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Abstract
Linear mixed-effects models (LMEMs) have become increasingly prominent in psycholinguistics
and related areas. However, many researchers do not seem to appreciate how random effects
structures affect the generalizability of an analysis. Here, we argue that researchers using LMEMs
for confirmatory hypothesis testing should minimally adhere to the standards that have been in
place for many decades. Through theoretical arguments and Monte Carlo simulation, we show that
LMEMs generalize best when they include the maximal random effects structure justified by the
design. The generalization performance of LMEMs including data-driven random effects
structures strongly depends upon modeling criteria and sample size, yielding reasonable results on
moderately-sized samples when conservative criteria are used, but with little or no power
advantage over maximal models. Finally, random-intercepts-only LMEMs used on within-subjects
and/or within-items data from populations where subjects and/or items vary in their sensitivity to
experimental manipulations always generalize worse than separate F1 and F2 tests, and in many
cases, even worse than F1 alone. Maximal LMEMs should be the ‘gold standard’ for confirmatory
hypothesis testing in psycholinguistics and beyond.
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"I see no real alternative, in most confirmatory studies, to having a single main
question—in which a question is specified by ALL of design, collection,
monitoring, AND ANALYSIS."

Tukey (1980), “We Need Both Exploratory and Confirmatory” (p. 24, emphasis in
original).

The notion of independent evidence plays no less important a role in the assessment of
scientific hypotheses than it does in everyday reasoning. Consider a pet-food manufacturer
determining which of two new gourmet cat-food recipes to bring to market. The
manufacturer has every interest in choosing the recipe that the average cat will eat the most
of. Thus every day for a month (twentyeight days) their expert, Dr. Nyan, feeds one recipe
to a cat in the morning and the other recipe to a cat in the evening, counterbalancing which
recipe is fed when and carefully measuring how much was eaten at each meal. At the end of
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the month Dr. Nyan calculates that recipes 1 and 2 were consumed to the tune of 92.9±5.6
and 107.2±6.1 (means ± S Ds) grams per meal respectively. How confident can we be that
recipe 2 is the better choice to bring to market? Without further information you might
hazard the guess “somewhat confident”, considering that one of the first statistical
hypothesis tests typically taught, the unpaired t-test, gives p = 0.09 against the null
hypothesis that choice of recipe does not matter. But now we tell you that only seven cats
participated in this test, one for each day of the week. How does this change your confidence
in the superiority of recipe 2?

Let us first take a moment to consider precisely what it is about this new information that
might drive us to change our analysis. The unpaired t-test is based on the assumption that all
observations are conditionally independent of one another given the true underlying means
of the two populations—here, the average amount a cat would consume of each recipe in a
single meal. Since no two cats are likely to have identical dietary proclivities, multiple
measurements from the same cat would violate this assumption. The correct characterization
becomes that all observations are conditionally independent of one another given (a) the true
palatibility effect of recipe 1 versus recipe 2, together with (b) the dietary proclivities of
each cat. This weaker conditional independence is a double-edged sword. On the one hand,
it means that we have tested effectively fewer individuals than our 56 raw data points
suggest, and this should weaken our confidence in generalizing the superiority of recipe 2 to
the entire cat population. On the other hand, the fact that we have made multiple
measurements for each cat holds out the prospect of factoring out each cat’s idiosyncratic
dietary proclivities as part of the analysis, and thereby improving the signal-to-noise ratio
for inferences regarding each recipe’s overall appeal. How we specify these idiosyncrasies
can dramatically affect our conclusions. For example, we know that some cats have higher
metabolisms and will tend to eat more at every meal than other cats. But we also know that
each creature has its own palate, and even if the recipes were of similar overall quality, a
given cat might happen to like one recipe more than the other. Indeed, accounting for
idiosyncratic recipe preferences for each cat might lead to even weaker evidence for the
superiority of recipe 2.

Situations such as these, where individual observations cluster together via association with
a smaller set of entities, are ubiquitous in psycholinguistics and related fields—where the
clusters are typically human participants and stimulus materials (i.e., items). Similar
clustered-observation situations arise in other sciences, such as agriculture (plots in a field)
and sociology (students in classrooms in schools in school-districts); hence accounting for
the RANDOM EFFECTS of these entities has been an important part of the workhorse statistical
analysis technique, the ANALYSIS OF VARIANCE, under the name MIXED-MODEL ANOVA, since the first
half of the twentieth century (Fisher, 1925; Scheffe, 1959). In experimental psychology, the
prevailing standard for a long time has been to assume that individual participants may have
idiosyncratic sensitivities to any experimental manipulation that may have an overall effect,
so detecting a “fixed effect” of some manipulation must be done under the assumption of
corresponding participant random effects for that manipulation as well. In our pet-food
example, if there is a true effect of recipe—that is, if on average a new, previously unstudied
cat will on average eat more of recipe 2 than of recipe 1—it should be detectable above and
beyond the noise introduced by cat-specific recipe preferences, provided we have enough
data. Technically speaking, the fixed effect is tested against an error term that captures the
variability of the effect across individuals.

Standard practices for data-analysis in psycholinguistics and related areas fundamentally
changed, however, after Clark (1973). In a nutshell, Clark (1973) argued that linguistic
materials, just like experimental participants, have idiosyncrasies that need to be accounted
for. Because in a typical psycholinguistic experiment, there are multiple observations for the

Barr et al. Page 2

J Mem Lang. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



same item (e.g., a given word or sentence), these idiosyncrasies break the conditional
independence assumptions underlying mixed-model ANOVA, which treats experimental
participant as the only random effect. Clark proposed the quasi-F (F′) and min-F′ statistics
as approximations to an F-ratio whose distributional assumptions are satisfied even under
what in contemporary parlance is called crossed random effects of participant and item
(Baayen et al., 2008). Clark’s paper helped drive the field toward a standard demanding
evidence that experimental results generalized beyond the specific linguistic materials used
—in other words, the so-called by-subjects F1 mixed-model ANOVA was not enough.
There was even a time where reporting of the min-F′ statistic was made a standard for
publication in the Journal of Memory and Language. However, acknowledging the
widespread belief that min-F′ is unduly conservative (see, e.g., Forster & Dickinson, 1976),
significance of min-F′ was never made a requirement for acceptance of a publication.
Instead, the ‘normal’ convention continued to be that a result is considered likely to
generalize if it passes p < 0.05 significance in both by-subjects (F1) and by-items (F2)
ANOVAs. In the literature this criterion is called F1 × F2 (e.g., Forster & Dickinson, 1976),
which in this paper we use to denote the larger (less significant) of the two p values derived
from F1 and F2 analyses.

Linear Mixed-Effects Models (LMEMs)
Since Clark (1973), the biggest change in data analysis practices has been the introduction of
methods for simultaneously modeling crossed participant and item effects in a single
analysis, in what is variously called “hierarchical regression”, “multi-level regression”, or
simply “mixed-effects models” (Baayen, 2008; Baayen et al., 2008; Gelman & Hill, 2007;
Goldstein, 1995; Kliegl, 2007; Locker et al., 2007; Pinheiro & Bates, 2000; Quené & van
den Bergh, 2008; Snijders & Bosker, 1999b).1 In this paper we refer to models of this class
as mixed-effects models; when fixed effects, random effects, and trial-level noise contribute
linearly to the dependent variable, and random effects and trial-level error are both normally
distributed and independent for differing clusters or trials, it is a linear mixed-effects model
(LMEM).

The ability of LMEMs to simultaneously handle crossed random effects, in addition to a
number of other advantages (such as better handling of categorical data; see Dixon, 2008;
Jaeger, 2008), has given them considerable momentum as a candidate to replace ANOVA as
the method of choice in psycholinguistics and related areas. But despite the widespread use
of LMEMs, there seems to be insufficently widespread understanding of the role of random
effects in such models, and very few standards to guide how random effect structures should
be specified for the analysis of a given dataset. Of course, what standards are appropriate or
inappropriate depends less upon the actual statistical technique being used, and more upon
the goals of the analysis (cf. Tukey, 1980). Ultimately, the random effect structure one uses
in an analysis encodes the assumptions that one makes about how sampling units (subjects
and items) vary, and the structure of dependency that this variation creates in one’s data.

In this paper, our focus is mainly on what assumptions about sampling unit variation are
most critical for the use of LMEMs in confirmatory hypothesis testing. By confirmatory
hypothesis testing we mean the situation in which the researcher has identified a specific set
of theory-critical hypotheses in advance and attempts to measure the evidence for or against
them as accurately as possible (Tukey, 1980). Confirmatory analyses should be performed

1Despite the “mixed-effects models” nomenclature, traditional ANOVA approaches used in psycholinguistics have always used
“mixed effects” in the sense of simultaneously estimating both fixed- and random-effects components of such a model. What is new
about mixed effects models is their explicit estimation of the random-effects covariance matrix, which leads to considerably greater
flexibility of application, including, as clearly indicated by the title of Baayen et al. (2008), the ability to handle the crossing of two or
more types of random effects in a single analysis.
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according to a principled plan guided by theoretical considerations, and, to the extent
possible, should minimize the influence of the observed data on the decisions that one makes
in the analysis (Wagenmakers et al., in press). To simplify our discussion, we will focus
primarily on the confirmatory analysis of simple data sets involving only a few theoretically-
relevant variables. We recognize that in practice, the complexity of one’s data may impose
constraints on the extent to which one can perform analyses fully guided by theory and not
by the data. Researchers who perform laboratory experiments have extensive control over
the data collection process, and, as a result, their statistical analyses tend to include only a
small set of theoretically relevant variables, because other extraneous factors have been
rendered irrelevant through randomization and counterbalancing. This is in contrast to other
more complex types of data sets, such as observational corpora or large-scale data sets
collected in the laboratory for some other, possibly more general, purpose than the
theoretical question at hand. Such datasets may be unbalanced and complex, and include a
large number of measurements of many different kinds. Analyzing such datasets
appropriately is likely to require more sophisticated statistical techniques than those we
discuss in this paper. Furthermore, such analyses may involve data-driven techniques
typically used in exploratory data analysis in order to reduce the set of variables to a
manageable size. Discussion of such techniques for complex datasets and their proper
application of is beyond the scope of this paper (but see, e.g., Baayen, 2008; Jaeger, 2010).

