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Abstract: Head movement during functional magnetic resonance imaging (fMRI) degrades data qual-
ity. The effects of small movements can be ameliorated during data postprocessing, but data associ-
ated with severe movement is frequently discarded. In discarding these data, it is often assumed that
head-movement is a source of random error, and that data can be discarded from subjects with
severe movement without biasing the sample. We tested this assumption by examining whether
head movement was related to task difficulty and cognitive status among persons with multiple scle-
rosis (MS). Thirty-four persons with MS were scanned while performing a working memory task
with three levels of difficulty (the N-back task). Maximum movement (angle, shift) was estimated for
each difficulty level. Cognitive status was assessed by combining performance on a working memory
and processing speed task. An interaction was found between task difficulty and cognitive status
(high vs. low cognitive ability): there was a linear increase in movement as task difficulty increased
that was larger among subjects with lower cognitive ability. Analyses of the signal-to-noise ratio
(SNR) confirmed that increases in movement degraded data quality. Similar, though far smaller,
effects were found in a cohort of healthy control (HC) subjects. Therefore, discarding data with
severe movement artifact may bias MS samples such that only those with less-severe cognitive
impairment are included in the analyses. However, even if such data are not discarded outright, sub-
jects who move more (MS and HC) will contribute less to the group-level results because of
degraded SNR. Hum Brain Mapp 35:1–13, 2014. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

In the analysis of functional magnetic resonance imaging
(fMRI) data, perhaps the single largest factor that degrades
data quality is subject motion. This is because when a sub-
ject moves his/her head during a scan, one of the funda-
mental assumptions underlying fMRI data analysis is
violated—the assumption that a given voxel corresponds
to a given volume of brain tissue across time [see Friston
et al., 1996 for a review]. This assumption is critical
because in fMRI data analysis, we wish to ascribe variance
in the signal from each voxel to our experimental manipu-
lation(s). However, if a given voxel corresponds to one
location in the brain at Time 1 and a different location at
Time 2, then there are at least two sources of variance in
the data: the experimental manipulation and subject
motion. To ascribe changes in the blood oxygen level de-
pendent (BOLD) signal to the experimental manipula-
tion(s), it is therefore necessary to ensure that subject
motion accounts for little to none of the variance in the
data. If this is not done, if data is included in the analyses
that have been minimally corrected for motion, the results
become unreliable [e.g., Power et al., 2012; Van Dijk et al.,
2012]. This is not only because there are two sources of
variance, but also because the changes in the BOLD signal
associated with movement can be far larger than changes
associated with the experimental manipulation. Thus,
movement-related changes can ‘‘swamp’’ changes associ-
ated with the experimental paradigm.

In the functional neuroimaging literature, three ways
have been proposed and used to minimize the contribu-
tion of head motion to variance in the data. One method is
to use restraints that make movement difficult [Fitzsim-
mons et al., 1997; Green et al., 1994]. Nearly all fMRI stud-
ies in the literature use restraints such as foam pads that
are inserted around the subject’s head to help the subject
remain still. While these are useful, they do not completely
eliminate movement; their value is largely in allowing sub-
jects to feel when they are moving, thereby allowing com-
pliant subjects to remain still. A more invasive method is
to use a bite-bar. This is a device that is anchored to the
head-coil, and that subjects hold in their jaws. While it is
very effective in limiting head motion, it is also perceived
by some to be aversive and uncomfortable, limiting its
utility; this is particularly so for clinical samples.

Another method that is being developed is to measure
head motion in real time and to either adjust scanning to
account for this motion [Derbyshire et al., 1998; Mathiak
et al., 2001; Speck et al., 2006; Thesen et al., 2000; Welch
et al., 2002] or to use this information retrospectively to
correct for head motion [Tremblay et al., 2005]. Finally,
motion can be corrected retrospectively, during image
processing [Biswal and Hyde, 1997; Ciulla and Deek, 2002;
Friston et al., 1996; Hajnal et al., 1995; Woods et al., 1992].
Several algorithms have been developed for this sort of
‘‘motion correction,’’ but the central approach is largely
the same: a canonical image is chosen, and every other

image in the time-series is compared to that canonical
image. The extent to which each image differs is quanti-
fied in at least six parameters (three angular deviations:
roll, pitch and yaw; three translational deviations: shifts in
the right/left, posterior/anterior, and superior/inferior
dimensions), and corrected by applying a rigid-body trans-
formation. While this approach has proven very useful for
minimizing the effects of small amounts of motion on the
BOLD signal, it is less reliable when there are large devia-
tions in the data [Tremblay et al. 2005]. While this problem
is difficult in the X and Y directions (i.e., movement that is
parallel to the slice acquisition plane), it is nearly impossi-
ble in the Z direction (i.e., across slices) because of spin
history effects (i.e., it is impossible to know what the data
would have been, if it had been acquired at a different
time). It is therefore common practice to exclude (discard)
data in which movement exceeds �1–2 mm, which trans-
lates to <1� in angular deviation, and less than one voxel
(usually �3 � 3 � 3 mm or �27 mm3) in translational
deviation.

While it is unquestionably good practice to exclude data
with excessive motion artifact, there are several potential
disadvantages. For example, if there is a systematic rela-
tionship between excessive motion and task difficulty (i.e.,
if subjects tend to move more during more difficult tasks),
then the removal of blocks with excessive motion will
result in the removal of data from the most difficult condi-
tions, resulting in sampling bias. Moreover, if subjects
who tend to move more are systematically different from
those who do not (e.g., if they have a lower IQ), then the
removal of subjects with excessive motion will result in
the removal of subjects with this difference (lower IQ),
again introducing sampling bias. Generally, when data is
excluded, it is assumed that head movement is random,
and not affected by task difficulty or by subjects’ cognitive
abilities.

Although head motion is common in typical healthy
individuals (a recent study on over 1,000 healthy subjects
indicated a range of motion from 0.027 to 0.051 mm [Van
Dijk et al., 2012], the concern about inadvertently introduc-
ing sampling bias when subjects with excessive motion are
excluded is stronger when clinical populations are studied.
Indeed, motion has been shown to be a problem in fMRI
studies of neuropsychiatric populations including multiple
sclerosis [Phillips, 2008], traumatic brain injury [for review,
see Hillary et al., 2002], stroke [Seto et al., 2001], epilepsy
[Lemieux et al., 2007], and schizophrenia [Weinberger
et al., 1996]. In addition to clinical samples, studies involv-
ing pediatric samples are affected by greater head move-
ment as children are less able to remain still compared to
adults [Evans et al., 2010; Yuan et al., 2009]. Despite this, it
has not been universally found that head motion is greater
in clinical populations. For example, Yoo et al. [Yoo et al.,
2005] reported that there was very little head motion in a
group of individuals with schizophrenia, and that their
head motion was no greater than that seen in a matched
group of healthy controls. While this result is reassuring,
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it is not clear that it is representative of other clinical pop-
ulations (e.g., multiple sclerosis), nor indeed whether it is
generalizable beyond the group studied inasmuch as the
sample was very small (n ¼ 11).

