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Abstract
Medical images constitute a core portion of the information a physician utilizes to render
diagnostic and treatment decisions. At a fundamental level, this diagnostic process involves two
basic processes: visually inspecting the image (visual perception) and rendering an interpretation
(cognition). The likelihood of error in the interpretation of medical images is, unfortunately, not
negligible. Errors do occur, and patients’ lives are impacted, underscoring our need to understand
how physicians interact with the information in an image during the interpretation process. With
improved understanding, we can develop ways to further improve decision making and, thus, to
improve patient care. The science of medical image perception is dedicated to understanding and
improving the clinical interpretation process.

When people think about imaging in medicine, radiology is typically the first specialty that
comes to mind, and, in fact, that is where most of the image perception research has taken
place. However, medical imaging covers a much broader range of medical specialties,
including cardiology, radiation oncology, pathology, and ophthalmology. Pathology has
traditionally been limited to the glass-slide specimen images rendered by the microscope for
the pathologist to view. With the advent of digital slide scanners in recent years, however,
virtual slides viewed on computer displays are becoming more prevalent, not only for
telepathology applications, but also in everyday reading (Weinstein et al., 2009).
Ophthalmology has used images (35-mm film prints or slides) for years for evaluating such
conditions as diabetic retinopathy. However, digital acquisition devices and high-
performance color displays are increasingly being used by ophthalmology screeners—
especially those screening for diabetic retinopathy. Telemedicine has fostered an entirely
new area, in which medical images are being acquired, transferred, and stored to diagnose
and treat patients (Krupinski et al., 2002). Teledermatology, teleophthalmology, telewound/
burn care, and telepodiatry are all using images on a regular basis for store-and-forward
telemedicine applications. Real-time applications such as telepsychiatry, teleneurology, and
telerheumatology similarly rely on video images for diagnostic and treatment decisions.

With about a billion radiological imaging exams performed worldwide every year, radiology
is clearly the leader in medical imaging volume. There are a variety of exam types, including
projection X-ray images (e.g., bone, chest, mammography); dynamic X-ray exams (e.g.,
fluoroscopy); multislice exams, such as computed tomography (CT) and magnetic resonance
imaging (MRI); nuclear medicine; ultrasound; and, more recently, molecular imaging
(Thakur, 2009). The pervasiveness of medical imaging can be studied in a number of ways:
One approach is to look at how much money is spent yearly on healthcare and then divide
out the amount devoted to medical imaging (Beam, Krupinski, Kundel, Sickles, & Wagner,
2006). In Beam et al.’s analysis, data from 2004 from the Centers for Medicare and
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Medicaid Services showed that approximately 16% ($1.6 trillion) of the gross domestic
product (GDP) is allotted to national healthcare expenditures. Medicare expenditures
represent 17% of national healthcare expenditures, of which Part B (43%) accounts for the
nonfacility or physician-related expenditures. Approximately 8% (nearly $10 billion) of Part
B constitutes physician-based imaging procedures. Imaging also accounts for over 40% of
all hospital procedures reported in the discharge report, according to the Agency for
Healthcare Research and Quality. On the basis of Medicaid Part B spending alone, it could
be conservatively determined that imaging procedures comprise 8% of non-Medicaid Part B
health spending, so medical imaging in the U.S. alone is estimated to be about $56 billion,
or 0.5% of the GDP! For mammography alone, with 1 billion imaging exams performed
worldwide every year and an average of four images per exam, an average of 120 medical
image perception events take place every second!

It is impossible to cover every facet of medical image perception, but this article provides a
bit of a historical perspective and highlights some of the important areas where perception,
in particular, is the research focus. More detailed reviews of the field of medical image
perception can be found in The Handbook of Medical Image Perception and Techniques
(Samei & Krupinski, 2010) and The Handbook of Medical Imaging: Volume 1. Physics and
Psychophysics (Beutel, Kundel, & Van Metter, 2000).

Assessing Diagnostic Performance
Diagnostic accuracy refers to how well a system or test predicts the presence or absence of
a disease or health condition or how well it measures the extent or magnitude of that disease
or condition. Clearly, perception and cognition are at the core of the interpretation process
and, thus, impact diagnostic performance. The tools used to assess diagnostic performance
are, therefore, quite integral to the study of medical image perception. Evaluating diagnostic
performance typically involves statistical figures of merit, such as sensitivity, specificity,
positive and negative predictive values, and the receiver operating characteristic (ROC)
curve, with ROC being perhaps the most common. In the early 1950s, progress was made in
fields outside of medicine that have impacted system and observer-performance evaluation
in medical imaging. Based on principles from signal-detection theory, ROC analysis was
developed by researchers from such diverse fields as engineering, psychology, and
mathematics. Excellent reviews of the ROC techniques used in medical image perception
research, as well as of the unique contributions made to the development of new techniques
by the medical image perception community, can be found in Krupinski and Jiang (2008)
and in Chakraborty (2010), Hillis (2010), and Tourassi (2010).