Our focus here is on the question: When the goal of a confirmatory analysis is to test
hypotheses about one or more critical “fixed effects”, what random-effects structure should
one use? Based on theoretical analysis and Monte Carlo simulation, we will argue the
following:

1. Implicit choices regarding random-effect structures existed for traditional mixed-
model ANOVAs just as they exist today for LMEMs;

2. With mixed-model ANOVAs, the standard has been to use what we term
“maximal” random-effect structures;

3. Insofar as we as a field think this standard is appropriate for the purpose of
confirmatory hypothesis testing, researchers using LMEMs for that purpose should
also be using LMEMs with maximal random effects structure;

4. Failure to include maximal random-effect structures in LMEMs (when such
random effects are present in the underlying populations) inflates Type I error
rates;

5. For designs including within-subjects (or within-items) manipulations, random-
intercepts-only LMEMs can have catastrophically high Type I error rates,
regardless of how p-values are computed from them (see also Roland, 2009; Jaeger,
2011a; and Schielzeth & Forstmeier, 2009);

6. The performance of a data-driven approach to determining random effects (i.e.,
model selection) depends strongly on the specific algorithm, size of the sample, and
criteria used; moreover, the power advantage of this approach over maximal
models is typically negligible;

7. In terms of power, maximal models perform surprisingly well even in a “worst
case” scenario where they assume random slope variation that is actually not
present in the population;

8. Contrary to some warnings in the literature (Pinheiro & Bates, 2000), likelihood-
ratio tests for fixed effects in LMEMs show minimal Type I error inflation for
psycholinguistic datasets (see Baayen et al., 2008, Footnote 1, for a similar
suggestion); also, deriving p-values from Monte Carlo Markov Chain (MCMC)
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sampling does not mitigate the high Type I error rates of random-intercepts-only
LMEMs;

9. The F1 × F2 criterion leads to increased Type I error rates the more the effects vary
across subjects and items in the underlying populations (see also Clark, 1973;
Forster & Dickinson, 1976);

10. Min-F′ is conservative in between-items designs when the item variance is low,
and is conservative overall for within-items designs, especially so when the
treatment-by-subject and/or treatment-by-item variances are low (see also Forster
& Dickinson, 1976); in contrast, maximal LMEMs show no such conservativity.

Further results and discussion are available in an online appendix (http://
talklab.psy.gla.ac.uk/simgen).

Random effects in LMEMs and ANOVA: The same principles apply
The Journal of Feline Gastronomy has just received a submission reporting that the feline
palate prefers tuna to liver, and as journal editor you must decide whether to send it out for
review. The authors report a highly significant effect of recipe type (p < .0001), stating that
they used “a mixed effects model with random effects for cats and recipes”. Are you in a
position to evaluate the generality of the findings? Given that LMEMs can implement nearly
any of the standard parametric tests—from a one-sample test to a multi-factor mixed-model
ANOVA—the answer can only be no. Indeed, whether LMEMs produce valid inferences
depends critically on how they are used. What you need to know in addition is the random
effects structure of the model, because this is what the assessment of the treatment effects is
based on. In other words, you need to know which treatment effects are assumed to vary
across which sampled units, and how they are assumed to vary. As we will see, whether one
is specifying a random effects structure for LMEMs or choosing an analysis from among the
traditional options, the same considerations come into play. So, if you are scrupulous about
choosing the “right” statistical technique, then you should be equally scrupulous about using
the “right” random effects structure in LMEMs. In fact, knowing how to choose the right
test already puts you in a position to specify the correct random effects structure for
LMEMs.

In this section, we attempt to distill the implicit standards already in place by walking
through a hypothetical example and discussing the various models that could be applied,
their underlying assumptions, and how these assumptions relate to more traditional analyses.
In this hypothetical “lexical decision” experiment, subjects see strings of letters and have to
decide whether or not each string forms an English word, while their response times are
measured. Each subject is exposed to two types of words, forming condition A and
condition B of the experiment. The words in one condition differ from those in the other
condition on some intrinsic categorical dimension (e.g., syntactic class), comprising a word-
type manipulation that is within-subjects and between-items. The question is whether
reaction times are systematically different between condition A and condition B. For
expository purposes, we use a “toy” dataset with hypothetical data from four subjects and
four items, yielding two observations per treatment condition per participant. The observed
data are plotted alongside predictions from the various models we will be considering in the
panels of Figure 1. Because we are using simulated data, all of the parameters of the
population are known, as well as the “true” subject-specific and item-specific effects for the
sampled data. In practice, researchers do not know these values and can only estimate them
from the data; however, using known values for hypothetical data can aid in understanding
how clustering in the population maps onto clustering in the sample.
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The general pattern for the observed data points suggests that items of type B (I3 and I4) are
responded to faster than items of type A (I1 and I2). This suggests a simple (but clearly
inappropriate) model for these data that relates response Ysi for subject s and item i to a
baseline level via fixed-effect β0 (the intercept), a treatment effect via fixed-effect β1 (the
slope), and observation-level error esi with variance σ2:

(1)

where Xi is a predictor variable2 taking on the value of 0 or 1 depending on whether item i is
of type A or B respectively, and esi ~ N(0, σ2) indicates that the trial-level error is normally
distributed with mean 0 and variance σ2. In the population, participants respond to items of
type B 40 ms faster than items of type A. Under this first model, we assume that each of the
16 observations provides the same evidence for or against the treatment effect regardless of
whether or not any other observations have already been taken into account. Performing an
unpaired t-test on these data would implicitly assume this (incorrect) generative model.

Model (1) is not a mixed-effects model because we have not defined any sources of
clustering in our data; all observations are conditionally independent given a choice of
intercept, treatment effect, and noise level. But experience tells us that different subjects are
likely to have different overall response latencies, breaking conditional independence
between trials for a given subject. We can expand our model to account for this by including
a new offset term S0s, the deviation from β0 for subject s. The expanded model is now

(2)

These offsets increase the model’s expressivity by allowing predictions for each subject to
shift upward or downward by a fixed amount (Figure 1b). Our use of Latin letters for this
term is a reminder that S0s is a special type of effect which is different from the βs—indeed,
we now have a “mixed-effects” model: parameters β0 and β1 are fixed effects (effects that are
assumed to be constant from one experiment to another), while the specific composition of
subject levels for a given experiment is assumed to be a random subset of the levels in the
underlying populations (another instantiation of the same experiment would have a different
composition of subjects, and therefore different realizations of the S 0s effects). The S0s
effects are therefore random effects; specifically, they are random intercepts, as they allow
the intercept term to vary across subjects. Our primary goal is to produce a model which will
generalize to the population from which these subjects are randomly drawn, rather than
describing the specific S 0s values for this sample. Therefore, instead of estimating the
individual S 0s effects, the model-fitting algorithm estimates the population distribution from
which the S 0s effects were drawn. This requires assumptions about this distribution; we
follow the common assumption that it is normal, with a mean of 0 and a variance of τ00

2;
here τ00

2 is a random effect parameter, and is denoted by a Greek symbol because, like the
βs, it refers to the population and not to the sample.

Note that the variation on the intercepts is not confounded with our effect of primary
theoretical interest (β1): for each subject, it moves the means for both conditions up or down
by a fixed amount. Accounting for this variation will typically decrease the residual error
and thus increase the sensitivity of the test of β1. Fitting Model (2) is thus analogous to

2For expository purposes, we use a treatment coding scheme (0 or 1) for the predictor variable. Alternatively, the models in this
section could be expressed in the style more common to traditional ANOVA pedagogy, where fixed and random effects represent
deviations from a grand mean. This model can be fit by using “deviation coding” for the predictor variable (−.5 and .5 instead of 0 and
1). For higher-order designs, treatment and deviation coding schemes will lead to different interpretations for lower-order effects
(simple effects for contrast coding and main effects for deviation coding).
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analyzing the raw, unaggregated response data using a repeated-measures ANOVA with S
S subjects subtracted from the residual S Serror term. One could see that this analysis is wrong
by observing that the denominator degrees of freedom for the F statistic (i.e., corresponding
to MS error) would be greater than the number of subjects (see online appendix for further
discussion and demonstration).

Although Model (2) is clearly preferable to Model (1), it does not capture all the possible
by-subject dependencies in the sample; experience also tells us that subjects often vary not
only in their overall response latencies but also in the nature of their response to word type.
In the present hypothetical case, Subject 3 shows a total effect of 134 ms, which is 94 ms
larger than the average effect in the population of 40 ms. We have multiple observations per
combination of subject and word type, so this variability in the population will also create
clustering in the sample. The S0s do not capture this variability because they only allow
subjects to vary around β0. What we need in addition are random slopes to allow subjects to
vary with respect to β1, our treatment effect. To account for this variation, we introduce a
random slope term S1s with variance τ11

2, yielding

(3)

This is now a mixed-effects model with by-subject random intercepts and random slopes.
Note that the inclusion of the by-subject random slope causes the predictions for condition B
to shift by a fixed amount for each subject (Figure 1c), improving predictions for words of
type B. The slope offset S1s captures how much Subject s’s effect deviates from the
population treatment effect β1. Again, we do not want our analysis to commit to particular
S1s effects, and so, rather than estimating these values directly, we estimate τ11

2, the by-
subject variance in treatment effect. But note that now we have two random effects for each
subject s, and these two effects can exhibit a correlation (expressed by ρ). For example,
subjects who do not read carefully might not only respond faster than the typical subject
(and have a negative S0s), but might also show less sensitivity to the word type manipulation
(and have a more positive S1s). Indeed, such a negative correlation, where we would have ρ
< 0, is suggested in our hypothetical data (Figure 1): S1 and S3 are slow responders who
show clear treatment effects, whereas S2 and S4 are fast responders who are hardly
susceptible to the word type manipulation. In the most general case, we should not treat
these effects as coming from independent univariate distributions, but instead should treat
S 0s and S 1s as being jointly drawn from a bivariate distribution. As seen in line 2 of
Equation 3, we follow common assumptions in taking this distribution as bivariate normal
with a mean of (0, 0) and three free parameters: τ00

2 (random intercept variance), τ11
2

(random slope variance), and ρτ00τ11 (the intercept/slope covariance). For further
information about random effect variance-covariance structures, see Baayen (2004, 2008);
Gelman & Hill (2007); Goldstein (1995); Raudenbush & Bryk (2002); Snijders & Bosker
(1999a).

Both Models (2) and (3) are instances of what is traditionally analyzed using “mixed-model
ANOVA” (e.g., Scheffe, 1959, chapter 8). By long-standing convention in our field,
however, the classic “by-subjects ANOVA” (and analogously “by-items ANOVA” when
items are treated as the random effect) is understood to mean Model (3), the relevant F-

statistic for which is , where MST is the treatment mean square and MSTxS is the
treatment-by-subject mean square. This convention presumably derives from the widespread
recognition that subjects (and items) usually do vary idiosyncratically not only in their
global mean responses but also in their sensitivity to the experimental treatment. Moreover,
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this variance, unlike random intercept variance, can drive differences between condition
means. This can be seen by comparing the contributions of random intercepts versus random
slopes across panels (b) and (c) in Figure 1. Therefore, it would seem to be important to
control for such variation when testing for a treatment effect.3

Although Model (3) accounts for all by-subject random variation, it still has a critical defect.
As Clark (1973) noted, the repetition of words across observations is a source of non-
independence not accounted for, which would impair generalization of our results to new
items. We need to incorporate item variability into the model with the random effects I0i,
yielding

(4)

This is a mixed-effect model with by-subject random intercepts and slopes and by-item
random intercepts. Rather than committing to specific I0i values, we assume that the I0i
effects are drawn from a normal distribution with a mean of zero and variance ω00

2. We also
assume that ω00

2 is independent from the τ parameters defining the by-subject variance
components. Note that the inclusion of by-item random intercepts improves the predictions
from the model, with predictions for a given item shifting by a consistent amount across all
subjects (Figure 1d). It is also worth noting that the by-item variance is also confounded
with our effect of interest, since we have different items in the different conditions, and thus
will tend to contribute to any difference we observe between the two condition means.