Here, we investigated this issue in a cohort of subjects
with multiple sclerosis (MS), using a working memory task
(the n-back task), with three levels of difficulty. We
hypothesized that movement would be related to task diffi-
culty in MS, based on the idea that the requirement to
remain still in the fMRI scanner is similar to adding a sec-
ond task to the experimental paradigm. It has been shown
that when MS subjects must perform a demanding cogni-
tive task while walking, their walking performance declines
[Hamilton et al., 2009]. We hypothesized that the same
would be true of the ability of MS subjects to remain still in
the scanner. Moreover, previous fMRI research investigat-
ing differences in brain activation between MS and healthy
controls (HCs) has shown that cognitive status moderates
group differences. For example, Chiaravalloti et al. [2005]
have shown that the activation in high-functioning MS sub-
jects was similar to HCs, while a lower-functioning cohort
of MS subjects showed a markedly different pattern. There-
fore, we also hypothesized that the cognitive status of the
MS subjects would moderate the effect of task difficulty on
movement in the scanner. We tested these hypotheses by
(1) comparing the extent of maximum motion (both in
angular and translational deviation) across three levels of
task difficulty (0-, 1-, 2-back) in a group of MS subjects, and
(2) by comparing the extent of maximum motion across
task difficulty in two groups of MS subjects (high vs. low
cognitive ability). We also examined the effect of task diffi-
culty on maximum motion in a group of healthy control
(HC) subjects.

METHODS

Subjects

There were two groups of subjects: MS and HC. The MS
sample was comprised of 34 right-handed persons (29
women) with MS [McDonald et al., 2001] recruited from
local MS clinics and the North Jersey chapter of the
National MS Society. Subjects were recruited if they (a)
did not have an exacerbation of their MS during the last 4
weeks, (b) were not currently taking corticosteroid medica-
tion, (c) were not currently under the care of a physician
for any other major medical condition, and (d) had no his-
tory of serious psychiatric illness or other neurologic dis-
ease other than MS. English was the primary language of
all subjects. Mean age was 44.3 (SD ¼ 7.6) years with 15.9
(SD ¼ 2.4) years of education. Mean disease duration was
10.1 (SD ¼ 6.8) years, and MS course included relapsing-
remitting (n ¼ 26), secondary progressive (n ¼ 6) and pri-
mary progressive (n ¼ 2).

MS disease severity was mild-to-moderate, as indicated
by a mean Hauser ambulation index (AI; [Hauser et al.,
1983]) score of 2.2 � 2.3 (range: 0–8). The AI is the ambula-

tion component of the multiple sclerosis functional com-
posite (MSFC) [Cutter et al., 1999], and is highly correlated
with other clinical markers of MS disease progression
(e.g., correlation of 0.88 with EDSS; [Sumowski et al.,
2009]). In terms of the other components of the MSFC, the
mean paced auditory serial addition task (PASAT) [Gron-
wall, 1977] z-score was �0.52 (1.1) and the mean 9-Hole
Peg Test [Goodkin et al., 1988] z-score was 0.19 (0.56).

The HC sample was comprised of 20 healthy right-
handed persons (13 women) recruited from the commu-
nity. These subjects had no history of major medical or
psychiatric illness, and English was the primary language
of all subjects. Mean age was 30.1 (SD ¼ 6.5) years with
17.2 (SD ¼ 1.2) years of education.

The institutional review boards at UMDNJ and the Kess-
ler Foundation Research Center granted approval for the
study. Informed consent was obtained from all subjects
prior to participation.

Apparatus and Tasks

During each series, one of three levels of the visual N-
Back working memory task was run: 0-Back (lowest
demand); 1-Back (intermediate demand); 2-Back (highest
demand). The three tasks were presented in a counterbal-
anced block design. Each series began with a 28-s block of
rest followed by three repetitions of task (32 s of 0-Back, 1-
Back, or 2-Back, in separate series) and rest (32 s). During
the 0-Back task, participants viewed a series of letters, pre-
sented one at a time, and pressed a button when a target
letter (e.g., ‘‘K’’) was presented. During the 1-Back task,
participants viewed a different (randomly generated) se-
ries of letters, and responded when any letter was the
same as the letter immediately preceding it in the series
(e.g., ‘‘R C K K’’). During the 2-Back task, participants
responded when any letter was the same as the letter pre-
sented two letters prior in the series (e.g., ‘‘R K C K’’).
Stimuli were presented with the E-Prime presentation soft-
ware, which also recorded participants’ behavioral per-
formance (accuracy and reaction time [RT]).

Imaging Data and Analyses

The fMRI blood oxygen level dependent (BOLD) signal
was acquired in a 3T Siemens Allegra MRI scanner. Three
functional acquisition series were collected, each of 115
images (echo time ¼ 30 ms; repetition time ¼ 2,000 ms;
field of view ¼ 22 cm; flip angle ¼ 80�; slice thickness ¼ 4
mm, matrix ¼ 64 � 64, in-plane resolution ¼ 3.438 � 3.438
mm2). The first five images of each series were discarded,
allowing magnetization to reach a steady state. A high-re-
solution magnetization prepared rapid gradient echo
(MPRAGE) image was also acquired (TE ¼ 4.38 ms; TR ¼
2,000 ms, FOV ¼ 220 mm; flip angle ¼ 8�; slice thickness
¼ 1 mm, NEX ¼ 1, matrix ¼ 256 � 256, in-plane resolution
¼ 0.859 � 0.859 mm2), and was used to normalize the
functional data into standard space.

r Subject Motion and Sampling Bias r

r 3 r



For each subject, the fMRI data were realigned to correct
for subject motion using the 3dvolreg program in the
AFNI suite of imaging analysis tools. Fourier interpolation
was used, and all images for each subject were realigned
to the 10th image in the 0-Back time-series. The extent to
which each image had to be moved in order for it to be in
the same spatial location as the canonical image was
recorded. No additional options were used in the realign-
ment. The data were then smoothed (8 mm3 FWHM),
scaled, deconvolved, and warped into standard space. The
deconvolution used a delayed boxcar function to model
the hemodynamic response. The model included regres-
sors for each task (0-Back, 1-Back, 2-Back), as well as nine
regressors of no interest: the six movement parameters
and three polynomial regressors. The six movement pa-
rameters were the shifts in each of the orthogonal direc-
tions (right/left, anterior/posterior, superior/inferior) and
angular rotations in each of the orthogonal directions (roll,
pitch, yaw). The three polynomial regressors accounted for
low-frequency signal drift during the scan. The signal to
noise ratio (SNR) was calculated by dividing the estimate
of baseline activity for each time-series (the signal) by the
standard deviation of the residual error (the variance in
the data not accounted for by the model used in the
deconvolution). The voxels in the resulting image were
averaged to arrive at an estimate of the SNR for each sub-
ject. The steps outlined above were done for all subjects,
regardless of whether they had moved an excessive
amount or not. Of the 34 MS subjects, 12 moved >1�

(movers) while the rest moved less than this (nonmovers).