These reviews already do an excellent job of summarizing the history of ROC analysis in
medical imaging and of describing the fundamental theory and methods, so they will not be
reviewed here. However, it is useful perhaps to highlight some of the important ways in
which ROC analysis in medical imaging differs from that in classical visual psychophysics.
First is the issue of target location. In classical psychophysics, test images typically contain
a single target, and the observer’s task is to report whether or not that target is present. In
medical imaging, this general indication of whether or not a given case/image contains a
lesion/target is often used, but researchers have acknowledged the fact that the clinical
reality is much different. Radiologists (and other clinicians interpreting different types of
medical images) generally need to indicate the location of the lesion. Location is important,
for example, if a biopsy needs to be done, as determined by the image interpretation. The
location information cannot be used by traditional ROC analysis, and its neglect can lead to
a loss of statistical power; also, differences among modalities, treatments, and other factors
may go undetected.
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To deal with this problem, three location specific approaches have been proposed. They are
the free-response paradigm (Bunch, Hamilton, Sanderson, & Simmons, 1978), the location
ROC paradigm (Starr, Metz, Lusted, & Goodenough, 1975; Starr, Metz, Lusted, Sharp, &
Herath, 1977; Swensson, 1996; Swensson & Judy, 1981), and the region-of-interest
paradigm (Obuchowski, Lieber, & Powell, 2000; Rutter, 2000). Chakraborty (1989, 2010),
Chakraborty and Berbaum (2004), and Chakraborty and Winter (1990), in particular, have
made significant advances in free-response ROC (FROC), alternative free-response ROC
(AFROC), and jackknife AFROC (JAFROC) methodologies for evaluating observer
performance with location data included in the ROC analysis. Each approach has been
validated and subsequently used in a variety of imaging research projects.

The second important difference is that, in classical psychophysics, there is the possibility of
having a multiple- instead of a single-target report. Clinically, images can have multiple
lesions either of the same type or of different types. Figure 1 shows a chest image with two
target reports made by a radiologist searching for lung tumors. In this case, the upper circle
represents a true tumor (true positive) and the bottom circle represents a false positive (false
alarm) report (not a true tumor). Traditional ROC analysis cannot deal with multiple reports
per image or with false positives on the same image as a true positive and/or false negative
(miss). The FROC, AFROC, and JAFROC techniques developed by Chakraborty and
colleagues (Chakraborty, 1989, 2010; Chakraborty & Berbaum, 2004; Chakraborty &
Winter, 1990) were designed to address this issue. In particular, the JAFROC method has
been gaining in popularity in medical imaging research.

A third area where medical imaging performance analysis differs from conventional ROC is
the number of possible underlying distributions or discriminations that must be made.
Conventional ROC has two possible states: target-present or target-absent. In medical
imaging, the situation can be more complex. For example, in mammography, there can be
normal images (no target lesion), images with a malignant mass or microcalcification
cluster, and images with a benign mass or microcalcification cluster. Instead of the
straightforward two-class problem, it is now a three-class problem. Multiclass problems
exist as well, and, in recent years, researchers such as He and Frey (2009), He, Gallas, and
Frey (2010), and Edwards and Metz (2007) have been investigating the theory and practical
application of the multiclass ROC problem in medical imaging applications.

Images and Image Quality
As has already been noted, most of the work in medical image perception has been done in
the field of radiology. What makes radiology images unique? There are a number of factors
that make them unique. The main difference between projection radiographic images (e.g.,
chest and bone X-rays) and pictures, paintings, photographs, and other types of images
people are familiar with is that a radiographic image is a translucent, 2-D representation of
the 3-D anatomy, created from the shadows of the absorption pattern of X-rays passing
through the body. The detection and recognition of lesion targets is difficult because the
various anatomical structures overlap in the image, and the radiologist must translate this 2-
D image into a 3-D mental representation in order to properly disembed and localize
structures and lesions. This overlap of structures has a camouflaging effect. Abnormalities,
such as tumors, do not simply grow in a vacuum or carve out a space in the anatomy. They
grow within and around the existing anatomy, and many of their features can be very similar
in appearance and structure to normal anatomic variations. Figure 2 shows a portion of a
mammogram in which a mass has developed, clearly illustrating how lesions grow within
the existing anatomy. The malignant mass is the white blob in the circle, and the other white
structures in the image represent normal breast tissue, showing how normal and abnormal
structures often look very similar. An examination of Figure 1 also shows how the body
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structures in a chest image overlay each other and have the potential to camouflage lesion
targets.

Computed tomography (CT) and magnetic resonance imaging were developed to help get
around this 2-D/3-D problem, but they have their own limitations. These modalities acquire
numerous images (sometimes in the thousands) that are thin slices through the anatomy (see
Figure 3). This reduces the amount of anatomic overlap, but now the radiologist needs to
view all of the slices in order to detect any abnormalities, while trying to “fuse” them into a
single mental representation of the entire 3-D anatomic region being imaged. For example,
in Figure 3, the two dark areas with white speckles in the central area are the lungs (dark)
with blood vessels (white speckles) running through them. As the radiologist views
subsequent slices, a picture of the 3-D lung structure evolves, and the linear extent of the
individual blood vessels can be discerned. In a single slice, however, it is difficult to tell
whether a single white speckle is a tumor visible in only that slice or a blood vessel that will
extend beyond that slice through the others.