This analysis has a direct analogue to min-F′, which tests MST against a denominator term
consisting of the sum of MSTxS and MS I, the mean squares for the random treatment-by-
subject interaction and the random main effect of items. It is, however, different from the
practice of performing F1 × F2 and rejecting the null hypothesis if p < .05 for both Fs. The
reason is that MST (the numerator for both F1 and F2) reflects not only the treatment effect,
but also treatment-by-subject variability (τ11

2) as well as by-item variability (ω00
2). The

denominator of F1 controls for treatment-by-subject variability but not item variability;
similarly, the denominator of F2 controls for item variability but not treatment-by-subject
variability. Thus, finding that F1 is significant implies that β1 ≠ 0 or ω00

2≠ 0, or both;
likewise, finding that F2 is significant implies that β1 ≠ 0 or τ112 ≠ 0, or both. Since ω00

2

and τ11
2 can be nonzero while β1 = 0, F1 × F2 tests will inflate the Type I error rate (Clark,

1973). Thus, in terms of controlling Type I error rate, the mixed-effects modeling approach
and the min-F′ approach are, at least theoretically, superior to separate by-subject and by-
item tests.

At this point, we might wish to go further and consider other models. For instance, we have
considered a by-subject random slope; for consistency, why don’t we also consider a model
with a by-item random slope, I1i? A little reflection reveals that a by-item random slope does
not make sense for this design. Words are nested within word types—no word can be both
type A and type B— so it is not sensible to ask whether words vary in their sensitivity to
word type. No sample from this experiment could possibly give us the information needed to
estimate random slope variance and random slope/intercept covariance parameters for such a
model. A model like this is unidentifiable for the data it is applied to: there are (infinitely)

3Note that in practice, most researchers do not compute MS TxS on the raw data but rather aggregate their data first so that there is one
observation per subject per cell, and then perform an ANOVA (or t-test) on the cell means. This aggregation confounds the random
slope variance with residual error and reduces the error degrees of freedom, making it possible to perform a repeated-measures
ANOVA. This is an alternative way of meeting the assumption of conditional independence, but the aggregation precludes
simultaneous generalization over subjects and items (see online appendix for further details).
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many different values we could choose for its parameters which would describe the data
equally well.4 Experiments with a within-item manipulation, such as a priming experiment
in which target words are held constant across conditions but the prime word is varied,
would call for by-item random slopes, but not the current experiment.

The above point also extends to designs where one independent variable is manipulated
within- and another variable between- subjects (respectively items). In case of between-
subject manipulations, the levels of the subject variable are nested within the levels of the
experimental treatment variable (i.e. each subject belongs to one and only one of the
experimental treatment groups), meaning that subject and treatment cannot interact—a
model with a by-subject random slope term would be unidentifiable. In general, within-unit
treatments require both the by-unit intercepts and slopes in the random effects specification,
whereas between-unit treatments require only the by-unit random intercepts.

It is important to note that identifiability is a property of the model given a certain dataset.
The model with by-item random slopes is unidentifiable for any possible dataset because it
tries to model a source of variation that could not logically exist in the population. However,
there are also situations where a model is unidentifiable because there is insufficient data to
estimate its parameters. For instance, we might decide it was important to try to estimate
variability corresponding to the different ways that subjects might respond to a given word
(a subject-by-item random intercept). But to form a cluster in the sample, it is necessary to
have more than one observation for a given unit; otherwise, the clustering effect cannot be
distinguished from residual error.5 If we only elicit one observation per subject/item
combination, we are unable to estimate this source of variability, and the model containing
this random effect becomes unidentifiable. Had we used a design with repeated exposures to
the same items for a given subject, the same model would be identifiable, and in fact we
would need to include that term to avoid violating the conditional independence of our
observations given subject and item effects.

This discussion indicates that Model (4) has the maximal random effects structure justified
by our experimental design, and we henceforth refer to such models as maximal models. A
maximal model should optimize generalization of the findings to new subjects and new
items. Models that lack random effects contained in the maximal model, such as Models (1)-
(3), are likely to be misspecified—the model specification may not be expressive enough to
include the true generative process underlying the data. This type of misspecification is
problematic because conditional independence between observations within a given cluster
is not achieved. Each source of random variation that is not accounted for will tend to work
against us in one of two different ways. On the one hand, unaccounted-for variation that is
orthogonal to our effect of interest (e.g., random intercept variation) will tend to reduce
power for our tests of that effect; on the other, unaccounted-for variation that is confounded
with our effect of interest (e.g., random slope variation), can drive differences between
means, and thus will tend to increase the risk of Type I error.

A related model that we have not yet considered but that has become popular in recent
practice includes only by-subject and by-item random intercepts.

(5)

4Technically, by-item random slopes for a between-item design can be used to capture heteroscedasticity across conditions, but this is
typically a minor concern in comparison with the issues focused on in this paper (see, e.g., discussion in Gelman & Hill, 2007).
5It can also be difficult to estimate random effects when some of the sampling units (subjects or items) provide few observations in
particular cells of the design. See the General Discussion and Jaeger et al. (2011, section 3.3) for further discussion of this issue.
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Unlike the other models we have considered up to this point, there is no clear ANOVA
analog to a random-intercepts-only LMEM; it is perhaps akin to a modified min-F′ statistic
with a denominator error term including MS I but with MSTxS replaced by the error term
from Model 2 (i.e., with S Serror reduced by S S subjects). But it would seem inappropriate to
use this as a test statistic, given that the numerator MST increases as a function not only of
the overall treatment effect, but also as a function of random slope variation (τ11

2), and the
denominator does not control for this variation.

A common misconception is that crossing subjects and items in the intercept term of
LMEMs is sufficient for meeting the assumption of conditional independence, and that
including random slopes is strictly unnecessary unless it is of theoretical interest to estimate
that variability (see e.g., Janssen, 2012; Locker et al., 2007). However, this is problematic
given the the fact that, as already noted, random slope variation can drive differences
between condition means, thus creating a spurious impression of a treatment effect where
none might exist. Indeed, some researchers have already warned against using random-
intercepts-only models when random slope variation is present (e.g., Baayen, 2008; Jaeger,
2011a; Roland, 2009; Schielzeth & Forstmeier, 2009). However, the performance of these
models has not yet been evaluated in the context of simultaneous generalization over
subjects and items. Our simulations will provide such an evaluation.

Although the maximal model best captures all the dependencies in the sample, sometimes it
becomes necessary for practical reasons to simplify the random effects structure. Fitting
LMEMs typically involves maximum likelihood estimation, where an iterative procedure is
used to come up with the “best” estimates for the parameters given the data. As the name
suggests, it attempts to maximize the likelihood of the data given the structure of the model.
Sometimes, however, the estimation procedure will fail to “converge” (i.e., to find a
solution) within a reasonable number of iterations. The likelihood of this convergence
failure tends to increase with the complexity of the model, especially the random effects
structure.

Ideally, simplification of the random effects structure should be done in a principled way
Dropping a random slope is not the only solution, nor is it likely to be the best, given that
random slopes tend to account for variance confounded with the fixed effects of theoretical
interest. We thus consider two additional mixed-effects models with simplified random
effects structure.6 The first of these is almost identical to the maximal model (Model 4) but
without any correlation parameter:

(6)

Note that the only difference from Model 4 is in the specification of the distribution of (S 0s,
S 1s) pairs. Model 6 is more restrictive than Model 4 in not allowing correlation between the
random slope and random intercept; if, for example, subjects with overall faster reaction
times also tended to be less sensitive to experimental manipulation (as in our motivating
example for random slopes), Model 6 could not capture that aspect of the data. But it does
account for the critical random variances that are confounded with the effect of interest, τ11

2

and ω00
2.

6Unlike the other models we have considered up to this point, the performance of these two additional models (Models 6 and 7) will
depend to some extent on how the predictor variable X is coded (e.g., treatment or deviation coding, with performance generally better
for the latter; see Appendix for further discussion).
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The next and final model to consider is one that has received almost no discussion in the
literature but is nonetheless logically possible: a maximal model that is simplified by
removing random intercepts for any within-unit (subject or item) factor. For the current
design, this means removing the by-subject random intercept:

(7)

This model, like random-intercepts-only and no-correlation models, would almost certainly
be misspecified for typical psycholinguistic data. However, like the previous model, and
unlike the random-intercepts-only model, it captures all the sources of random variation that
are confounded with the effect of main theoretical interest.

The mixed-effects models considered in this section are presented in Table 1. We give their
expression in the syntax of lmer (Bates et al., 2011), a widely used mixed-effects fitting
method for R (R Development Core Team, 2011). To summarize, when specifying random
effects, one must be guided by (1) the sources of clustering that exist in the target subject
and item populations, and (2) whether this clustering in the population will also exist in the
sample. The general principle is that a by-subject (or by-item) random intercept is needed
whenever there is more than one observation per subject (or item or subject-item
combination), and a random slope is needed for any effect where there is more than one
observation for each unique combination of subject and treatment level (or item and
treatment level, or subject-item combination and treatment level). Models are unidentifiable
when they include random effects that are logically impossible or that cannot be estimated
from the data in principle. Models are misspecified when they fail to include random effects
that create dependencies in the sample. Subject- or item- related variance that is not
accounted for in the sample can work against generalizability in two ways, depending on
whether on not it is independent of the hypothesis-critical fixed effect. In the typical case in
which fixed-effect slopes are of interest, models without random intercepts will have
reduced power, while models without random slopes will exhibit an increased Type I error
rate. This suggests that LMEMs with maximal random effects structure have the best
potential to produce generalizable results. Although this section has only dealt with a simple
single-factor design, these principles extend in a straightforward manner to higher-order
designs, which we consider further in the General Discussion.

Design-driven versus data-driven random effects specification
As the last section makes evident, in psycholinguistics and related areas, the specification of
the structure of random variation is traditionally driven by the experimental design. In
contrast to this traditional design-driven approach, a data-driven approach has gained
prominence along with the recent introduction of LMEMs. The basic idea behind this
approach is to let the data “speak for themselves” as to whether certain random effects
should be included in the model or not. That is, on the same data set, one compares the fit of
a model with and without certain random effect terms (e.g. Model 4 versus Model 5 in the
previous section) using goodness of fit criteria that take into account both the accuracy of
the model to the data and its complexity. Here, accuracy refers to how much variance is
explained by the model and complexity to how many predictors (or parameters) are included
in the model. The goal is to find a structure that strikes a compromise between accuracy and
complexity, and to use this resulting structure for carrying out hypothesis tests on the fixed
effects of interest.

Although LMEMs offer more flexibility in testing random effects, datadriven approaches to
random effect structure have long been possible within mixed-model ANOVA (see the
online Appendix). For example, Clark (1973) considers a suggestion by Winer (1971) that
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one could test the significance of the treatment-by-subjects interaction at some liberal α
level (e.g., .25), and, if it is not found to be signficant, to use the F2 statistic to test one’s
hypothesis instead of a quasi-F statistic (Clark, 1973, p. 339). In LMEM terms, this is
similar to using model comparison to test whether or not to include the by-subject random
slope (albeit with LMEMs, this could be done while simultaneously controlling for item
variance). But Clark rejected such an approach, finding it unnecessarily risky (see e.g.,
Clark, 1973, p. 339). Whether they shared Clark’s pessimism or not, researchers who have
used ANOVA on experimental data have, with rare exception, followed a design-driven
rather than a data-driven approach to specifying random effects.

