a
primary increase in ROS, independent of ANG II, can be a
provocative stimulus to increase BP. Finally, studies of the
renal signaling pathways and transcription factors mediated
by ROS have expanded the knowledge on the role of oxidative
stress in the kidney and hypertension.
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Abbreviations Used

7-NI¼ 7-nitroindazole
8-iso¼ 8-isoprostane F2-alpha

A1AR¼ adenosine receptors type-1
AA¼ arachidonate

ACE¼ angiotensin-converting enzyme
AGT¼ angiotensinogen

ANG II¼ angiotensin II
ARB¼ angiotensin II type-1 receptor blocker

AT1R¼ angiotensin II receptors type-1
AT2R¼ angiotensin II receptor type-2

ATP¼ adenosine triphosphate
BH4¼ tetrahydrobiopterin

BP¼ blood pressure
cAMP¼ 3¢-5¢-cyclic adenosine monophosphate
Cand¼ candesartan
CCD¼ cortical collecting duct

CD¼ collecting duct
CKD¼ chronic kidney disease
CNT¼ connecting tubule
COX¼ cyclooxygenase

cTAL¼ cortical thick ascending limb
CTGF¼ connecting tubule tubuloglomerular

feedback
DOCA¼deoxycorticosterone acetate

DR¼Dahl salt-resistant
DS¼Dahl salt-sensitive
DT¼distal tubule
EA¼ efferent arteriole

ECs¼ endothelial cells
EDCF¼ endothelium-dependent constrictor factor

EDRF/NO¼ endothelium-derived relaxation factor/
nitric oxide

ET-1¼ endothelin-1
ETB¼ endothelin receptor type-B

GFR¼ glomerular filtration rate
GLOM¼ glomerulus

GPX¼ glutathione peroxidase
GRK4¼G protein-coupled receptor kinase type 4

GSH¼ glutathione
H2O2¼hydrogen peroxide
HETE¼hydroxyeicosatetraenoic acid
HHR¼hydrochlorothiazide, hydralazine,

and reserpine
HR¼heart rate

ICV¼ intracerebroventricular
JGA¼ juxtaglomerular apparatus
LH¼ loop of Henle
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Abbreviations Used (Cont.)

L-NAME¼Nx-Nitro-l-arginine methyl ester
L-NMMA¼NG-Methyl-l-arginine acetate

L-NNA¼NG-nitro-l-arginine
MAP¼mean arterial pressure
MBF¼medullary blood flow

MCD¼medullary collecting duct
MC¼mesangial cells
MD¼macula densa
MR¼mineralocorticoid receptors

mTAL¼medullary thick ascending limb
NAC¼N-acetylcysteine

NADPH¼nicotinamide adenine dinucleotide phosphate
NaPi2¼Na+–phosphate cotransporter

NE¼norepinephrine
NHE3¼Na+/H+ exchanger

NHERF2¼Na+/H+ exchanger regulatory factor
NKCC2¼Na+/K+/2Cl- transporter type-2

NOS¼nitric oxide synthase
NOX¼neutrophil oxidase
O2

-� ¼ superoxide
OH-� ¼hydroxyl anion

ONOO-¼peroxynitrite
PEG-CAT¼polyethylene glycol covalently linked

to catalase
PEG-SOD¼polyethylene glycol covalently linked

to superoxide dismutase
PGG2/PGH2¼prostaglandins/endoperoxides

PGs¼prostaglandins
PH¼posterior hypothalamic nuclei

PKA¼phosphokinase A

PKC¼protein kinase C
PLC¼phospholipase C
PLD¼phospholipase D

Podo¼podocytes
P¼phosphate

Prx¼peroxiredoxin
PT¼proximal tubule

RAAS¼ renin-angiotensin-aldosterone system
RBF¼ renal blood flow
ROS¼ reactive oxygen species

RRM¼ reduced renal mass
RSNA¼ renal sympathetic nerve activity

RVR¼ renal vascular resistance
SHR¼ spontaneously hypertensive rats

SHRSP¼ spontaneously hypertensive rats
stroke-prone

SNGFR¼ single-nephron glomerular filtration rate
SNS¼ sympathetic nervous system
SOD¼ superoxide dismutase

T1DM¼ type 1 diabetes mellitus
TGF¼ tubuloglomerular feedback

TP¼ thromboxane prostanoid receptor
TrxR¼ thioredoxin reductase

Trx¼ thioredoxin
TxA2¼ thromboxane A2

Veh¼vehicle
VSMC¼vascular smooth muscle cell

WKY¼Wistar Kyoto
WT¼wild-type mice

XOR¼ xanthine oxireductase
XO¼ xanthine oxidase
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