The topic of how to measure image quality and its relation to the interpretation of images
has a long history in medical image perception. Although simple physical measures, such as
signal-to-noise ratio, can be used as metrics of image quality, these types of measures rarely
take into account the observer or the task that needs to be performed using the images. In
their Foundations of Image Science, Barrett and Myers (2003) provide an excellent treatise
on the topic of medical image quality assessment and the importance of objective task-based
metrics. The book presents a comprehensive treatment of the principles, mathematics, and
statistics needed to understand and evaluate imaging systems, with particular emphasis on
the use of mathematical model observers (e.g., ideal observer models). In addition, Abbey
and Eckstein (2010), Kupinski (2010), and Burgess (2010a, 2010b, 2010c) provide detailed
information on observer models and the image quality metrics. The Burgess chapters, in
particular, provide a historical account of the research done on characterizing the human
visual system, with particular emphasis on the role of noise and signal detection theory.

Errors in Interpretation
Medical imaging technologies are extremely varied, making the study of the interpretation
of the images produced quite varied as well, and a bit of a challenge. Images can be
grayscale or color, high-resolution or low-resolution, hard copy or soft copy, uncompressed
or compressed (lossy, where data are actually eliminated and not recovered in the
compressed version, or lossless, where all of the data are retained), acquired with everything
from sophisticated dedicated imaging devices to off-the-shelf digital cameras. Because there
is so much imaging in modern medicine, significant attention and interest have been paid to
the technological aspects of imaging operations (e.g., hardware and software). Less
appreciated are the perceptual and cognitive processes underlying interpretation (Manning,
Gale, & Krupinski, 2005) and the fact that there is significant inter- and intraobserver
variation in the interpretation of medical images (Beam, Conant, & Sickles, 2003; Beam,
Conant, Sickles, & Weinstein, 2003).

Medical images need to be interpreted because they are not self-explanatory. Medical
images vary considerably, even within a particular exam type. Anatomical structures can
camouflage features of clinical interest. For example, a lung tumor may be partially covered
by a rib or hidden behind the heart. Lesions can have very low prevalence, affecting the
decision-making process. For example, in mammography screening, there is typically one
cancer detected per every 1,000 cases read. Essentially, there are notable variations from
case to case, with a multiplicity of abnormalities and normal features that the interpreter
needs to be mindful of.
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These complexities can lead to interpretation errors. Clinicians do make mistakes (Berlin,
2005, 2007, 2009). In radiology alone, estimates suggest that, in some areas, there may be
up to a 30% miss rate and an equally high false positive rate. Errors can also occur in the
recognition of an abnormality (e.g., whether a lesion is benign or malignant, or whether it is
pneumonia or an alveolar collapse known as atelectasis). Errors can have significant impact
on patient care, causing delays or misdiagnoses. The contribution of the inherent limitations
of human perception to these errors is the focus of much research, but it is still not very well
understood or appreciated. Image perception is likely the most prominent, yet least
appreciated, source of error in diagnostic imaging. The frequency of image reading errors in
malpractice litigation is just one example of this ignorance. Error is just one reason to study
medical image perception.

Causes of Error
Before we can develop ways to avoid or ameliorate errors, it is necessary to understand the
nature and causes of interpretation error. The seminal work in this area was begun back in
the 1940s, when a groundbreaking series of studies was carried out to determine which of
four radiographic and fluoroscopic techniques was best for screening tuberculosis (Birkelo
et al., 1947; Garland, 1949). The expectation was that one imaging technique would be
clearly superior to the others; but the degrees of intra- and interobserver variation were
found to be so large that it was impossible to determine which technique was optimal.
Additional studies demonstrated a surprisingly large amount of reader variation—even when
radiologists were asked to do something as straightforward as describing the physical
characteristics of radiographic shadows (Newell, Chamberlain, & Rigler, 1954). From these
and related studies, two critical problems were obvious: Systems were needed for improving
radiologists’ performance and reducing interpretation variability, and methods had to be
developed for evaluating systems and their impact on observer performance. These findings
led to the dedicated study of medical perception in radiology and the critical interplay
between the radiologist, the image, and image quality.

Soon after these early studies observing variability and the resulting errors in the
interpretation of radiographic images, researchers sought to understand their sources, in
order to rectify or, at least, reduce them. In the early 1960s, Tuddenham and Calvert
(Tuddenham, 1962, 1963; Tuddenham & Calvert, 1961) had radiologists shine a spotlight
with a variable diameter at a series of radiographs printed to paper. They were instructed to
adjust the diameter of the spotlight to no larger than what was needed for comfortable and
accurate interpretation. They were then instructed to use the spotlight to search the images.
These spotlight paths were recorded with a 16-mm camera, and the paths were used as a
surrogate for assessing the search patterns. They found considerable variation between the
observers, as well as intrapersonal variation. With respect to errors (i.e., missing the lesion
targets), the spotlight patterns suggested that lesions may be missed due to inadequate search
of the images (Tuddenham & Calvert, 1961).