We believe that researchers using ANOVA have been correct to follow a design-driven
approach. Moreover, we believe that a design-driven approach is equally preferable to a
data-driven approach for confirmatory analyses using LMEMs. In confirmatory analyses,
random effect variance is generally considered a “nuisance” variable rather than a variable
of interest; one does not eliminate these variables just because they do not “improve model
fit.” As stated by Ben Bolker (one of the developers of lme4), “If random effects are part of
the experimental design, and if the numerical estimation algorithms do not break down, then
one can choose to retain all random effects when estimating and analyzing the fixed effects.”
(Bolker et al., 2009, p. 134). The random effects are crucial for encoding measurement-
dependencies in the design. Put bluntly, if an experimental treatment is manipulated within-
subjects (with multiple observations per subject-by-condition cell), then there is no way for
the analysis procedure to “know” about this unless the fixed effect of that treatment is
accompanied with a by-subject random slope in the analysis model. Second, it is important
to bear in mind that experimental designs are usually optimized for the detection of fixed
effects, and not for the detection of random effects. Datadriven techniques will therefore not
only (correctly) reject random effects that do not exist, but also (incorrectly) reject random
effects for which there is just insufficient power. This problem is exacerbated for small
datasets, since detecting random effects is harder the fewer clusters and observations-per-
cluster are present.

A further consideration is that the there are no existing criteria to guide researchers in the
data-driven determination of random effects structure. This is unsatisfactory because the
approach requires many decisions: What α-level should be used? Should α be corrected for
the number of random effects being tested? Should one test random effects following a
forward or backward algorithm, and how should the tests be ordered? Should intercepts be
tested as well as slopes, or left in the model by default? The number of possible random
effects structures, and thus the number of decisions to be made, increases with the
complexity of the design. As we will show, the particular decision criteria that are used will
ultimately affect the generalizability of the test. The absence of any accepted criteria allows
researchers to make unprincipled (and possibly self-serving) choices. To be sure, it may be
possible to obtain reasonable results using a data-driven approach, if one adheres to
conservative criteria. However, even when the modeling criteria are explicitly reported, it is
a non-trivial problem to quantify potential increases in anti-conservativity that the procedure
has introduced (see Harrell, 2001, chapter 4).

But even if one agrees that, in principle, a design-driven approach is more appropriate than a
data-driven approach for confirmatory hypothesis testing, there might be concern that using
LMEMs with maximal random effects structure is a recipe for low power, by analogy with
min-F′, an earlier solution to the problem of simultaneous generalization. The min-F′
statistic has indeed been shown to be conservative under some circumstances (Forster &
Dickinson, 1976), and it is perhaps for this reason that it has not been broadly adopted as a
solution to the problem of simultaneous generalization. If maximal LMEMs also turn out to
have low power, then perhaps this would justify the extra Type I error risk associated with
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data-driven approaches. However, the assumption that maximal models are overly
conservative should not be taken as a forgone conclusion. Although maximal models are
similar in spirit to min-F′, there are radical differences between the estimation procedures
for min-F′ and maximal LMEMs. Min-F′ is composed of two separately calculated F
statistics, and the by-subjects F does not control for the by-item noise, nor does the by-items
F control for the by-subjects noise. In contrast, with maximal LMEMs by-subject and by-
item variance is taken into account simultaneously, yielding greater prospects for being a
more sensitive test.

Finally, we believe it is important to distinguish between model-selection for the purpose of
data exploration on the one hand and model-selection for the purpose of determining random
effects structures (in confirmatory contexts) on the other; we are skeptical about the latter,
but do not intend to pass any judgement on former.

Modeling of random effects in the current psycholinguistic literature
The introduction of LMEMs and their early application to psycholinguistic data by Baayen
et al. (2008) has had a major influence on analysis techniques used in peer-reviewed
publications. At the time of writing (October 2012), Google scholar reports 1004 citations to
Baayen, Davidson and Bates. In an informal survey of the 150 research articles published in
the Journal of Memory and Language since Baayen et al. (from volume 59 issue 4 to
volume 64 issue 3) we found that 20 (13%) reported analyses using an LMEM of some kind.
However, these papers differ substantially in both the type of models used and the
information reported about them. In particular, researchers differed in whether they included
random slopes or only random intercepts in their models. Of the 20 JML articles identified,
six gave no information about the random effects structure, and a further six specified that
they used random intercepts only, without theoretical or empirical justification. A further
five papers employed model selection, four forward and only one backward (testing for the
inclusion of random effects, but not fixed effects). The final three papers employed a
maximal random effects structure including intercept and slope terms where appropriate.

This survey highlights two important points. First, there appears to be no standard for
reporting the modeling procedure, and authors vary dramatically in the amount of detail they
provide. Second, at least 30% of the papers and perhaps as many as 60%, do not include
random slopes, i.e. they tacitly assume that individual subjects and items are affected by the
experimental manipulations in exactly the same way. This is in spite of the
recommendations of various experts in peer-reviewed papers and books (Baayen, 2008;
Baayen et al., 2008) as well as in the informal literature (Jaeger, 2009, 2011b). Furthermore,
none of the LMEM articles in the JML special issue (Baayen et al., 2008; Barr, 2008; Dixon,
2008; Jaeger, 2008; Mirman et al., 2008; Quené & van den Bergh, 2008) set a bad example
of using random-intercept-only models. As discussed earlier, the use of random-intercept-
only models is a departure even from the standard use of ANOVA in psycholinguistics.

The present study
How do current uses of LMEMs compare to more traditional methods such as min-F′ and F1
× F2)? The next section of this paper tests a wide variety of commonly used analysis
methods for datasets typically collected in psycholinguistic experiments, both in terms of
whether resulting significance levels can be trusted—i.e., whether the Type I error rate for a
given approach in a given situation is conservative (less than α), nominal (equal to α), or
anticonservative (greater than α)—and the power of each method in detecting effects that
are actually present in the populations.
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Ideally, we would compare the different analysis techniques by applying them to a large
selection of real data sets. Unfortunately, in real experiments the true generative process
behind the data is unknown, meaning that we cannot tell whether effects in the population
exist—or how big those effects are—without relying on one of the analysis techniques we
actually want to evaluate. Moreover, even if we knew which effects were real, we would
need far more datasets than are readily available to reliably estimate the nominality and
power of a given method.

We therefore take an alternative approach of using Monte Carlo methods to generate data
from simulated experiments. This allows us to specify the underlying sampling distributions
per simulation, and thus to have veridical knowledge of the presence or absence of an effect
of interest, as well as all other properties of the experiment (number of subjects, items and
trials, and the amount of variability introduced at each level). Such a Monte Carlo procedure
is standard for this type of problem (e.g., Baayen et al., 2008; Davenport & Webster, 1973;
Forster & Dickinson, 1976; Quené & van den Bergh, 2004; Santa et al., 1979; Schielzeth &
Forstmeier, 2009; Wickens & Keppel, 1983), and guarantees that as the number of samples
increases, the obtained p-value distribution becomes arbitrarily close to the true p-value
distribution for datasets generated by the sampling model.

The simulations assume an “ideal-world scenario” in which all the distributional
assumptions of the model class (in particular normal distribution of random effects and trial-
level error, and homoscedasticity of trial-level error and between-items random intercept
variance) are satisfied. Although the approach leaves open for future research many difficult
questions regarding departures of realistic psycholinguistic data from these assumptions, it
allows us great flexibility in analyzing the behavior of each analytic method as the
population and experimental design vary. We hence proceed to the systematic investigation
of traditional ANOVA, min-F′, and several types of LMEMs as datasets vary in many
crucial respects including between- versus within-items, different numbers of items, and
different random-effect sizes and covariances.

Method
Generating simulated data

For simplicity, all datasets included a continuous response variable and had only a single
two-level treatment factor, which was always within subjects, and either within or between
items. When it was within, each “subject” was assigned to one of two counterbalancing
“presentation” lists, with half of the subjects assigned to each list. We assumed no list effect;
that is, the particular configuration of “items” within a list did not have any unique effect
over and above the item effects for that list. We also assumed no order effects, nor any
effects of practice or fatigue. All experiments had 24 subjects, but we ran simulations with
both 12 or 24 items to explore the effect of number of random-effect clusters on fixed-
effects inference.7

Within-item data sets were generated from the following sampling model:

with all variables defined as in the tutorial section above, except that we used deviation
coding for Xsi (−.5, .5) rather than treatment coding. Random effects S0s and S1s were drawn

7Having only six items per condition, such as in the 12-item case, is not uncommon in psycholinguistic research, where it is often
difficult to come up with larger numbers of suitably controlled items.
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from a bivariate normal distribution with means µS = < 0,0 > and variance-covariance matrix

. Likewise, I0i and I1i were also drawn from a separate bivariate
normal distribution with µI =< 0,0 > and variance-covariance matrix

. The residual errors esi were drawn from a normal distribution
with a mean of 0 and variance σ2. For between-item designs, the I1i effects (by-item random
slopes) were simply ignored and thus did not contribute to the response variable.

We investigated the performance of various analyses over a range of population parameter
values (Table 2). To generate each simulated dataset, we first determined the population
parametersy β0, τ00

2, τ11
2, ρs, ω00

2, ω11
2, ρI, and σ2 by sampling from uniform distributions

with ranges given in Table 2. We then simulated 24 subjects and 12 or 24 items from the
corresponding populations, and simulated one observation for each subject/item pair. We
also assumed missing data, with up to 5% of observations in a given data set counted as
missing (at random). This setting was assumed to reflect normal rates of data loss (due to
experimenter error, technical issues, extreme responses, etc.). The online appendix presents
results for scenarios in which data loss was more substantial and nonhomogeneous.

For tests of Type I error, β1 (the fixed effect of interest) was set to zero. For tests of power,
β1 was set to .8, which we found yielded power around 0.5 for the most powerful methods
with close-to-nominal Type I error.

We generated 100000 datasets for testing for each of the eight combinations (effect present/
absent, between-/within-item manipulation, 12/24 items). The functions we used in running
the simulations and processing the results are available in the R package simgen, which we
have made available in the online appendix, along with a number of R scripts using the
package. The online appendix also contains further information about the additional R
packages and functions used for simulating the data and running the analyses.

Analyses
The analyses that we evaluated are summarized in Table 3. Three of these were based on
ANOVA (F1, min-F′, and F1 × F2), with individual F-values drawn from mixed-model
ANOVA on the unaggregated data (e.g., using MStreatment/MStreatment-by-subject) rather than
from performing repeated-measures ANOVAs on the (subject and item) means. The
analyses also included LMEMs with a variety of random effects structures and test statistics.
All LMEMs were fit using the lmer function of the R package lme4, version 0.999375-39
(Bates et al., 2011), using maximum likelihood estimation.

There were four kinds of models with predetermined random effects structures: models with
random intercepts but no random slopes, models with withinunit random slopes but no
within-unit random intercepts, models with no random correlations (i.e., independent slopes
and intercepts), and maximal models.