RESULTS

Behavior in the MS Group

To assess cognitive functioning, the symbol-digit modal-
ities test (SDMT) and the paced auditory serial addition
task (PASAT) were administered from the minimal assess-
ment of cognitive functioning in MS [MACFIMS; Benedict
et al., 2002]. Each subject’s score on these tests was con-
verted into a z-score based on published normative data
[Benedict et al., 2006], and the mean of these z-scores was
used as a summary measure of information processing
efficiency [for a similar approach, see Sumowski et al.,
2009]. For the present MS sample, the z-score for this sum-
mary measure of processing speed was �0.72 (SD ¼ 1.07),
which corresponds to the 24th percentile (the z-score for
the SDMT was �1.03 (SD ¼ 1.52), the z-score for the
PASAT was �0.41 (SD ¼ 0.84)). Consistent with previous
research [for review, Chiaravalloti and DeLuca, 2008], in-
formation processing efficiency in the current sample of
persons with MS was below average.

Motion in the MS Group

The motion parameters (angle and shift) were analyzed
with repeated measures, one-way ANOVAs. The factor

was task difficulty (0-Back, 1-Back, 2-Back). For angular
motion, there was a significant linear effect of task diffi-
culty (F(1,33) ¼ 12.59, P ¼ 0.001, g2 ¼ 0.28). The extent of
angular motion increased from 0.65� in the 0-Back task, to
0.96� in the 1 Back task, to 1.31� in the 2 Back task. Pair-
wise comparisons showed that all three conditions reliably
differed from one another (Ps < 0.05). For translational
motion (shift), there was also a significant linear effect of
task difficulty (F(1,33) ¼ 20.96, P < 0.0001, g2 ¼ 0.39). As
in the case of angular motion, translational motion
increased from 0.89 mm in the 0-Back task, to 1.27 mm in
the 1-Back task, to 1.47 mm in the 2-Back task. Pairwise
comparisons showed that the extent of translational
motion in the 0-Back task was reliably less than in the 1-
Back or 2-Back tasks (Ps < 0.005), but the difference
between 1-Back and 2-Back only trended toward signifi-
cance (P ¼ 0.10).

Motion as a Function of Cognitive Impairment

in the MS Group

To assess the effect of cognitive ability on motion in the
scanner, the MS group was divided into two groups, based
on a median split, using the information processing effi-
ciency z-score: those with higher information processing effi-
ciency [17 subjects; mean z ¼ 0.16 (SD ¼ 0.60)] and those
with lower efficiency [17 subjects; mean z ¼ �1.60 (SD ¼
0.59)]. We will refer to these groups as those with higher cog-
nitive abilities (cogþ) and those with lower cognitive abilities
(cog�). The two groups did not differ on age or education,
but they were reliably different on their information process-
ing efficiency score (t(32) ¼ �8.72, P < 0.0001; see Table I).
Moreover, the groups did not differ in disease duration, and
the distribution of disease type in the two groups was
exactly equal, with 13 relapsing-remitting, 1 primary pro-
gressive, and 3 secondary progressive in each group.

The motion parameters (angle and shift) were analyzed
with mixed repeated measures ANOVAs. The within-sub-
jects factor was task difficulty (0-Back, 1-Back, 2-Back) and
the between subjects factor was group (cog� vs. cogþ).
For angular motion, the interaction between task difficulty
and group was significant (F(1,32) ¼ 6.90, P ¼ 0.01, g2 ¼
0.18). This can be seen in Figure 1. The angular motion for
the cog� group increased dramatically as task difficulty
increased: 0.71�, 1.32�, 1.82� for 0-Back, 1-Back, and 2-Back,
respectively. The effect of task difficulty on motion was
considerably less for the cogþ group: 0.59�, 0.60�, 0.80� for

TABLE I. The demographics of the MS sample

Age
(years)

Education
(years)

Disease
duration
(years)

Information
proc. efficiency

(z-score)

MS Cogþ 45.3 � 7.8 16.5 � 2.1 9.1 � 7.5 0.2 � 0.6
MS Cog� 43.3 � 7.5 15.2 � 2.6 10.2 � 6.2 �1.6 � 0.6
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0-Back, 1-Back, and 2-Back, respectively. For translational
motion (shift), a similar pattern emerged (see Fig. 1): there
was a reliable interaction between task difficulty and
group (F(1,32) ¼ 3.99, P ¼ 0.05, g2 ¼ 0.11). Both groups
moved approximately the same amount in the easiest con-
dition (0-Back; 0.91 vs. 0.86 mm for the cog� and cogþ
groups, respectively), but as the task difficulty increased,
the cog� group moved more than the cogþ group: 1.38
vs. 1.16 in the 1-Back task, and 1.74 vs. 1.20 mm in the 2-
Back task, for the cog� and cogþ groups, respectively.

Correlations Between Motion and Cognitive

Impairment in the MS Group

To assess this relationship without dichotomizing the
MS group, we ran partial correlations between cognitive

status and the six movement parameters, controlling for
brain atrophy. There was no relationship between cogni-
tive status and angular movement during low cognitive
demands (0-Back, rp ¼ �0.10, P > 0.5), but worse cognitive
status was associated with more angular movement when
cognitive demands increased during the 1-Back (rp ¼
�0.43, P ¼ 0.01) and 2-Back (rp ¼ �0.48, P ¼0.005). That
is, as expected, the inverse relationship between cognitive
status and angular movement increased as cognitive task
demands increased. A similar relationship between cogni-
tive status and shift was not observed (rps ¼ 0.00, 0.02,
�0.20, all Ps > 0.10), perhaps due to lesser variance in
shift relative to angular movement.