Kundel and colleagues (Kundel, Nodine, & Carmody, 1978) built upon these findings and
used more sophisticated eye position recording to study visual search. These studies
culminated in a further classification of types of omission errors (i.e., misses) that has
endured into modern medical image perception research. In Kundel et al.’s (1978) study, eye
position was recorded while 3 radiologists and 1 nonexperienced observer experienced in
searching for chest tumors read a series of 10 chest films with a single simulated 1-cm
tumor. The useful visual field was assumed to have a radius of 2.8°. The eye-position data
revealed that the tumors that were reported (true positives) had an initial dwell time of 0.56
sec (SD = 0.04). Taking 2 SDs below the mean, the threshold for detecting a tumor was 0.48
sec.
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Following the analysis of these search data, false negative omission errors were classified
into three categories on the basis of visual dwell times. Approximately one third of the
omission errors fall into each category. The first category comprises search errors: The
radiologist never fixates on the lesion within the useful visual field and does not report it
(see Figure 4). The second type of error is the recognition error: Lesions are fixated, but
below the threshold (0.48 sec) considered sufficient to recognize the ambiguity in the image.
Finally, decision errors occur when the radiologist fixates the lesion for long periods of time
(over the 0.48-sec threshold), but either does not consciously recognize the features or
actively dismisses them (see Figure 5). This breakdown of errors has been noted in chest
(Kundel, Nodine, & Krupinski, 1989), bone (Hu, Kundel, Nodine, Krupinski, & Toto, 1994;
Lund, Krupinski, Pereles, & Mockbee, 1997), and mammography images (Krupinski, 1996;
Nodine, Mello-Thoms, Kundel, & Weinstein, 2002). Minor modifications in the threshold
have been used and reflect the nature of the image and task being studied.

As has already been noted, interpretation errors can be caused by a host of psychophysical
processes. Abnormalities can be camouflaged by normal structures (i.e., anatomical noise),
which has been estimated to affect lesion detection threshold by an order of magnitude
(Samei, Flynn, & Kearfott, 1997). Visual search, necessitated by the limited angular extent
of the high-fidelity foveal vision of the human eye, can also contribute to errors. It is
generally agreed upon that interpretation is preceded by a global impression or gist, and
visual search then moves the eyes around the image to closely examine image details
(Nodine & Kundel, 1987). Figure 6 shows a typical search pattern of someone who detects
the lesion target very quickly and with a single fixation.

Visual search studies have also highlighted the role of peripheral vision during
interpretation, with interplay between foveal and peripheral vision as the observer scans the
scene (Kundel, 1975). These and other studies (e.g., Hu et al., 1994; Krupinski, 1996; Lund
et al., 1997; Manning, Ethell, & Donovan, 2004) have demonstrated that there are
characteristic dwell times associated with correct and incorrect decisions and that these
times are influenced by the nature of the diagnostic task and idiosyncratic observer search
patterns (Kundel, 1989). True and false positives tend to be associated with longer dwell
times than false negatives, which, in turn, tend to have longer dwell times than true
negatives. The fact that about two thirds of missed lesions attract visual scrutiny has led to
investigations that have successfully used dwell-time data to feed these areas of visual
interest back to radiologists, resulting in significant improvements in detection performance
without associated increases in false positives (Krupinski, Nodine, & Kundel, 1998; Nodine
et al., 1999).

Satisfaction of search (SOS) can also contribute to errors. In SOS, once an abnormality is
detected and recognized, it takes additional diligence to look for other possible abnormalities
within an image (Berbaum, Franken, Caldwell, & Schartz, 2010; Smith, 1967; Tuddenham,
1962, 1963). Sometimes, this extra effort is not taken, and subsequent lesions in the same
image or case are missed. Estimates of SOS errors vary, but they range from one fifth to one
third of misses in radiology and possibly as high as 91% in emergency medicine (for a
review, see Berbaum et al., 2010). Berbaum and colleagues (Berbaum, Dorfman, Franken, &
Caldwell, 2000; Berbaum et al., 2010) have studied this problem in depth and found that
premature termination of search is generally not the root cause of SOS; rather, faulty pattern
recognition and/or faulty decision making seem to be the more likely culprits.

Image Quality and Perception
Image quality can also contribute to errors. Thus, it is important to understand how best to
assess image quality and its impact on perception in order to optimize quality and minimize

Krupinski Page 6

Atten Percept Psychophys. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



error (Krupinski & Jiang, 2008). Studies have focused on the impact of image acquisition,
imaging hardware, image processing, image display, and reading environment on image
quality and diagnostic accuracy.

Is diagnostic accuracy or reader efficiency improved when the display is optimized? It is
impossible to review all of the studies on display technology and medical image perception,
but a few representative examples on the more important display properties are reviewed.
Early efforts in this area focused on comparing film with soft-copy displays, with an
emphasis on measuring diagnostic accuracy and visual search behaviors, as measured using
eye position recording techniques (i.e., display review; see Krupinski & Kallergi, 2007). The
transition from film to soft-copy reading resulted in the examination of a number of physical
display properties to determine whether they influence diagnostic accuracy and visual search
efficiency. It was found that increased display luminance and a perceptually linearized
display do lead to better diagnostic accuracy and more efficient visual search. The
effectiveness and use of image processing and the role reader’s experience have also been
found to play important roles in the interpretation of medical images (i.e., expertise review;
see Nodine & Mello-Thoms, 2010).

More recently, Saunders, Baker, Delong, Johnson, and Samei (2007) examined the effects of
different resolution and noise levels on task performance in digital mammography. Results
with human observers showed that decreasing display resolution had little effect on
classification accuracy and individual diagnostic task performance, but increasing noise
caused classification accuracy to decrease by a statistically significant 21% as the X-ray
dose to the breast went to one quarter of its normal clinical value. These noise effects were
most prominent for the tasks of microcalcification detection and mass discrimination. It was
concluded that quantum noise appears to be the dominant image quality factor in
mammography, that it is perceptible, and that it affects interpretation accuracy.