Model selection analyses
We also considered a wide variety of LMEMs whose random effects structure—specifically,
which slopes to include—was determined through model selection. We also varied the
model-selection α level, i.e., the level at which slopes were tested for inclusion or exclusion,
taking on the values .01 and .05 as well as values from .10 to .80 in steps of .10.

Our model selection techniques tested only random slopes for inclusion/exclusion, leaving
in by default the by-subject and by-item random intercepts (since that seems to be the
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general practice in the literature). For between-items designs, there was only one slope to be
tested (by-subjects) and thus only one possible model selection algorithm. In contrast, for
within-items designs, where there are two slopes to be tested, a large variety of algorithms
are possible. We explored the model selection algorithms given in Table 4, which were
defined by the direction of model selection (forward or backward) and whether slopes were
tested in an arbitrary or principled sequence. The forward algorithms began with a random-
intercepts-only model and tested the two possible slopes for inclusion in an arbitrary, pre-
defined sequence (either by-subjects slope first and by-items slope second, or vice versa;
these models are henceforth denoted by “FS” and “FI”). If the p-value from the first test
exceeded the model-selection α level for inclusion, the slope was left out of the model and
the second slope was never tested; otherwise, the slope was included and the second slope
was tested. The backward algorithm (“BS” and “BI” models) was similar, except that it
began with a maximal model and tested for the exclusion of slopes rather than for their
inclusion.

For these same within-items designs, we also considered forward and backward algorithms
in which the sequence of slope testing was principled rather than arbitrary; we call these the
“best-path” algorithms because they choose each step through the model space based on
which addition or removal of a predictor leads to the best next model. For the forward
version, both slopes were tested for inclusion independently against a random-intercepts-
only model. If neither test fell below the model-selection α level, then the random-
intercepts-only model was retained. Otherwise, the slope with the strongest evidence for
inclusion (lowest p-value) was included in the model, and then the second slope was tested
for inclusion against this model. The backward best-path algorithm was the same, except
that it began with a maximal model and tested slopes for exclusion rather than for inclusion.
(In principle, one can use best-path algorithms that allow both forwards and backwards
moves, but the space of possible models considered here is so small that such an algorithm
would be indistinguishable from the forwards- or backwards-only variants.)

Handling nonconvergence and deriving p-values
Nonconverging LMEMs were dealt with by progressively simplifying the random effects
structure until convergence was reached. Data from these simpler models contributed to the
performance metrics for the more complex models. For example, in testing maximal models,
if a particular model did not converge and was simplified down to a random-intercepts-only
model, the p values from that model would contribute to the performance metrics for
maximal models. This reflects the assumption that researchers who encountered
nonconvergence would not just give up but would consider simpler models. In other words,
we are evaluating analysis strategies rather than particular model structures.

In cases of nonconvergence, simplification of the random effects structure proceeded as
follows. For between-items designs, the by-subjects random slope was dropped. For within-
items designs, statistics from the partially converged model were inspected, and the slope
associated with smaller variance was dropped (see the appendix for justification of this
method). In the rare (0.002%) of cases that the random-intercepts-only model did not
converge, the analysis was discarded.

There are various ways to obtain p-values from LMEMs, and to our knowledge, there is
little agreement on which method to use. Therefore, we considered three methods currently
in practice: (1) treating the t-statistic as if it were a z statistic (i.e., using the standard normal
distribution as a reference); (2) performing likelihood ratio tests, in which the deviance
(−2LL) of a model containing the fixed effect is compared to another model without it but
that is otherwise identical in random effects structure; and (3) by Markov Chain Monte
Carlo (MCMC) sampling, using the mcmcsamp() function of lme4 with 10000 iterations.
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This is the default number of iterations used in Baayen’s pvals .fnc() of the languageR
package (Baayen, 2011). This function wraps the function mcmcsamp(), and we used some
of its code for processing the output of mcmcsamp (). Although MCMC sampling is the
approach recommended by Baayen et al. (2008), it is not implemented in lme4 for models
containing random correlation parameters. We therefore used (3) only for random-intercept-
only and no-random-correlation LMEMs.

Performance metrics
The main performance metrics we considered were Type I error rate (the rate of rejection of
H0 when it is true) and power (the rate of failure to reject H0 when it is false). For all
analyses, the α level for testing the fixed-effect slope (β1) was set to .05 (results were also
obtained using α = .01 and α = .10, and were qualitatively similar; see the online appendix).

It can be misleading to directly compare the power of various approaches that differ in Type
I error rate, because the power of anticonservative approaches will be inflated. Therefore,
we also calculated Power′, a power rate corrected for anticonservativity. Power′ was derived
from the empirical distribution for p-values from the simulation for a given method where
the null hypothesis was true. If the p-value at the 5% quantile of this distribution was below
the targeted α-level (e.g., .05), then this lower value was used as the cutoff for rejecting the
null. To illustrate, note that a method that is nominal (neither anticonservative nor
conservative) would yield an empirical distribution of p-values for which very nearly 5% of
the simulations would obtain p-values less than .05. Now consider that a given method with
a targeted α-level of .05, 5% of the simulation runs under the null hypothesis yielded p-
values of .0217 or lower. This clearly indicates that this method is anticonservative, since
more than 5% of the simulation runs had p-values less than the targeted α-level of .05. We
could correct for this anticonservativity in the power analysis by requiring that a p-value
from a given simulation run, to be deemed statistically significant, must be less than .0217
instead of .05. In contrast, if for a given method 5% of the runs under the null hypothesis
yielded a value of .0813 or lower, this method would be conservative, and it would be
undesirable to ‘correct’ this as it would artifically make the test seem more powerful than it
actually is. Instead, for this case we would simply require that the p-value for a given
simulation run be lower than .05.

Because we made minimal assumptions about the relative magnitudes of random variances,
it is also of interest to examine the performance of the various approaches as a function the
various parameters that define the space. Given the difficulty of visualizing a
multidimensional parameter space, we chose to visually represent performance metrics in
terms of two “critical variances”, which were those variances that can drive differences
between treatment means. As noted above, for between-item designs, this includes the by-
item random intercept variance (ω00

2) and the by-subject random slope variance (τ11
2); for

withinitems designs, this includes the by-item and by subject-random slope variance (ω11
2

and τ11
2). We modeled Type I error rate and power over these critical variances using local

polynomial regression fitting (the loess function in R which is wrapped by the loessPred
function in our simgen package). The span parameter for loess fitting was set to .9; this
highlights general trends throughout the parameter space, at the expense of fine-grained
detail.

Results and Discussion
An ideal statistical analysis method maximizes statistical power while keeping Type I error
nominal (at the stated α level). Performance metrics in terms of Type I error, power, and
corrected power are given in Table 5 for the betweenitem design and in Table 6 for the
within-item design. The analyses in each table are (approximately) ranked in terms of Type I
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error, with analyses toward the top of the table showing the best performance, with priority
given to better performance on the larger (24-item) dataset.

Only min-F′ was consistently at or below the stated α level. This is not entirely surprising,
because the techniques that are available for deriving p-values from LMEMs are known to
be somewhat anticonservative (Baayen et al., 2008). For maximal LMEMs, this
anticonservativity was quite minor, within 1–2% of α.8 LMEMs with maximal random
slopes, but missing either random correlations or within-unit random intercepts, performed
nearly as well as “fully” maximal LMEMs, with the exception of the case where p-values
were determined by MCMC sampling. In addition, there was slight additional
anticonservativity relative to the maximal model for the models missing within-unit random
intercepts. This suggests that when maximal LMEMs fail to converge, dropping within-unit
random intercepts or random correlations are both viable options for simplifying the random
effects structure. It is also worth noting that F1 × F2, which is known to be fundamentally
biased (Clark, 1973; Forster & Dickinson, 1976), controlled overall Type I error rate fairly
well, almost as well as maximal LMEMs. However, whereas anticonservativity for maximal
(and near-maximal) LMEMs decreased as the data set got larger (from 12 to 24 items), for
F1 × F2 it actually showed a slight increase.

F1 alone was the worst performing method for between-items designs, and also had an
unacceptably high error rate for within-items designs. Random-intercepts-only LMEMs
were also unacceptably anticonservative for both types of designs, far worse than F1 × F2. In
fact, for within-items designs, random-intercepts-only LMEMs were even worse than F1
alone, showing false rejections 40–50% of the time at the .05 level, regardless of whether p-
values were derived using the normal approximation to the t-statistic, the likelihood-ratio
test, or MCMC sampling. In other words, for within-items designs, one can obtain better
generalization by ignoring item variance altogether (F1) than by using an LMEM with only
random intercepts for subjects and items.

Figure 2 presents results from LMEMs where the inclusion of random slopes was
determined by model selection. The figure presents the results for the within-items design,
where a variety of algorithms were possible. Performance for the between-items design
(where there was only a single slope to be tested) was very close to that of maximal
LMEMs, and is presented in the online Appendix.

The figure suggests that the Type I error rate depends more upon the algorithm followed in
testing slopes than the α-level used for the tests. Forward-stepping approaches that tested the
two random slopes in an arbitrary sequence performed poorly in terms of Type I error even
at relatively high α levels. This was especially the case for the smaller, 12-item sets, where
there was less power to detect by-item random slope variance. In contrast, performance was
relatively sound for backward models even at relatively low α levels, as well as for the “best
path” models regardless of whether the direction was backward or forward. It is notable that
these sounder data-driven approaches showed only small gains in power over maximal
models (indicated by the dashed line in the background of the figure).

From the point of view of overall Type I error rate, we can rank the analyses for both within-
and between-items designs in order of desirability:

8This anticonservativity stems from underestimation of the variation between subjects and/or items, as is suggested by generally better
performance of the maximal model in the 24- as opposed to 12-item simulations. In the appendix, we show that as additional subjects
and items are added, the Type I error rate for LMEMs with random slopes decreases rapidly, while for random-intercepts-only models,
it actually increases.
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1. min-F′, maximal LMEMs, “near-maximal” LMEMs missing within-unit random
intercepts or random correlations, and model selection LMEMs using backward
selection and/or testing slopes using the “best path” algorithm;

2. F1 × F2;

3. forward-stepping LMEMs that test slopes in an arbitrary sequence;

4. F1 and random-intercepts-only LMEMs.

It would also seem natural to draw a line separating analyses that have an “acceptable” rate
of false rejections (i.e., 1–2) from those with a rate that is intolerably high (i.e., 3–4).
However, it is insufficient to consider only the overall Type I error rate, as there may be
particular problem areas of the parameter space where even the best analyses perform poorly
(such as when particular variance components are very small or large). If these areas are
small, they will only moderately affect the overall error rate. This is a problem because we
do not know where the actual populations that we study reside in this parameter space; it
could be that they inhabit these problem areas. It is therefore also useful to examine the
performance metrics as a function of the critical random variance parameters that are
confounded with the treatment effect, i.e., τ 11

2 and ω00 2 for betweenitems designs and τ11
2

and ω11
2 for within-items designs. These are given in the “heatmap” displays of Figures 3–

5.