Correlations Between Motion and

Signal-to-Noise Ratio in the MS Group

For each level of task difficulty (0-Back, 1-Back, 2-Back),
the two motion parameters (angle and shift) were corre-
lated with the signal-to-noise ratio (SNR) from the appro-
priate run (0-Back, 1-Back, 2-Back). As Figure 2 and Table
II show, there were significant negative correlations
between SNR and both angular and translational (shift)
movement. This was true for the MS sample as a whole,
and also for each group, though the relationship was
stronger for the cogþ group. The SNR did not differ
between the cogþ and cog� groups at any level of task
difficulty, and the stronger relationship in the cogþ group
was due to more variance in the SNR in that group at ev-
ery level of task difficulty (standard deviations for the
cogþ and cog� groups at each level of task difficulty were
as follows: 0-Back: 56.56 vs. 45.64; 1-Back: 56.61 vs. 45.65;
2-Back: 57.06 vs. 44.85). As expected, the negative correla-
tions show that as subjects moved more, the ratio of signal
to noise in their data decreased.

fMRI Activation in the MS Group

To better understand the effect of motion on our data,
we looked at the functional data, and because the 2-Back
condition was the condition most severely affected, we
used this condition to guide our subsequent analyses. A t-
test was conducted, comparing those who moved 1� in
angular motion or more (movers) to those who moved
<1� (nonmovers) during the 2-Back task. The results
showed a single area where the movers group showed
less activity than the nonmovers group: left middle frontal
gyrus, X Y Z ¼ �48 22 34, at P < 0.01 (corrected for multi-
ple comparisons with clustering threshold of 10 contigu-
ous voxels in the original acquisition space).

Random Combinatorial Analysis

in the MS Group

The analysis of the beta weights (above) showed there
to be a difference between the movers and the nonmovers.

Figure 1.

Angular (upper panel) and translational motion (lower panel) in

the MS sample, divided into cog� (black squares) and cogþ sub-

jects (gray circles). For angular motion, the cog� group differed

between 0-Back and 1-Back (d ¼ 0.64, P < 0.05) and between

0-Back and 2-Back (d ¼ 0.096, P < 0.01); the cogþ group dif-

fered between 0-Back and 2-Back only (d ¼ 0.66, P < 0.05). For

translational motion, the cog� group differed between 0-Back

and 1-Back (d ¼ 0.80, P < 0.01), 1-Back and 2-Back (d ¼ 0.61, P

< 0.05), and between 0-Back and 2-Back (d ¼ 1.20, P < 0.001);

the cogþ group differed between 0-Back and 2-Back only (d ¼
0.54, P < 0.05).
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Figure 2.

Scatterplots showing signal-to-noise ratio (SNR) in the MS groups. The panels on the left show

SNR vs. angular motion in the 0-Back task (upper left), 1-Back task (middle-left), and 2-back task

(lower-left). The panels on the right show SNR vs. translational (shift) motion in each of the lev-

els of the task (0-, 1-, 2-Back in the upper, middle, and lower panels respectively).
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However, this difference could be due to several factors
(e.g., lower signal to noise in the movers group because of
motion, less activity in the movers group because of lower
cognitive status, less activity in the movers group simply
because of random chance). We therefore conducted a
combinatorial analysis in which we first extracted the av-
erage beta weight from a sphere (radius ¼ 10 mm), placed
over the frontal area that distinguished to two groups.
This was done for each subject, in each condition (0-Back,
1-Back, 2-Back). The average signal (beta weight) for
1,000,000 different (random) combinations of 12 subjects
was then computed and stored.

We reasoned that if the difference in the beta weights
between the 12 movers and the 22 nonmovers was due
simply to chance, then there should be no systematic rela-
tionship between the number of movers in the subsample
of 12 and the average signal. That is, while it was to be
expected that the average signal from the 12 movers
would be relatively low, if this were due simply to chance,
then one would expect subsamples of 12 of the nonmovers
to have equally low average signal. However, if the differ-
ence were due to either motion or to cognitive status, then
having more movers in the sample would be expected to
systematically result in lower average signal. In this case,
if the 12 were comprised completely of movers, the signal
should be poor; if all 12 were drawn from the remaining
22 subjects (the nonmovers), the signal should be good;
and for combinations of subjects that were comprised of a
mixture of movers and nonmovers, the signal should be
somewhere between these two extremes. While having a
propensity to move and having a lower cognitive status
are confounded in the 2-Back condition, they are not in
the 0-Back and 1-Back conditions: it was only in the 2-
Back that those with lower cognitive status moved an
unacceptable amount. We therefore performed the combi-
natorial analysis on all three levels of the N-back data. The
more movers there were in the sample of 12, the lower we
expected the average signal to be because those in the
movers group had lower cognitive status. However, we

expected the lower signal to noise associated with move-
ment itself to be most evident in the 2-Back condition.

The results can be seen in Figure 3. For all three condi-
tions, there was a strong relationship between the propor-
tion of movers and the signal: the more movers there were
in the sample, the lower the signal. Moreover, this effect
appears to be more pronounced in the 2-Back condition
than for either the 0-Back or the 1-Back conditions. These
observations were subjected to formal analysis with a multi-
ple regression. The factors were mover-proportion (with 12
levels) and N-back (0-back, 1-back, 2-back). The main effect
of both mover-proportion and N-back were reliable, as was
the interaction of their slopes (t ¼ �81.81, P < 0.0001).
When only 0-back and 1-back were included in the analysis,
the interaction was no longer significant (t ¼ �1.63, P ¼
0.10), though both the main effects were highly significant:
mover-proportion (t ¼ �274.88, P < 0.0001), N-back (t ¼
298.37, P < 0.0001). When only 1-Back and 2-Back were
included in the analysis, the interaction was once again
highly reliable (t ¼ �75.95, P < 0.0001). This was because
the slope of the regression line for the data from the 2-Back
was larger (more negative) than for the 1-Back.

The Effect of Excluding Movers From the Sample

Given the relationship between cognitive status and
movement reported above, we predicted that exclusion of
MS subjects with greater movement (movers) would bias
the sample toward MS subjects with higher cognitive

Figure 3.

The average activity in an ROI placed in the middle frontal gyrus,

as a function of task load (0-back, 1-back, 2-back) and the num-

ber of subjects who moved >1� during the 2-Back condition.