Radiologists are currently asking another important question: What bit depth is required in a
display? This is an important question from a perceptual point of view, since it relates
directly to visual capacity: Exactly how many gray levels can we perceive, and does it
always matter? Most commercial and medical-grade monitors manufactured today display
only 8 bits (256 gray levels) of data. This is sufficient for medical image interpretation tasks
in which the acquired data are 8 bits or less, but many medical images are acquired at higher
bit depths (e.g., 12–16 bits, or 4,096–6,553 gray levels; Chunn & Honeyman, 2000).
Because of this disparity, all acquired gray levels cannot be displayed at once, even with
high-performance mammography displays with 1,024 levels of gray. The result is a
potentially significant loss of information during the diagnostic interpretation process, when
window/level is not utilized, and in the potential for artifacts to be introduced when down-
sampling images to 8-bit depth. Additionally, the uses of window and level to manipulate
the displayed gray levels can slow down the interpretation process, adversely affecting
workflow.

From a perceptual perspective, higher bit-depth displays may or may not improve
performance. Clinicians take in a lot of information during the initial view of an image (i.e.,
the gestalt or global percept). It is possible that, if more gray levels are available in this
initial view, the initial impression may yield more information. More information may
reduce the need for excessive windowing and leveling, reducing the time needed by the
clinician to render a diagnosis. However, evidence indicates that the human visual system
can detect only about 1,000 gray levels (far below 4,096–6,553 gray levels) at luminance
levels currently used in medical-grade monitors; consequently, displaying more gray levels
may not be useful (Barten, 1992, 1999).
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A recent study (Krupinski et al., 2007) that examined bit depth illustrates a typical
perception study on the impact of display on observer performance in radiology. The study
used three sets of 8-bit and 11-bit 3-MP, monochrome, portrait-mode, medical-grade LCD
monitors. One hundred direct digital radiography chest images (General Electric Revolution
XQ/I System) were used: 50 nodule-free cases and 50 cases with subtle solitary pulmonary
nodules (verified by CT). Three study sites participated, each with 6 radiologists who
viewed all 100 images twice: once on the 8-bit monitor and once on the 11-bit monitor. The
observers decided whether or not a nodule was present, then gave their confidence in that
decision. The confidence data were analyzed using the multiple-reader multiple-case ROC
technique (Dorfman, Berbaum, & Metz, 1992). Window/level use during interpretation was
recorded, as was total viewing time. Visual search efficiency was measured on a subset of
images at one site using the 4000SU eyetracker (Applied Science Labs, Bedford, MA).
Figure 7 shows an observer in the eye position recording setup. The eye-position data
characterized time to first fixate a lesion, total search time, and dwell times associated with
each decision type (true and false, positive and negative).

The study revealed no statistically significant difference in ROC area under the curve (Az)
performance, as a function of 8-bit versus 11-bit depth. Average Az for the 8-bit display
was .8284, and average performance for the 11-bit display was .8253. There were no
statistically significant differences between the 8-bit and 11-bit displays for any of the three
systems. There were no differences in the percentages of cases on which window/level was
used. Preference for window/level seemed to be an individual trait: Some readers used it,
and some did not, but each individual reader used it about the same with both displays.

Figure 8 shows a typical search pattern from the eye-position part of the study. Total
viewing times were significantly shorter for the 11-bit than for the 8-bit displays. Time to
first hit the nodules during search was shorter with the 11-bit than with the 8-bit display for
true positive and false negative decisions, although the differences did not reach statistical
significance.

Cumulative dwell times were also examined for true positive, false negative, false positive,
and true negative decisions. For the 11-bit display, cumulative dwell times for each decision
category were lower than they were for the 8-bit display, and the differences for true
negative decisions reached significance. Although search efficiencies may not seem
important, search inefficiency adds up over an entire day’s worth of reading numerous
images, and the result is fewer images being read in the same amount of time, as compared
with displays that have been optimized to the user’s visual-system capabilities. The present
study is just one of many that have evaluated the optimization of displays for the
interpretation of medical images. Clearly, both diagnostic accuracy and interpretation
efficiency are important variables to consider when optimizing displays for medical
imaging.

Where Can Psychology Influence Medical Image Perception?
A very interesting area where psychology research and theory could be of significant help to
medical imaging research and clinical practice is color perception. Color displays are
becoming an important modality, both in radiology and in other clinical specialties, such as
dermatology, pathology, and ophthalmology, where the object and, hence, image data are
inherently in color.

For example, we conducted a teledermatology study using 308 cases, each diagnosed in
person and then via digitally acquired images displayed on a color monitor (Krupinski et al.,
1999). It was found that there was 85% concordance between in-person and digital
interpretation; the dermatologists generally rated image color as being excellent or good.

Krupinski Page 8

Atten Percept Psychophys. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



There was a clear relationship between rated image color quality and performance. Cases
rated as having only fair or poor color quality on the display monitor resulted in significantly
more differences in diagnostic accuracy for the digital images than for the gold-standard, in-
person diagnoses. The development of color calibration standards, guided by knowledge
about color properties and color perception, would be of significant benefit to the medical
imaging community.