Viewing Type I error rate as a function of the critical variances, it can be seen that of models
with predetermined random effects structures, only min-F′ maintained the Type I error rate
consistently below the α-level throughout the parameter space (Figure 3 and 4). Min-F′
became increasingly conservative as the relevant random effects got small, replicating
Forster & Dickinson (1976). Maximal LMEMs showed no such increasing conservativity,
performing well overall, especially for 24-item datasets. The near-maximal LMEMs also
performed relatively well, though for within-item datasets, models missing withinunit
intercepts became increasingly conservative as slope variances got small. Random-
intercepts-only LMEMs degraded extremely rapidly as a function of random slope
parameters; even at very low levels of random-slope variability, the Type I error rate was
unacceptably high.

In terms of Type I error, the average performance of the widely adopted F1 × F2 approach is
comparable to that of maximal LMEMs (slightly less anticonservative for 12 items, slightly
more anti-conservative for 24 items). But in spite of this apparent good performance, the
heatmap visualization indicates that the approach is fundamentally unsound. Specifically, F1
× F2 shows both conservative and anticonservative tendencies: as slopes get small, it
becomes increasingly conservative, similar to min-F′; as slopes get large, it becomes
increasingly anticonservative, similar to random-intercepts-only LMEMs, though to a lesser
degree. This increasing anticonservativity reflects the fact that (as noted in the introduction)
subject random slopes are not accounted for in the F2 analysis, nor are item random slopes
accounted for in the F1 analysis (Clark, 1973). The fact that both F1 and F2 analyses have to
pass muster keeps this anti-conservativity relatively minimal as long as subject and/or item
slope variances are not large, but the anti-conservativity is there nonetheless.

Figure 5 indicates that despite the overall good performance of some of the data-driven
approaches, these models become anticonservative when critical variances are small and
nonzero.9 This is because as slope variances become small, slopes are less likely to be kept
in the model. This anticonservativity varies considerably with the size of the dataset and the
algorithm used (and of course should also vary with the α-level, not depicted in the figure).
The anticonservativity is present to a much stronger degree for the 12-item than for the 24-
item datasets, reflecting the fact that the critical variances are harder to detect with smaller
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data sets. The forward stepping models that tested slopes in an arbitrary sequence were the
most anticonservative by far. The model testing the by-subject slope first performed most
poorly when that slope variance was small and the by-item slope variance was large,
because in such cases the algorithm would be likely to stop at a random-intercepts-only
model, and thus would never test for the inclusion of the by-item slope. By the same
principles, the forward model that tested the by-item slope first showed worst performance
when the by-item slope variance was small and the by-subject slope variance large.

In sum, insofar as one is concerned about drawing conclusions likely to generalize across
subjects and items, only min-F′ and maximal LMEMs can be said to be fundamentally
sound across the full parameter space that we surveyed. F1-only and random-intercepts-only
LMEMs are fundamentally flawed, as are forward stepping models that follow an arbitrary
sequence, especially in cases with few observations. All other LMEMs with model selection
showed small amounts of anticonservativity when slopes were small, even when the slopes
were tested in a principled sequence; however, this level of anticonservativity is probably
tolerable for reasonably-sized datasets (so long as there is not an extensive amount of
missing data; see online appendix). The widely-used F1 × F2 approach is flawed as well, but
may be acceptable in cases where maximal LMEMs are not applicable. The question now is
which of these analyses best maximizes power (Tables 5 and 6; Figures 3 and 4).

Overall, maximal LMEMs showed greater power than min-F′. When corrected for their
slight anticonservativity, maximal LMEMs exhibited power that was between 4% and 6%
higher for the between-items design than the uncorrected values for min-F′. Although there
does not seem to be a large overall power advantage to using maximal LMEMs for between-
item designs, the visualization of power in terms of the critical variances (Figure 3) suggests
that the power advantage increases slightly as the critical variances become small. In
contrast, maximal LMEMs showed a considerable power advantage for withinitem designs,
with corrected power levels for α=.05 (.433 and .592) that were 16% to 32% higher than the
uncorrected power values for min-F′ (.327 and .512). This additional power of maximal
LMEMs cannot be attributed to the inclusion of cases where slopes were removed due to
nonconvergence, since in the worst case (the within-item dataset with 12 items) virtually all
simulation runs (99.613%) converged with the maximal structure.

Note that the corrected power for random-intercepts-only LMEMs was actually below that
of maximal LMEMs (between-items: .216 and .314 for 12 and 24 items respectively; within-
items: .380 and .531). This means that most of the apparent additional power of maximal
LMEMs over min-F′ is real, while most of the apparent power of random-intercepts-only
LMEMs is, in fact, illusory.

Our results show that it is possible to use a data-driven approach to specifying random
effects in a way that minimizes Type I error, especially with “best-path” model selection.
However, the power advantage of this approach for continuous data, even when uncorrected
for anticonservativity, is very small. In short, datadriven approaches can produce reasonable
results, but their very small benefit to power may not be worth the additional uncertainty
they introduce as compared to a design-driven approach.

The above analyses suggest that maximal LMEMs are in no way conservative, at least for
the analysis of continuous data. To dispel this suspicion entirely it is illustrative to consider

9Some readers might wonder why the heatmaps for these models show apparent anticonservative behavior at the bottom left corner,
where the slopes are zero, since performance at this point should be close to the nominal level. This is an artifact of the smoothing
used in generating the heatmaps, which aids in the detection of large trends at the expense of small details. The true underlying pattern
is that the anticonservativity ramps up extremely quickly from the point where the slope variances are zero to reach its maximal value,
before beginning to gradually taper away (as the variances become more reliably detected).
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the performance of maximal LMEMs in an extreme case for which their power should be at
its absolute worst: namely, when the random slope variance is negligible, such that the
underlying process is best described by a random-intercepts-only LMEM. Comparing the
performance of maximal LMEMs to random-intercepts-only LMEMs in this circumstance
can illustrate the highest “cost” that one could possibly incur by using maximal LMEMs in
the analysis of continuous data. Maximal LMEMs might perform badly in this situation
because they overfit the underlying generative process, loosely akin to assuming too few
degrees of freedom for the analysis rather than too many. But they might also perform
tolerably well to the extent that the estimation procedure for LMEMs can detect that a
random effect parameter is effectively zero. In this situation, it is additionally informative to
compare the power of maximal LMEMs not only to random-intercepts-only LMEMs, but
also to that of min-F′, since min-F′ is generally regarded as conservative, as well as to that
of F1 × F2, since F1 × F2 is generally regarded as sufficiently powerful. If maximal LMEMs
perform better than min-F′ and at least as well as F1 × F2, then that would strongly argue
against the idea that maximal LMEMs are unduly conservative. To address this, we
conducted an additional set of simulations, once again using the data-generating parameters
in Table 2, except that we set all random-slope variances to 0, so that the model generating
the data was a random-intercepts-only LMEM; also, we varied the true fixed effect size
continuously from 0 to 0.8.

The results were unambiguous (Figure 6): even in this worst case scenario for their power,
maximal LMEMs consistently showed higher power than min-F′ and even F1 × F2; indeed,
for within-items designs, they far outstripped the performance of F1 × F2, an approach
whose power is rarely questioned. For between-items designs, maximal LMEMs incurred a
negligible cost relative to random-intercepts-only LMEMs, while for within-items designs,
there was only a minor cost that diminished as the number of items increased. Overall, the
cost/benefit analysis favors maximal LMEMs over other approaches. Note that over the four
different sets of simulations in Figure 6, our maximal LMEM analysis procedure stepped
down to a random-intercept model (due to convergence problems) on less than 3% of runs.
Thus, these results indicate good performance of the estimation algorithm when random
slope variances are zero.

The case of within-item designs with few items showed the biggest difference in power
between random-intercepts-only models and maximal LMEMs. The size of this difference
indicates the maximum benefit that could be obtained, in principle, by using a data-driven
approach. However, in practice, the ability of a data-driven approach to detect random slope
variation diminishes as the dataset gets small. In other words, it is in just this situation that
the power for detecting random slope variation is at its worst (see Figure 4 and the 12-item
figures in the Appendix); thus, in this case, the payoff in terms of statistical power over the
maximal approach does not outweigh the additional risk of anticonservativity.

In sum, our investigation suggests that for confirmatory hypothesis testing, maximal
LMEMs yield nearly optimal performance: they were better than all other approaches except
min-F′ at maintaining the Type I error rate near the nominal level. Furthermore, unlike F1 ×
F2 and certain model selection approaches, maximal LMEMs held the error rate relatively
close to nominal across the entirety of the parameter space. And once corrected for
anticonservativity, no other technique exceeded the power of maximal LMEMs. “best-path”
model selection also kept Type I errors largely at bay, but it is not clear whether they lead to
gains in statistical power.

The near-optimal performance of maximal models may be explained as follows. Including
the random variances that could potentially be confounded with the effect of interest is
critical to controlling the Type I error rate, by ensuring that the assumption of conditional

Barr et al. Page 21

J Mem Lang. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



independence is met. Including random variances that are not confounded with that effect
(e.g., within-unit intercept variances) is not critical for reducing Type I error, but
nonetheless reduces noise and thus increases the sensitivity of the test. Including only those
random components that reduce noise but not those that are confounded with the effect of
interest will lead to drastically anticonservative behavior, as seen by random-intercepts-only
LMEMs, which had the worst Type I error rates overall.

General Discussion
Recent years have witnessed a surge in the popularity of LMEMs in psycholinguistics and
related fields, and this growing excitement is well deserved, given the great flexibility of
LMEMs and their ability to model the generative process underlying one’s data. However,
there has been insufficient appreciation of how choices about random effect structure impact
generalizability, and no accepted standards for the use of LMEMs in confirmatory
hypothesis testing are currently in place. We have emphasized that specifying random
effects in LMEMs involves essentially the same principles as selecting an analysis technique
from the menu of traditional ANOVA-based options. The standard for ANOVA has been to
assume that if an effect exists, subjects and/or items will vary in the extent to which they
show that effect. This is evident in the fact that researchers using ANOVA have tended to
assume the maximal (or near-maximal) random effects structure justified by the design.

Our survey of various analysis strategies for confirmatory hypothesis testing on data with
crossed random effects clearly demonstrates that the strongest contenders in avoiding anti-
conservativity are maximal LMEMs and min-F′ (see below for related discussion of data-
driven approaches). These were the only approaches that consistently showed nominal or
near-nominal Type I error rates throughout the parameter space. Although maximal LMEMs
showed some minor anticonservativity, our analysis has uncovered a hidden advantage of
maximal LMEMs over ANOVA-based approaches. This advantage was evident in the
diverging performance of these approaches as a function of the critical variances (the
variances confounded with the effect of interest). As these variances became small, maximal
LMEMs showed better retention of their power relative to ANOVA-based approaches,
which became increasingly conservative. In the limit, when the generative process did not
include any random slope variation, the power of maximal LMEMs substantially outstripped
that of ANOVA-based approaches, even F1 × F2. An apparent reason for this power
advantage of maximal LMEMs is their simultaneous accommodation of by-subject and by-
item random variation. ANOVA-based approaches are based on two separately calculated
statistics, one for subjects and one for items, each of which does not control for the variance
due to the other random factor. Specifically, the prominent decrease in power for ANOVA-
based approaches when critical random variances are small could be due to the fact that
separate F1 × F2 analyses cannot distinguish between random intercept variation on the one
hand and residual noise on the other: by-item random intercept variation is conflated with
trial-level noise in the F1 analysis, and by-subject random intercept variation is conflated
with trial-level noise in the F2 analysis. Maximal LMEMs do not suffer from this problem.