TABLE II. The correlation between the signal-to-noise

ratio and the movement parameters (angle and shift)

for each level of task difficulty (0-Back, 1-Back, 2-Back)

0-Back 1-Back 2-Back

Angle Shift Angle Shift Angle Shift

MS
Cogþ �0.80** �0.74** �0.74** �0.74** �0.51* �0.75**
Cog� �0.67** �0.57* �0.52* �0.66** �0.56* �0.51*
All �0.70** �0.64** �0.40* �0.70** �0.42* �0.55**

HC
All �0.42z �0.49* �0.43z �0.46* �0.35 �0.70*

*P < 0.05 (two-tailed tests in all cases).
**P < 0.01 (two-tailed tests in all cases).
zP < 0.1 (two-tailed tests in all cases).
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ability. That is, subjects with cognitive impairment would
be underrepresented. Investigating this directly, we found
that MS subjects with greater movement (movers: subjects
with angular movement > 1� on 2-Back, N ¼ 12) had
worse cognitive status than nonmovers (t(32) ¼ 1.913, P ¼
0.032, one-tailed). Of note, the effect size of this relation-
ship was medium-to-large (d ¼ 0.71). We also investigated
this using a Chi-square analysis in which we tested
whether the proportion of patients with and without cog-
nitive impairment would differ after excluding movers
from the sample. Our total sample was equally divided
between patients with and without cognitive impairment
(Ns ¼ 17); however, after excluding patients with excessive
movement, there was a significantly greater proportion of
cognitively intact (N ¼ 14, 64%) than cognitively impaired
(N ¼ 8, 36%) patients in the remaining sample (v2 ¼ 4.64,
P ¼ 0.031). That is, disproportionately more patients with
cognitive impairment would be excluded from final fMRI
analyses based on excessive movement, thereby biasing
the sample away from cognitive impairment.

Analysis of Motion in the HC Group

The motion parameters (angle and shift) were analyzed
with repeated measures, one-way ANOVAs. The factor
was task difficulty (0-Back, 1-Back, 2-Back). For angular
motion, there was a significant linear effect of task diffi-
culty (F(1,19) ¼ 9.28, P < 0.01, g2 ¼ 0.33). The extent of
angular motion increased from 0.62� in the 0-Back task, to
0.82� in the 1-Back task, to 0.89� in the 2-Back task. For
translational motion (shift), there was also a linear effect of
task difficulty (F(1,19) ¼ 5.06, P < 0.04, g2 ¼ 0.21). The
translational motion (shift) was 1.0, 0.80, and 1.29 mm in
the 0-Back, 1-Back, and 2-Back tasks, respectively.

Correlations Between Motion and Signal-to-

Noise Ratio in the HC Group

As for the MS group, correlations were calculated
between the two motion parameters (angle and shift) and
SNR, for each level of task difficulty (0-Back, 1-Back, 2-
Back). The results, shown in Table II and Figure 4, were
similar to the correlations in the MS group, though
weaker. In the HC group, there were reliable negative cor-
relations between translational motion (shift) and SNR for
each of the N-Back conditions. However, for angular
motion, the relationship only trended toward conventional
levels of significance. As in the MS group, the negative
correlations showed that the more subjects moved, the less
signal there was in their data, relative to the noise.

DISCUSSION

This study confirmed that in a clinical sample, such as
MS, subjects do indeed move more as task difficulty
increases. This shows that subject movement is not a ran-

dom variable, but that it is related to the experimental
manipulation. This is somewhat concerning, particularly if
a strict cutoff of 1–2 mm [<1� of angular motion and less
than one voxel (�3 mm)] is used to determine which data
to retain and which to discard. As a group, the MS sample
moved as much as 1.31� (corresponding to �3.43 mm),
and 1.47 mm (in the 2-Back task).

More concerning are the results that emerged when the
MS sample was divided into cog� and cogþ groups. In
those analyses, it emerged that the cog� group moved far
more than the cogþ group. This was true for both angular
and translational (shift) motion, but was far more prob-
lematic for angular motion. In the 2-Back task, the cog�
group moved nearly 2� (1.82�, or �4.76 mm), which is far
more than can be reliably corrected for with current image
processing software. If these subjects were simply dis-
carded, the sample would be strongly biased toward indi-
viduals with MS who have higher cognitive abilities. This
would likely result in an underestimation of the effects of
MS on brain functions.

One way to avoid the introduction of this sampling bias
would be to correct for the motion as much as possible
during image-processing, and then to include the motion
parameters in the deconvolution as regressors of no inter-
est. This would minimize the effects of motion on the data
(though it would by no means remove them entirely), and
might allow some of the subjects who would otherwise be
discarded to remain in the sample. However, while this
approach works well for event-related designs, it appears
to decrease the sensitivity of the general linear model
when block designs are used [Johnstone et al., 2006].
Moreover, the analyses of the SNR in the data presented
here show this solution to be flawed as well: the more sub-
jects move, the lower their SNR. This means that the
results from subjects who moved very little are stronger
than the results from subjects who moved more. This has
the unfortunate result that the group-level statistics will be
skewed toward the subjects who moved less: the cogþ
subjects. Thus, even if the data from subjects with a large
amount of motion are not simply discarded, a bias
remains in the group-level data because of the higher SNR
in the data from the subjects who moved less.

The random combinatorial analysis demonstrates the
effect of including subjects with excessive motion in the
sample. In the 2-Back condition, 12 subjects moved >1�.
As the data from these 12 movers was incrementally
added to a subsample of 12 subjects, there was a system-
atic decrease in the strength of the signal. This was true
for 0-Back and 1-Back, but was particularly marked for the
2-Back condition. Because the 12 subjects who moved >1�

in the 2-Back condition (movers) were also all in the cog�
group, adding them to the sample would be expected to
result in decreased signal for two reasons: the signal from
the cog- group might be expected to be less than that of
the cogþ group, and the SNR would be expected to be
less in this group because these 12 subjects moved. How-
ever, the difference in SNR should be worst in the 2-Back
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condition, since that is where these subjects moved the
most.

These data tell an important cautionary tale in relation
to fMRI studies of clinical populations such as MS. How-
ever, a great many fMRI studies are conducted to better
understand brain function in healthy populations. We

therefore also assessed whether the motion parameters
increase with task difficulty in healthy controls.

As with the MS sample, the HC group showed increas-
ing motion as the task increased in difficulty. However,
unlike the MS group, the mean amount of motion in the
HC group never exceeded 1� of angular motion or one

Figure 4.

Scatterplots showing signal-to-noise ratio (SNR) in the HC group. The panels on the left show

SNR vs. angular motion in the 0-Back task (upper left), 1-Back task (middle-left) and 2-Back task

(lower-left). The panels on the right show SNR vs. translational (shift) motion in each of the lev-

els of the task (0-, 1-, 2-Back in the upper, middle, and lower panels, respectively).
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voxel of translational motion (shift). This is reassuring for
those who investigate cognition in healthy samples. How-
ever, the fact that SNR was nevertheless correlated with
motion (albeit only for translational motion) is concerning.
Just as with the MS sample, this means that the results
from those who move more will be weaker than the
results from those who move less, and that any group-
level statistics will over-represent those subjects who
moved less in the scanner.