In pathology, display considerations involve another unique aspect of medical image
perception: What draws attention, and can that information be used to design better, more
efficient display systems? For example, digitized pathology slides, or virtual slides, are very
large. A single image can require as much as 1 GB of storage space, depending on the size
of the scanned area, and the challenge is to display all of this information to the pathologist
in an efficient manner, so that a correct diagnosis can be rendered. In a recent perception
study (Krupinski et al., 2006), we used eyetracking to determine where pathologists initially
look at a virtual slide. Is search random, or are the eyes attracted to regions of diagnostic
interest? The goal was to determine whether there is a way to preselect diagnostically
relevant regions of interest for initial display, leaving the rest of the image off the display,
unless it is actively accessed.

For this study, a set of 20 breast-core biopsy surgical pathology cases (half benign and half
malignant) were digitized using the DMetrix DX-40 virtual slide processor. Low-
magnification images (i.e., those for which the full slide was not zoomed to any particular
region; average size, 39.55 × 23.4 cm) were shown on a 9-MP color LCD (IBM T221).
Three pathologists, 3 pathology residents, and 3 medical students (postsophomore fellows)
were observers. Their eye position was recorded while they viewed the slides, and they were
told to select the top three locations that they would want to zoom onto if they were going to
view the image in greater detail in order to render a diagnostic decision. Figure 9 shows a
typical search pattern generated by an experienced pathologist, and Figure 10 shows one
generated by a typical resident.

Two analyses were carried out. The first determined whether the locations selected were
common to more than 1 observer or were selected by only 1 observer. The second analysis
looked at all marked locations to determine whether they contained diagnostically relevant
information. If only 1 person marked a location, it was considered sporadic, and locations
marked by more than 1 person were considered common (see Figure 11). There were
significantly more common than sporadic locations marked per image. On average, there
were 4.40 common locations per image and 1.45 sporadic locations per image. The
pathologists, residents, and medical students selected 20%, 43%, and 37% of the sporadic
locations, respectively. To determine whether the preferred zoom locations were clinically
meaningful, a senior pathologist reviewed each location. Ninety-two percent contained
diagnostically relevant information (85% of the malignant lesions and 95% of the benign
lesions). For areas without relevant information, 55% were selected by medical students,
36% by residents, and 10% by pathologists.

The pathologists viewed each image for significantly less total time (M = 4.471 sec) than did
the residents (M = 7.148 sec) or the medical students (M = 11.861 sec). It is clear that the
preferred zoom locations were identified very quickly. Although all of the observers were
able to extract sufficient information in the initial global impression and, through peripheral
vision, to significantly reduce the need for examining all of the tissue in foveal vision, the
experienced pathologists were the most efficient.

One of the problems in using digital pathology today is that it takes pathologists
significantly longer to navigate through the images than with the traditional light microscope
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(Weinstein et al., 2009). Thus, incorporating these types of data with knowledge about
visual processing and attention mechanisms into hardware and software designs could
dramatically influence the efficiency with which pathologists view images. In a similar vein,
if we could improve our understanding of what attracts attention and visual processing
resources in medical images in general, it would help those who are developing computer
aids for automatically scanning, analyzing, and categorizing information in medical images.

Human Factors
The ergonomic aspects of interpreting medical images also play a very important role in the
interpretation process. Physicians in general and radiologists in particular are required to
read more and more cases with more and more images per case (Bhargavan & Sunshine,
2005; Carroll, 2003; Lu, Zhao, Chu, & Arenson, 2008; Meghea & Sunshine, 2007; Mukerji,
Wallace, & Mitra, 2006; Nakajima, Yamada, Imamura, & Kobayashi, 2008; Sunshine &
Maynard, 2008; Thind, Barter, & Service Review Committee, 2008). Shortages in
physicians—especially specialists in rural and medically underserved areas—compound the
problem. Physicians are working longer hours than ever before, and concerns have been
raised regarding fatigue and whether it adversely affects diagnostic accuracy.

A more recent problem is the reliance on digital imaging. The problem in radiology is that
even the best medical-grade displays available have less contrast than traditional
radiographic film, and they have reduced spatial resolution, but it is this information that the
visual system uses to regulate image focus, single vision, and direction of gaze. Digital
displays may increase strain on radiologists’ oculomotor systems, overworking the eyes and
resulting in eyestrain (known clinically as asthenopia) (Ebenholtz, 2001; MacKenzie, 1843).

Eyestrain has not been very well studied in medical imaging, but an early self-report study
has shown that radiologists do experience more severe symptoms of eyestrain, blurred
vision, and difficulty focusing as they read more imaging studies (Krupinski & Kallergi,
2007). A short survey was developed for assessing the fatigue of radiologists at different
times during the day. The radiologists were asked about symptoms of visual and postural
fatigue, the types and number of cases they had been interpreting, and total reading time for
that day. The survey was given to radiologists and residents at various times in the morning
and afternoon over a number of days.

There was a significant positive correlation (z test) between time spent reading cases and
severity of visual fatigue symptoms (see Table 1).