The performance of LMEMs depended strongly on assumptions about random effects. This
clearly implies that researchers who wish to use LMEMs need to be more attentive both to
how they specify random effects in their models, and to the reporting of their modeling
efforts. Throughout this article, we have argued that for confirmatory analyses, a design-
driven approach is preferable to a datadriven approach for specifying random effects. By
using a maximal model, one adheres to the longstanding (and eminently reasonable)
assumption that if an effect exists, subjects and/or items will most likely vary in the extent to
which they show that effect, whether or not that variation is actually detectable in the
sample. That being said, it seems likely that effect variation across subjects and/or items

Barr et al. Page 22

J Mem Lang. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



differs among research areas. Perhaps there are even effects for which such variation is
effectively negligible. In such cases, one might argue that a maximal LMEM is “overfitting”
the data, which is detrimental to power. However, our simulations (Figure 6) show that
maximal LMEMs would not be unreasonably conservative in such cases, at least for
continuous data; indeed, they are far more powerful than even F1 × F2.

Many researchers have used a data-driven approach to determining the random effects
structure associated with confirmatory analysis of a fixed effect of particular interest.10 Our
simulations indicate that it is possible to obtain reasonable results with such an approach, if
generous criteria for the inclusion of random effects are used. However, it is important to
bear in mind that data-driven approaches always imply some sort of tradeoff between Type-I
and Type-II error probability, and that it is difficult to precisely quantify the tradeoff that
one has taken. It is partly for this reason that the use of data-driven approaches is
controversial, even among statistical experts (Bolker et al., 2009; see also Harrell, 2001 for
more general concerns regarding model selection). Our results show that data-driven
approaches yield varying performance in terms of Type I error depending on the criteria and
algorithm used, the size of the dataset, the extent of missing data, and the design of the study
(which determines the number of random effect terms that need to be tested). It may be
difficult for a reader lacking access to the original data to to quantify the resulting Type I/II
error tradeoff, even when the inclusion criteria are known. Still, there are situations in which
data-driven approaches may be justifiable, such as when the aims are not fully confirmatory,
or when one experiences severe convergence problems (see below).

Overall, our analysis suggests that, when specifying random effects for hypothesis testing
with LMEMs, researchers have been far too concerned about overfitting the data, and not
concerned enough about underfitting the design. In fact, it turns out overfitting the data with
a maximal model has only minimal consequences for Type I error and power—at least for
the simple designs for typical psycholinguistic datasets considered here—whereas
underfitting the design can incur levels of anticonservativity ranging anywhere from minor
(best-path model selection) to extremely severe (random-intercepts-only LMEMs) with little
real benefit to power. In the extreme, random-intercepts-only models have the worst
generalization performance of any approach to date when applied to continuous data with
within-subjects and within-item manipulations. This goes to show that, for such designs,
crossing of random by-subject and by-item intercepts alone is clearly not enough to ensure
proper generalization of experimental treatment effects (a misconception that is
unfortunately rather common at present). In psycholinguistics, there are few circumstances
in which we can know a priori that a random-intercepts-only model is truly justified (see
further below). Of course, if one wishes to emphasize the absence of evidence for a given
effect, there could be some value in demonstrating that the effect is statistically insignificant
even when a random-intercepts-only model is applied.

Our general argument applies in principle to the analysis of non-normally distributed data
(e.g., categorical or count data) because observational dependencies are mostly determined
by the design of an experiment and not by the particular type of data being analyzed.
However, practical experience with fitting LMEMs to datasets with categorical response
variables, in particular with mixed logit models, suggests more difficulty in getting maximal
models to converge. There are at least three reasons for this. First, the estimation algorithms

10We note here that arguments for data-driven effects to random-effects structure have been made within the ANOVA literature as
well (e.g., Raaijmakers et al., 1999), and that these arguments have not won general acceptance within the general psycholinguistics
community. Furthermore, part of the appeal of those arguments was the undue conservativity of min-F′; since maximal LMEMs do
not suffer from this problem, we take the arguments for data-driven random-effects specification with them to be correspondingly
weaker.
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for categorical responses differ from the more developed procedures in estimating
continuous data. Second, observations on a categorical scale (e.g., whether a response is
accurate or inaccurate) typically carry less information about parameters of interest than
observations on a continuous scale (e.g., response time). Third, parameter estimation for any
logistic model is challenging when the underlying probabilities are close to the boundaries
(zero or one), since the inverse logit function is rather flat in this region. So although our
arguments and recommendations (given below) still apply in principle, they might need to
be modified for noncontinuous cases. For example, whereas we observed for continuous
data that cases in which the random effect structure “overfit” the data had minimal impact
on performance, this might not be the case for categorical data, and perhaps data-driven
strategies would be more justifiable. In short, although we maintain that design-driven
principles should govern confirmatory hypothesis testing on any kind of data, we
acknowledge that there is a pressing need to evaluate how these principles can be best
applied to categorical data.

In our investigation we have only looked at a very simple one-factor design with two levels.
However, we see no reason why our results would not generalize to more complex designs.
The principles are the same in higher-order designs as they are for simple one-factor
designs: any main effect or interaction for which there are multiple observations per subject
or item can vary across these units, and, if this dependency is not taken into account, the p-
values will be biased against the null hypothesis.11 The main difference is that models with
maximal random effects structure would be less likely to converge as the number of within-
unit manipulations increases. In the next section, we offer some guidelines for how to cope
with nonconverging models.

Producing generalizable results with LMEMs: Best practices
Our theoretical analyses and simulations lead us to the following set of recommended “best
practices” for the use of LMEMs in confirmatory hypothesis testing. It is important to be
clear that our recommendations may not apply to situations where the overarching goal is
not fully confirmatory. Furthermore, we offer these not as the best possible practices—as
our understanding of these models is still evolving—but as the best given our current level
of understanding.

Identifying the maximal random effects structure
Because the same principles apply for specifying subject and item random effects, to
simplify the exposition in this section we will only talk about “by-unit” random effects,
where “unit” stands in for the sampling unit under consideration (subjects or items). As we
have emphasized throughout this paper, the same considerations come into play when
specifying random effects as when choosing from the menu of traditional analyses. So the
first question to ask oneself when trying to specify a maximal LMEM is: which factors are
within-unit, and which are between? If a factor is between-unit, then a random intercept is
usually sufficient. If a factor is within-unit and there are multiple observations per treatment
level per unit, then you need a by-unit random slope for that factor. The only exception to
this rule is when you only have a single observation for every treatment level of every unit;
in this case, the random slope variance would be completely confounded with trial-level
error. It follows that a model with a random slope would be unidentifiable, and so a random
intercept would be sufficient to meet the conditional independence assumption. For datasets

11To demonstrate this, we conducted Monte Carlo simulation of a 24-subject, 24-item 2×2 within/within experiment with main fixed
effects, no fixed interaction, and random by-subject and by-item interactions. When analyzed with random-intercepts-only LMEMs,
we found a Type I error rate of .69; with maximal LMEMs the Type I error rate was .06. A complete report of these simulations
appears in the supplementary appendix.
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that are unbalanced across the levels of a within-unit factor, such that some units have very
few observations or even none at all at certain levels of the factor, one should at least try to
estimate a random slope (but see the caveats below about how such a situation may
contribute to nonconvergence). Finally, in cases where there is only a single observation for
every unit, of course, not even a random intercept is needed (one can just use ordinary
regression as implemented in the R functions 1m() and g1m()).

The same principles apply to higher-order designs involving interactions. In most cases, one
should also have by-unit random slopes for any interactions where all factors comprising the
interaction are within-unit; if any one factor involved in the interaction is between-unit, then
the random slope associated with that interaction cannot be estimated, and is not needed.
The exception to this rule, again, is when you have only one observation for every subject in
every cell (i.e., unique combination of factor levels). If some of the cells for some of your
subjects have only one or zero observations, you should still try to fit a random slope.

Random effects for control predictors
One of the most compelling aspects of mixed-effects models is the ability to include almost
any control predictor—by which we mean a property of an experimental trial which may
affect the response variable but is not of theoretical interest in a given analysis—desired by
the researcher. In principle, including control variables in an analysis can rule out potential
confounds and increase statistical power by reducing residual noise. Given the investigations
in the present paper, however, the question naturally arises: in order to guard against anti-
conservative inference about a predictor X of theoretical interest, do we need by-subject and
by-item random effects for all our control predictors C as well? Suppose, after all, if there is
no underlying fixed effect of C but there is a random effect of C—could this create anti-
conservative inference in the same way as omitting a random effect of X in the analysis
could? To put this issue in perspective via an example, Kuperman et al. (2010) include a
total of eight main effects in an LME analysis of fixation durations in Dutch reading; for the
interpretation of each main effect, the other seven may be thought of as serving as controls.
Fitting eight random effects, plus correlation terms, would require estimating 72 random
effects parameters, 36 by-subject and 36 by item. One would likely need a huge dataset to be
able to estimate all the effects reliably (and one must also not be in any hurry to publish, for
even with huge amounts of data such models can take extremely long to converge).

To our knowledge, there is little guidance on this issue in the existing literature, and more
thorough research is needed. Based on a limited amount of informal simulation, however
(reported in the online Appendix), we propose the working assumption that it is not essential
for one to specify random effects for control predictors to avoid anticonservative inference,
as long as interactions between the control predictors and the the factors of interest are not
present in the model (or justified by the data). Once again, we emphasize the need for future
research on this important issue.

Coping with failures to converge
It is altogether possible and unfortunately common that the estimation procedure for
LMEMs will not converge with the full random-effects specification. In our experience, the
likelihood that a model will converge depends on two factors: (1) the extent to which
random effects in the model are large, and (2) the extent to which there are sufficient
observations to estimate the random effects. Generally, as the sizes of the subject and item
samples grow, the likelihood of convergence will increase. Of course, one does not always
have the luxury of using many subjects and items. And, although the issue seems not to have
been studied systematically, it is our impression that fitting maximal LMEMs is less often
successful for categorical data than for continuous data.
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It is important, however, to resist the temptation to step back to randomintercepts-only
models purely on the grounds that the maximal model does not converge. When the
maximal LMEM does not converge, the first step should be to check for possible
misspecifications or data problems that might account for the error. It may also help to use
standard outlier removal methods and to center or sum-code the predictors. In addition, it
may sometimes be effective to increase the maximum number of iterations in the estimation
procedure.

Once data and model specification problems have been eliminated, the next step is to ask
what simplification of one’s model’s random-effects structure is the most defensible given
the goals of one’s analysis. In the common case where one is interested in a minimally anti-
conservative evaluation of the strength of evidence for the presence of an effect, our results
indicate that keeping the random slope for the predictor of theoretical interest is important: a
maximal model with no random correlations or even missing within-unit random intercepts
is preferable to one missing the critical random slopes. Our simulations suggest that
removing random correlations might be a good strategy, as this model performed similarly
to maximal LMEMs.12

However, when considering this simplification strategy, it is important to first check
whether the nonconvergence might be attributable to the presence of a few subjects (or
items) with small numbers of observations in particular cells. If this is the case, it might be
preferable to remove (or replace) these few subjects (or items) rather than to remove an
important random slope from the model. For example, Jaeger et al. (2011, section 3.3)
discuss a case involving categorical data in which strong evidence for random slope
variation was present when subjects with few observations were excluded, but not when
they were kept in the data set.