The purpose of these experiments was to empirically
assess the concern that subject motion (in the scanner) is
not a random variable, a concern that is particularly im-
portant in clinical samples [e.g., Hillary et al., 2002; Phil-
lips, 2008]. The results suggest that motion is indeed a
problem in clinical samples (in this case, MS), particularly
in cog� group. If subjects with excessive motion were sim-
ply removed from the group-level analyses, the excluded
subjects would overwhelmingly be the cog� subjects. This
would introduce sampling bias into the study because the
subjects remaining in the group-level analyses would be
biased against cognitive impairment. Thus, any results
would not represent MS subjects as a whole, but would
rather represent MS subjects who had higher cognitive
abilities. This would almost certainly lead to underestima-
tions of the effect of MS on brain activity.

If discarding subjects with excessive motion results in
sampling bias, would it be better to leave these subjects in
the group-level analyses (after attempting to mitigate the
motion artifact by, for example, including the motion pa-
rameters in the deconvolution as regressors of no interest)?
Unfortunately, there can be no simple answer to this ques-
tion. Certainly, including data from subjects with signifi-
cant motion artifact will not benefit the group-level
analyses: in avoiding sampling bias, spurious activation
patterns (associated with motion artifact) would be
included in the analyses. Moreover, even if only subjects
with no obvious motion artifact are included in the group-
level analyses, the signal-to-noise ratio (SNR) will be less
from those who moved more (i.e., the group with low cog-
nitive ability). Thus, it is very difficult (though not impos-
sible: see below) to escape from sampling biases in the
data, using current techniques.

Relationship to Prior Research

While we found clear evidence of greater motion in our
subjects with MS than in our HC subjects, others have
reported no such difference in other clinical populations
[e.g., Yoo et al., 2005]. While this might have to do with a
difference in disease type (MS vs. schizophrenia), it is
more likely due to the fact that the cognition of the indi-
viduals with schizophrenia used in the Yoo et al. [Yoo
et al., 2005] study was relatively intact. Although their per-
formance on working memory tasks was worse than the
HCs, their IQ was very high (mean ¼ 111.5), and the esti-
mate of disease severity was very low (brief psychiatric

rating scale total score ¼ 25.5). In as much as movement
became a larger problem in our sample as cognitive
impairment increased, one might not expect the head
motion in the sample of individuals with schizophrenia
studied by Yoo et al. to be that much more than their
healthy counterparts. Moreover, because only 11 subjects
were included in the Yoo et al. study, it is possible that
the null effect they report is due, at least in part, to a lack
of power.

A rather different aspect of prior research is that studies
investigating functional activity in MS relative to HCs of-
ten report ‘‘more’’ activity in the MS group. This increased
activity is generally twofold: there is an increase in the in-
tensity of activity in the same brain areas that HCs use to
perform a given task, and the extent of the active areas is
greater in the MS group [e.g., Chiaravalloti et al., 2005;
Sweet et al., 2006]. The results presented here suggest that
this frequent finding in the MS literature may represent an
underestimate of the increase in activity seen in MS. This
is because movement is correlated with decreased SNR,
which means that the more people move, the less signal
there is to detect (relative to the noise). In as much as indi-
viduals with MS move more than HCs, it is more difficult
to detect activity in MS. Despite this, we consistently see
increased activity in MS cohorts (relative to HCs). There-
fore, it seems likely that if individuals with MS moved as
little as HCs, the increase in activity seen in MS would be
even larger than what is reported in the literature. There is
an important caveat to this line of reasoning. In many
studies that investigate increasing task difficulty in MS rel-
ative to HC, there are large differences when the task is
relatively easy, but the differences are less apparent as the
task becomes more difficult [for a good example using the
N-back task, see Sweet et al., 2006]. The results of the cur-
rent paper suggest one possible reason for this perplexing
lack of difference at higher levels of task difficulty:
increased motion (and therefore decreased SNR) in the MS
group as difficulty increases. As the amount of motion in
the MS group increases, the concomitant decrease in SNR
would eventually begin to make even robust functional ac-
tivity difficult to detect. Thus, if the results presented here
are present in other MS samples (as seems likely) the lack
of differences in activity as task difficulty increases may be
due, at least in part, to progressive increases in head
motion and consequent decreases in SNR in the MS
group.

Another frequent observation, when functional activa-
tion in MS samples are compared to HCs, is that the MS
group shows activation in areas where the HC group
shows no reliable activation [e.g., Sweet et al., 2006]. The
contribution of motion to this finding is more nuanced. On
the one hand, decreased SNR may play a smaller role
here: if there is no reliable activation in these regions in
the HC group, a smaller increase in the MS group would
be detectable (even if this increase was lessened by poorer
SNR). On the other hand, motion artifact may result in
spurious activation in the MS group, thus producing
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artifactual ‘‘activation.’’. Unfortunately, in many studies it
is difficult to determine which cause (real activation or
motion artifact) produces this type of activation pattern.

Functional MRI research has traditionally considered
head motion a source of random error. This would suggest
that, at worst, motion reduces the SNR and, therefore,
reduces statistical power. In fact, as shown by the current
study, head movement may actually be a source of sys-
tematic error, which is far more troubling. That is, if clini-
cal samples move more than healthy samples, and
impaired patients move more than intact patients, then
SNR and statistical power may also vary between groups
and within groups as a function of impairment. One cur-
rent goal of clinical fMRI research is to identify neurophy-
siologic biomarkers of neurologic disease and behavioral/
cognitive impairment. For instance, several studies have
demonstrated that functional connectivity within the
default network differs between healthy adults and per-
sons with Alzheimer disease [e.g., Greicius et al., 2004;
Sorg et al., 2007]. Other studies have correlated continuous
measures of behavioral/cognitive impairment with func-
tional connectivity in clinical samples [e.g., Di Martino
et al., 2009]. Given that movement impacts SNR and statis-
tical power within functional connectivity analyses in gen-
eral [Power et al., 2012; Satterthwaite et al., 2012; Van Dijk
et al., 2012] and default network analyses in particular
[Van Dijk et al., 2012], it is at least possible that group
related differences are due in whole or in part to head
movement rather than differences in neurophysiology.
However, this conclusion is far from certain: the data pre-
sented in the current article show that MS subjects move
more as the task becomes increasingly difficult while
much of the functional connectivity literature is based on
resting state scans which, of course, involve no overt task.
Therefore, it may be that clinical samples do not move
more during rest than HCs. Nevertheless, the field of neu-
roimaging must consider head movement within the MR
scanner as a possible source of systematic error, and seek
ways to ameliorate this confound in the acquisition, analy-
sis, and interpretation of fMRI data.

Why Do Subjects With Cognitive Impairment

Move More in the Scanner?