Vertinsky and Forster (2005) also found that 36% of radiologists reported eyestrain as a
function of length of work days, the number of breaks, screen flicker, and imaging modality.
Goo et al. (2004) found that the reading environment—increased ambient light and monitor
luminance levels—led to reports of greater subjective visual fatigue. Eyestrain occurs when
the oculomotor systems work to maintain accommodation, convergence, and direction of
gaze, and accommodative asthenopia is caused by strained ciliary muscles, resulting in
physical symptoms like blurred vision, headaches, and pain in the eyes.

One recent study (Krupinski & Berbaum, 2010) measured the impact of visual fatigue by
assessing subjective fatigue symptoms, the ability to keep the eye focused on the display,
and diagnostic accuracy. Twenty radiology residents and 20 radiologists participated. The
images contained 60 bone radiograph cases (half with fractures) viewed before and after a
day of clinical reading. The readers indicated whether a fracture was present or absent and
rated their confidence in that decision. Viewing time was automatically recorded. Diagnostic
accuracy was measured using area under the proper binormal curve (Berbaum et al., 2007;
Dorfman & Berbaum, 2000; Metz & Pan, 1999; Pan & Metz, 1997; Pesce & Metz, 2007).
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Error in visual accommodation was measured before and after each test session, using the
WAM-5500 Auto Ref/Keratometer (Grand Seiko, Hiroshima, Japan), which collects
refractive measurements and pupil diameter measurements every 0.2 sec. The WAM-5500
records accommodation and, hence, any shifts or errors in accommodation as a function of
target distance. The amount of error is a function of a number of variables, such as target
distance, visual status of the observer, and whether the observer’s vision is corrected. To
record accommodation, the subject sits in front of the system with their chin in a chinrest
and their forehead against a headrest to maintain a stable position. An image of the eye is
obtained by the system optics, and the operator aligns the eye with a reticle mark using a
joystick. Once the eye is focused properly, measurement begins with the press of a button.

The participants also completed the Swedish Occupational Fatigue Inventory (SOFI)
(Åhsberg, 2000) and the Oculomotor subscale of the Simulator Sickness Questionnaire
(SSQ) before each session (Kennedy, Lane, Berbaum, & Lilienthal, 1993). The SOFI
consists of 20 expressions that are evenly distributed on five latent factors: lack of energy,
physical exertion, physical discomfort, lack of motivation, and sleepiness. Physical exertion
and physical discomfort are considered physical dimensions of fatigue. Lack of motivation
and sleepiness are considered primarily mental factors, and lack of energy is a more general
factor that reflects both physical and mental fatigue. Lower scores indicate lower levels of
perceived fatigue. SOFI does not measure visual fatigue, so it was complemented by the
Oculomotor subscale.

Data were collected twice for each observer: early (once in the morning, prior to any
diagnostic reading activity) and late (once in the late afternoon, after a day of diagnostic
reading). Fitting the proper binormal model to the rating data from the 60 cases for each
reader in each reading condition and analyzing the resulting Az with an ANOVA with
independent variables for institution, training, and reading session time of day, I found a
significant drop in detection accuracy for late reading. Average Az was .885 for early
reading and .852 for late reading [F(1,36) = 4.15, p = .0491].

On average, in terms of reading time, each case took 52.1 sec in the morning and 51.5 sec in
the evening. Faculty took an average of 50.7 sec, and residents took an average of 52.8 sec.
There were no significant differences between morning and evening viewing times for either
the radiologists or the residents. The only main effect was the significantly greater reading
time for normal examinations (56.7 sec) than for examinations with fractures (46.9 sec)
[F(1,36) = 18.84, p = .0001], which is in line with other studies that have found that it
typically takes longer to read a normal exam than one with a finding.

Figure 12 shows the mean SOFI ratings. Using an ANOVA, it was found that there was a
statistically significant difference for lack of energy as a function of session time of day
[F(1,76) = 16.19, p = .0001], but not for experience. Both radiologists and residents reported
greater lack of energy in the evening. There was a statistically significant difference for
physical discomfort as a function of session [F(1,76) = 5.091, p = .0269], but not for
experience. For sleepiness, there was a statistically significant difference as a function of
session [F(1,76) = 7.761, p = .0067], but not for experience. There were no statistically
significant differences as a function of either session or experience for physical exertion. For
motivation, there were also no statistically significant differences as a function of either
session or experience. There were no statistically significant differences on any of the
factors as a function of gender.

The scores from the SSQ Oculomotor subscale questions were averaged and analyzed with
an ANOVA as a function of session and experience (Figure 12). Again, low scores indicated
lower levels of perceived oculomotor strain. There was a statistically significant difference
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in perceived oculomotor strain as a function of session [F(1,75) = 20.39, p < .0001], but not
as a function of experience [F(1,75) = 0.99, p = .32].

Visual accommodation was measured using two targets: an asterisk (recommended target)
and a bone fracture (a more realistic target for radiologists). There was significantly greater
accommodative error after the workday with both the fracture targets (−1.16 diopters late in
the day vs. −0.72 diopters for early in the day) and the asterisk targets (−1.04 diopters late in
the day vs. −0.64 diopters early in the day). This suggests that readers are more myopic after
their workday. A significant pre-versus-post × attending-versus-resident interaction showed
that, whereas the attending radiologists tended to have less accommodative error after the
reading session than before, residents tended to have more.