Although it is not clear why task demands and cognitive
impairment are associated with greater movement, we
have considered one possible explanation. Persons with
MS typically require greater cerebral resources (e.g., pre-
frontal activation) to perform the same cognitive tasks as
healthy controls [e.g., Sweet et al., 2006]. This is especially
true for MS patients with cognitive impairment [Chiaraval-
loti et al., 2005]. Experimental fMRI paradigms typically
require subjects to perform two tasks simultaneously: (a)
perform the cognitive task of interest (e.g., N-Back), and
(b) remain still. As demands of the cognitive task increase
(2-Back), there may be fewer cerebral resources available

to maintain the second task (remain still). Healthy persons
and MS patients with higher cognitive abilities may pro-
cess the cognitive task with enough efficiency that cerebral
resources remain available for remaining still; however,
cerebral inefficiency in MS patients with lower cognitive
ability may lead to depleted cerebral resources, resulting
in neglect of the second task (remain still).

Another factor which may contribute to increased move-
ment in the MS population is fatigue. Individuals with MS
frequently report high levels of both physical and cogni-
tive fatigue [Krupp et al., 2012], and self-reported fatigue
levels often increase during a difficult cognitive task [John-
son et al., 1997]. Although it was not directly studied in
the current study, increased fatigue throughout the course
of the fMRI paradigm likely leads to increased head move-
ment, which will significantly impact the BOLD signal.

Going Forward

Because we cannot fully correct for subject motion, we
are left having to decide between two unpalatable alterna-
tives: (1) exclude subjects with excessive motion and
accept the resulting bias in our sample, (2) include as
many subjects as possible, and accept the fact that the sub-
jects who moved more will contribute less to the group-
level results. In practice, the latter choice is preferable, but
only because the former choice is unacceptable. One insidi-
ous problem with the latter choice has to do with the fact
that the SNR is almost never reported in fMRI studies.
Therefore, when two groups are compared (e.g., individu-
als with high vs. low cognitive ability), it is almost impos-
sible to tell how much of the difference between the
groups is due to differences in SNR. This problem is less
concerning in studies involving only HCs, but it would be
wise for studies involving clinical samples to include anal-
yses of SNR in their results.

A better solution would be to prospectively coregister
all of the images in the fMRI time-series, adjusting the
scanner to track changes in the position of the brain as
they occur. Several methods have been devised to do this,
ranging the use of three external markers placed on the
participant’s head [Derbyshire et al., 1998; Speck et al.,
2006], to techniques that calculate rigid-body transforma-
tions of the EPI image, similar to algorithms used in retro-
spective motion correction [Mathiak et al., 2001; Thesen
et al., 2000], to techniques that measure differences in
k-space [Welch et al., 2002]. These techniques are very
promising and may obviate the need to correct for motion
retrospectively by ensuring that the time-series of EPI
images is coregistered at the time of acquisition. This
would minimize signal distortions and changes in SNR due
to motion, and would thus allow clinical populations to be
scanned without the concern that motion artifact will cause
differences in signal strength between groups. Indeed,
some of these methods have recently become commercially
available (e.g., PACE, available on Siemens scanners).
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Another solution is to carefully monitor motion parame-
ters from every subject who participates in the study (an
approach that should be followed in any case), and to
ensure that sufficient numbers of subjects with low cogni-
tive ability are included. From the scatter plots in our anal-
yses, it can be seen there are some subjects with low
cognitive ability who were able to remain still. One conse-
quence of this observation is that, despite the fact that
many subjects with impaired cognition will move too
much to be included, it is possible to sufficiently power a
study by continuing to recruit such subjects until a suffi-
cient number who are able to remain still have been
found. This is a rather costly option, since it entails the
collection of many datasets that will not ultimately be usa-
ble, but it is perhaps the best solution for studies of clini-
cal samples.

REFERENCES

Benedict RH, Fischer JS, Archibald CJ, Arnett PA, Beatty WW, Bob-
holz J, Chelune GJ, Fisk JD, Langdon DW, Caruso L, Foley F,
LaRocca NG, Vowels L, Weinstein A, DeLuca J, Rao SM, Mun-
schauer F (2002): Minimal neuropsychological assessment of MS
patients: A consensus approach. Clin Neuropsychol 16:381–397.

Benedict RH, Cookfair D, Gavett R, Gunther M, Munschauer F,
Garg N, Weinstock-Guttman B (2006): Validity of the minimal
assessment of cognitive function in multiple sclerosis (MAC-
FIMS). J Int Neuropsychol Soc 12:549–558.

Biswal BB, Hyde JS (1997): Contour-based registration technique to
differentiate between task-activated and head motion-induced
signal variations in fMRI. Magn Reson Med 38:470–476.

Chiaravalloti ND, DeLuca J (2008): Cognitive impairment in multi-
ple sclerosis. Lancet Neurol 7:1139–1151.

Chiaravalloti N, Hillary F, Ricker J, Christodoulou C, Kalnin A,
Liu WC, Steffener J, DeLuca J (2005): Cerebral activation pat-
terns during working memory performance in multiple sclero-
sis using FMRI. J Clin Exp Neuropsychol 27:33–54.

Ciulla C, Deek FP (2002): Performance assessment of an algorithm
for the alignment of fMRI time series. Brain Topogr 14:313–
332.

Cutter GR, Baier ML, Rudick RA, Cookfair DL, Fischer JS, Petkau
J, Syndulko K, Weinshenker BG, Antel JP, Confavreux C, Elli-
son GW, Lublin F, Miller AE, Rao SM, Reingold S, Thompson
A, Willoughby E (1999): Development of a multiple sclerosis
functional composite as a clinical trial outcome measure. Brain
122(Part 5):871–882.

Derbyshire JA, Wright GA, Henkelman RM, Hinks RS (1998):
Dynamic scan-plane tracking using MR position monitoring. J
Magn Reson Imaging 8:924–932.

Di Martino A, Shehzad Z, Kelly C, Roy AK, Gee DG, Uddin LQ,
Gotimer K, Klein DF, Castellanos FX, Milham MP (2009): Rela-
tionship between cingulo-insular functional connectivity and
autistic traits in neurotypical adults. Am J Psychiatry 166:891–
899.

Evans JW, Todd RM, Taylor MJ, Strother SC (2010): Group spe-
cific optimization of fMRI processing steps for child and adult
data. Neuroimage 50:479–490.

Fitzsimmons JR, Scott JD, Peterson DM, Wolverton BL, Webster
CS, Lang PJ (1997): Integrated RF coil with stabilization for
fMRI human cortex. Magn Reson Med 38:15–18.

Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R
(1996): Movement-related effects in fMRI time-series. Magn
Reson Med 35:346–355.

Goodkin DE, Hertsgaard D, Seminary J (1988): Upper extremity
function in multiple sclerosis: Improving assessment sensitivity
with box-and-block and nine-hole peg tests. Arch Phys Med
Rehabil 69:850–854.

Greicius MD, Srivastava G, Reiss AL, Menon V (2004): Default-
mode network activity distinguishes Alzheimer’s disease from
healthy aging: Evidence from functional MRI. Proc Natl Acad
Sci USA 101:4637–4642.

Green MV, Seidel J, Stein SD, Tedder TE, Kempner KM, Kertzman
C, Zeffiro TA (1994): Head movement in normal subjects dur-
ing simulated PET brain imaging with and without head
restraint. J Nucl Med 35:1538–1546.

Gronwall DM (1977): Paced auditory serial-addition task: A mea-
sure of recovery from concussion. Percept Mot Skills 44:367–373.

Hajnal JV, Saeed N, Soar EJ, Oatridge A, Young IR, Bydder GM
(1995): A registration and interpolation procedure for subvoxel
matching of serially acquired MR images. J Comput Assist
Tomogr 19:289–296.

Hamilton F, Rochester L, Paul L, Rafferty D, O’Leary CP, Evans JJ
(2009): Walking and talking: An investigation of cognitive-
motor dual tasking in multiple sclerosis. Mult Scler 15:1215–
1227.

Hauser SL, Dawson DM, Lehrich JR, Beal MF, Kevy SV, Propper
RD, Mills JA, Weiner HL (1983): Intensive immunosuppression
in progressive multiple sclerosis. A randomized, three-arm
study of high-dose intravenous cyclophosphamide, plasma
exchange, and ACTH. N Engl J Med 308:173–180.

Hillary FG, Steffener J, Biswal BB, Lange G, DeLuca J, Ashburner
J (2002): Functional magnetic resonance imaging technology
and traumatic brain injury rehabilitation: Guidelines for meth-
odological and conceptual pitfalls. J Head Trauma Rehabil
17:411–430.

Johnson SK, Lange G, DeLuca J, Korn LR, Natelson B (1997): The
effects of fatigue on neuropsychological performance in
patients with chronic fatigue syndrome, multiple sclerosis, and
depression. Appl Neuropsychol 4:145–153.

Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox
AS, Davidson RJ, Oakes TR (2006): Motion correction and the
use of motion covariates in multiple-subject fMRI analysis.
Hum Brain Mapp 27:779–788.

Krupp LB, Serafin DJ, Christodoulou C (2010): Multiple sclerosis-
associated fatigue. Expert Rev Neurother 10:1437–1447.

Lemieux L, Salek-Haddadi A, Lund TE, Laufs H, Carmichael D
(2007): Modelling large motion events in fMRI studies of
patients with epilepsy. Magn Reson Imaging 25:894–901.

Mathiak K, Posse S (2001): Evaluation of motion and realignment
for functional magnetic resonance imaging in real time. Magn
Reson Med 45:167–171.

McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP,
Lublin FD, McFarland HF, Paty DW, Polman CH, Reingold
SC, Sandberg-Wollheim M, Sibley W, Thompson A, van den
Noort S, Weinshenker BY, Wolinsky JS (2001): Recommended
diagnostic criteria for multiple sclerosis: Guidelines from the
international panel on the diagnosis of multiple sclerosis. Ann
Neurol 50:121–127.

Phillips MD (2008): Functional faults: fMRI in MS. Neurology
70:248–249.

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE
(2012): Spurious but systematic correlations in functional

r Wylie et al. r

r 12 r



connectivity MRI networks arise from subject motion. Neuro-
image 59:2142–2154.

Satterthwaite TD, Wolf DH, Loughead J, Ruparel K, Elliott MA,
Hakonarson H, Gur RC, Gur RE (2012): Impact of in-scanner
head motion on multiple measures of functional connectivity:
Relevance for studies of neurodevelopment in youth. Neuro-
image 60:623–632.

Seto E, Sela G, McIlroy WE, Black SE, Staines WR, Bronskill MJ,
McIntosh AR, Graham SJ (2001): Quantifying head motion
associated with motor tasks used in fMRI. Neuroimage 14:284–
297.

Sorg C, Riedl V, Muhlau M, Calhoun VD, Eichele T, Laer L,
Drzezga A, Forstl H, Kurz A, Zimmer C, Wohlschlager AM
(2007): Selective changes of resting-state networks in individu-
als at risk for Alzheimer’s disease. Proc Natl Acad Sci USA
104:18760–18765.

Speck O, Hennig J, Zaitsev M (2006): Prospective real-time slice-
by-slice motion correction for fMRI in freely moving subjects.
MAGMA 19:55–61.

Sumowski JF, Chiaravalloti N, Deluca J (2009): Cognitive reserve
protects against cognitive dysfunction in multiple sclerosis.
J Clin Exp Neuropsychol 31:913–926.

Sumowski JF, Chiaravalloti N, Deluca J (2009): Cognitive reserve
moderates the negative effect of brain atrophy on cognitive ef-
ficiency in multiple sclerosis. J Int Neuropsychol Soc 15:606–
612.

Sweet LH, Rao SM, Primeau M, Durgerian S, Cohen RA (2006):
Functional magnetic resonance imaging response to increased

verbal working memory demands among patients with multi-
ple sclerosis. Hum Brain Mapp 27:28–36.

Thesen S, Heid O, Mueller E, Schad LR (2000): Prospective acqui-
sition correction for head motion with image-based tracking
for real-time fMRI. Magn Reson Med 44:457–465.

Tremblay M, Tam F, Graham SJ (2005): Retrospective coregistra-
tion of functional magnetic resonance imaging data using
external monitoring. Magn Reson Med 53:141–149.

Van Dijk KR, Sabuncu MR, Buckner RL (2012): The influence of
head motion on intrinsic functional connectivity MRI. Neuro-
image 59:431–438.

Weinberger DR, Mattay V, Callicott J, Kotrla K, Santha A, van
Gelderen P, Duyn J, Moonen C, Frank J (1996): fMRI applica-
tions in schizophrenia research. Neuroimage 4(3, Part 3):S118–
S126.

Welch EB, Manduca A, Grimm RC, Ward HA, Jack CR Jr, (2002):
Spherical navigator echoes for full 3D rigid body motion mea-
surement in MRI. Magn Reson Med 47:32–41.

Woods RP, Cherry SR, Mazziotta JC (1992): Rapid automated
algorithm for aligning and reslicing PET images. J Comput
Assist Tomogr 16:620–633.

Yoo SS, Choi BG, Juh R, Pae CU, Lee CU (2005): Head motion
analysis during cognitive fMRI examination: Application in
patients with schizophrenia. Neurosci Res 53:84–90.

Yuan W, Altaye M, Ret J, Schmithorst V, Byars AW, Plante E,
Holland SK (2009): Quantification of head motion in children
during various fMRI language tasks. Hum Brain Mapp 30:
1481–1489.

r Subject Motion and Sampling Bias r

r 13 r