Radiologists are clearly fatigued visually by their clinical reading workday. The present
study suggests that radiologists are less accurate after a day of reading diagnostic images
and that their ability to focus on the display screen is reduced because of myopia. Again,
psychology in areas such as perception, cognition, and human factors could contribute
significantly to improving our understanding of the factors that have an impact on the
human eye–brain system and of what measures can be taken to improve the environment
and conditions in which medical images are interpreted.

The Medical Image Perception Society
Where can this cross-fertilization of fields take place? Both psychology and medical
imaging fields have their own meetings and some of them even have small sessions devoted
to medical image perception. These sessions, however, are usually only attended by one
group or the other; both offer little opportunity for interaction. The Medical Image
Perception Society (MIPS; www.mips.ws/) was created to solve this problem. MIPS is
composed of scholars studying the processes of perception and recognition of information in
medical images. Members include physicians, psychologists, statisticians, physicists,
engineers, and others in this growing research community. Members come from universities,
hospitals, private companies, and government agencies (e.g., NIH, FDA). MIPS holds a
scientific conference every 2 years to exchange current research and to conduct tutorials and
workshops. The meeting promotes medical image perception research and offers students a
chance to interact with senior perception researchers.

MIPS recently formulated a new set of research goals (Krupinski & Berbaum, 2009) that can
also serve as a springboard for increased collaboration between psychology and medical
imaging. Continued investigation of the complex perceptual recognition and interpretation
processes involved in medical image perception is needed if we are to discover the most
useful and effective presentation of imaging information to physicians in order to improve
their detection and classification of disease.

The goals that MIPS has developed—detection and discrimination of abnormalities;
cognitive and psychophysical processes; perception errors; search patterns; human and ideal
observer models; computer-based perception (CAD and CADx); impact of display and
ergonomic factors on image perception and performance; the role of image processing on
image perception and performance; and assessment methodologies—stem from the core
areas of research that medical image perceptionists are involved in. Clearly, there is
significant overlap between psychology and medical image perception and likely much that
they can learn from each other in the future.

The ultimate goal of medical image perception research is to understand and model the
human perceptual and decision-making processes, so that better hardware and software can
be developed for the presentation of medical image data to physicians. It is to provide them
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not necessarily with beautiful images, but with images that allow them to render accurate
and timely interpretations. The study of medical image perception and the general
interaction of physicians, psychologists, engineers, physicists, and many others remain
critical elements of improving health care.
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Figure 1.
A typical projection X-ray chest image with two marks made by a radiologist indicating
locations of suspected tumors. The upper circle represents a true tumor (true positive), and
the bottom circle represents a false positive (false alarm) report (not a true tumor).
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Figure 2.
A portion of a mammogram in which a malignant mass (white blob within the circle) has
developed, clearly illustrating how lesions grow within the existing anatomy. The other
white structures in the image represent normal breast tissue, illustrating how normal and
abnormal structures often look very similar.
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Figure 3.
A typical CT slice through the chest. Imagine the patient lying flat on a table, so that the
bottom of the image is his or her back and the white structures that look like a “Y” are the
spine. The black areas in the center with the white speckles are the lungs, and the white
speckles are blood vessels going through the plane of the paper. The gray outer areas
represent mostly muscle and body fat.
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Figure 4.
Example of a search error. The tumor is in the large circle on the lung on the right. The other
circles indicate the locations where the eyes landed and dwell time was built up. The lines
show the eyetracking record. Larger circles indicate longer dwell times. The lines indicate
the order in which the fixation clusters were generated. The observer never fixated the tumor
and did not report it.
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Figure 5.
Example of a decision error. The tumor is in the large oval near the top of the lung on the
right. There are numerous fixations on the tumor, but the observer failed to report the tumor.
The right lung (left side of the image) is missing. Since the task was to search for lung
tumors, search on that side was minimal.
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Figure 6.
Typical search pattern of someone who detects the lesion target very quickly. The observer
started on the left side of the image, then detected the nodule on the right side and quickly
scanned to that side with a single fixation on the tumor before terminating search and
reporting the tumor as present. The total search time was 2.4 sec.
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Figure 7.
An observer in the eye position recording setup.
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Figure 8.
A typical search pattern of a radiologist searching a chest image for nodules. The circles
represent fixations (where the size reflects dwell: increased size = longer dwell), and the
lines indicate the order in which the fixations were generated.
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Figure 9.
Typical search pattern of an experienced pathologist.
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Figure 10.
Typical search pattern of a pathology resident.
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Figure 11.
A typical pathology image with preferred zoom locations marked by the pathologists (dark
gray), residents (medium gray), and postsophomore fellows (light gray). Triangles indicate
the first location preferred, squares the second preferred, and circles the third preferred. The
single dot on the right is considered a “sporadic” location; the clusters of dots on the left
piece of tissue are all considered “common” locations.
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Figure 12.
Mean Swedish Occupational Fatigue Inventory and Simulator Sickness Questionnaire (SSQ)
ratings for faculty and residents early and late in the day.
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Table 1

Correlations Between Subjective Ratings of Visual Fatigue, Number of Cases Read, and Reading Time

Form of
Visual Fatigue

Number of
Cases Reading Time

R P R P

Difficulty focusing .45 <.001 .39 <.005

Blurred vision .42 <.002 .34 <.020

Eyestrain .48 <.001 .43 <.002

Headache .43 <.002 .24 .090
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