For more complex designs, of course, the number of possible random-effects structures
proliferate. Research is needed to evaluate the various possible strategies that one could
follow when one cannot fit a maximal model. Both our theoretical analysis and simulations
suggest a general rule of thumb: for whatever fixed effects are of critical interest, the
corresponding random effects should be present in that analysis. For a study with multiple
fixed effects of theoretical interest, and for which a model including random effects for all
these key effects does not converge, separate analyses can be pursued. For example, in a
study where confirmatory analysis of fixed effects for X1 and X2 is desired, two separate
analyses may be in order—one with (at least) random slopes for X1 to test the evidence for
generalization of X1, and another with (at least) random slopes for X2 to test X2. (One would
typically still want to include the fixed effects for X1 and X2 in both models, of course, for
the established reason that multiple regression reveals more information than two separate
regressions with single predictors; and see also the previous section on random effects for
control predictors.)

One fallback strategy for coping with severe convergence problems is to use a data-driven
approach, building up in a principled way from a very simple model (e.g., a model with all
fixed effects but only a single by-subjects random intercept, or even no random effects at
all). Our simulations indicate that it is possible to use forward model selection in a way that
guards against anticonservativity if, at each step, one tests for potential inclusion all random
effects not currently in the model, and include any that pass at a relatively liberal α-level
(e.g., .20; see Method section for further details about the “best path” algorithm). We warn
the reader that, with more complex designs, the space of possible random-effects

12We remind the reader that the no-correlation and RS-only models are sensitive to the coding used for the predictor; our theoretical
analysis and simulation results indicate that deviation coding is generally preferable to treatment coding; see online Appendix.
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specifications is far richer than typically appreciated, and it is easy to design a model-
selection procedure that fails to get to the best model. As just one example, in a “within” 2 ×
2 design with factors A and B, it is possible to have a model with a random interaction term
but no random main-effect slopes. If one is interested in the fixed-effect interaction but only
tests for a random interaction if both main-effect random slopes are already in the model,
then if the true generative process underlying the data has a large random interaction but
negligible random main-effect slopes then forward model selection will be badly anti-
conservative. Thus it is critical to report the modeling strategy in detail so that it can be
properly evaluated.

A final recommendation is based on the fact that maximal LMEMs will be more likely to
converge when the random effects are large, which is exactly the situation where F1 × F2 is
anti-conservative. This points toward a possible practice of trying to fit a maximal LMEM
wherever possible, and when it is not, to drop the concept of crossed random effects
altogether and perform separate by-subject and by-item LMEMs, similar in logic to F1 × F2,
each with appropriate maximal random effect structures. In closing, it remains unresolved
which of these strategies for dealing with nonconvergence is ultimately most beneficial, and
we hope that future studies will investigate their impact on generalizability more
systematically.

Computing p-values
There are a number of ways to compute p-values from LMEMs, none of which is
uncontroversially the best. Although Baayen et al. (2008) recommended using Monte Carlo
Markov Chain (MCMC) simulation, this is not yet possible in lme4 for models with
correlation parameters, and our simulations indicate that this method for obtaining p-values
is more anticonservative than the other two methods we examined (at least using the current
implementation and defaults for MCMC sampling in lme4 and languageR).13 Also, it is
important to note that MCMC sampling does nothing to mitigate the anticonservativity of
random-intercept-only LMEMs when random slope variation is present.

For obtaining p-values from analyses of typically-sized psycholinguistic datasets—where
the number of observations usually far outnumbers the number of model parameters—our
simulations suggest that the likelihood-ratio test is the best approach. To perform such a test,
one compares a model containing the fixed effect of interest to a model that is identical in all
respects except the fixed effect in question. One should not also remove any random effects
associated with the fixed effect when making the comparison. In other words, likelihood-
ratio tests of a fixed effect with k levels should have only k − 1 degrees of freedom (e.g., one
degree of freedom for the dichotomous single-factor studies in our simulations). We have
seen cases where removing the fixed effect causes the comparison model to fail to converge.
Under these circumstances, one might alter the comparison model following the procedures
described above to attempt to get it to converge, and once convergence is achieved, compare
it to an identical model including the fixed effect. Note that our results indicate that the
concern voiced by Pinheiro & Bates (2000) regarding the anti-conservativity of likelihood-
ratio tests to assess fixed effects in LMEMs is probably not applicable to datasets of the
typical size of a psycholinguistic study (see also Baayen et al., 2008, footnote 1).

13MCMC simulations for random-slopes and more complex mixed-effects models can be run with general-purpose graphical models
software such as WinBUGS (Lunn et al., 2000), JAGS (Plummer, 2003), or MCMCglmm (Hadfield, 2010). This approach can be
delicate and errorprone, however, and we do not recommend it at this point as a general practice for the field.
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Reporting results
It is not only important for researchers to understand the importance of using maximal
LMEMs, but also for them to articulate their modeling efforts with sufficient detail so that
other researchers can understand and replicate the analysis. In our informal survey of papers
published in JML, we sometimes found nothing more than a mere statement that researchers
used “a mixed effects model with random effects for subjects and items.” This could be
anything from a randomintercepts-only to a maximal LMEM, and obviously, there is not
enough information given to assess the generalizability of the results. One needs to provide
sufficient information for the reader to be able to recreate the analyses. One way of
satisfying this requirement is to report the variance-covariance matrix, which includes all the
information about the random effects, including their estimates. This is useful not only as a
check on the random effects structure, but also for future meta-analyses. A simpler option is
to mention that one attempted to use a maximal LMEM and, as an added check, also state
which factors had random slopes associated with them. If the random effects structure had to
be simplified to obtain convergence, this should also be reported, and the simplifications that
were made should be justified to the extent possible.

If it is seen as necessary or desireable in a confirmatory analysis to determine the random
effects structure using a data-driven approach, certain minimal guidelines should be
followed. First, it is critical to report the criteria that have been used, including the α-level
for exclusion/inclusion of random slopes and the order in which random slopes were tested.
Furthermore, authors should explicitly report the changed assumptions about the generative
process underlying the data that result from excluding the random slope (rather than just
stating that the slopes did not “improve model fit”), and should do so in non-technical
language that non-experts can understand. Readers with only background in ANOVA will
not understand that removing the random slope corresponds to pooling error across strata in
a mixed-model ANOVA analysis. It is therefore preferable to clearly state the underlying
assumption of a constant effect, e.g., “by excluding the random slope for the priming
manipulation, we assume that the priming effect is invariant across subjects (or items) in the
population.”

Concluding remarks
In this paper we have focused largely on confirmatory analyses. We hope this emphasis will
not be construed as an endorsement of confirmatory over exploratory approaches.
Exploratory analysis is an important part of the cycle of research, without which there would
be few ideas to confirm in the first place. We do not wish to discourage people from
exploiting all the many new and exciting opportunities for data analysis that LMEMs offer
(see Baayen, 2008 for an excellent overview). Indeed, one of the situations in which the
exploratory power of LMEMs can be especially valuable is in performing a “post-mortem”
analysis on confirmatory studies that yield null or ambiguous results. In such circumstances,
one should pay careful attention to the estimated random effects covariance matrices from
the fitted model, as they provide a map of one’s ignorance. For instance, when a predicted
fixed effect fails to reach significance, it is informative to check whether subjects or items
have larger random slopes for that effect, and to then use whatever additional data one has
on hand (e.g., demographic information) to try to reduce this variability. Such investigation
can be extremely useful in planning further studies (or in deciding whether to cut one’s
losses), though of course such findings should be interpreted with caution, and their post-hoc
nature should be honestly reported (Wagenmakers et al., in press).
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At a recent workshop on mixed-effects models, a prominent psycholinguist14 memorably
quipped that encouraging psycholinguists to use linear mixed-effects models was like giving
shotguns to toddlers. Might the field be better off without complicated mixed-effects
modeling, and the potential for misuse it brings? Although we acknowledge this complexity
and its attendant problems, we feel that one of the reasons why researchers have been using
mixed-effects models inappropriately in confirmatory analyses is due to the misconception
that they are something entirely new, a misconception that has prevented seeing the
continued applicability of their previous knowledge about what a generalizable hypothesis
test requires. As we hope to have shown, by and large, researchers already know most of
what is needed to use LMEMs appropriately. So long as we can continue to adhere to the
standards that are already implicit, we therefore should not deny ourselves access to this new
addition to the statistical arsenal. After all, when our investigations involve stalking a
complex and elusive beast (whether the human mind or the feline palate), we need the most
powerful weapons at our disposal.
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Figure 1.
Example RT data (open symbols) and model predictions (filled symbols) for a hypothetical
lexical decision experiment with two within-subject/between-item conditions, A (triangles)
and B (circles), including four subjects (S1–S4) and four items (I1–I4). Panel (a) illustrates a
model with no random effects, considering only the baseline average RT (response to word
type A) and treatment effect; panel (b) adds random subject intercepts to the model; panel
(c) adds by-subject random slopes; and panel (d) illustrates the additional inclusion of by-
item random intercepts. Panel (d) represents the maximal random-effects structure justified
for this design; any remaining discrepancies between observed data and model estimates are
due to trial-level measurement error (esi).
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Figure 2.
Performance of model selection approaches for within-items designs, as a function of
selection algorithm and α level for testing slopes. The p-values for all LMEMs in the figure
are from likelihood-ratio tests. Top row: 12 items; bottom row: 24 items. BB = Backwards,
“best path”; BI = Backwards, Item-Slope First; BS = Backwards, Subject-Slope First; FB =
Forwards, “best path”; FI = Forwards, Item-Slope First; FS = Forwards, Subject-Slope First.
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Figure 3.
Type I error (top two rows) and Power (bottom two rows) for between-items design with 24
items, as a function of by-subject random slope variance τ11

2 and by-item random intercept
variance ω00

2. The p-values for all LMEMs in the figure are from likelihood-ratio tests. All
model selection approaches in the figure had α = .05 for slope inclusion. The heatmaps from
the 12-item datasets show similar patterns, and are presented in the appendix.
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Figure 4.
Type I error (top three rows) and power (bottom three rows) for within-items design with 24
items, as a function of by-subject random slope variance τ11

2 and by-item random slope
variance ω11

2 The p-values for all LMEMs in the figure are from likelihood-ratio tests. All
model selection approaches in the figure had α = .05 for slope inclusion. The heatmaps from
the 12-item datasets show similar patterns, and are presented in the online appendix.
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Figure 5.
Type I error (top two rows) and power (bottom two rows) for design-driven approaches on
within-items data, as a function of by-subject random slope variance τ11

2 and by-item
random slope variance ω11

2 The p-values for all LMEMs in the figure are from likelihood-
ratio tests. All approaches in the figure tested random slopes at α = .05.
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Figure 6.
Statistical power for maximal LMEMs, random-intercepts-only LMEMs, min-F′, and F1 ×
F2 as a function of effect size, when the generative model underlying the data is a random-
intercepts-only LMEM.
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Table 1

Summary of models considered and associated 1mer syntax.

No. Model lmer model syntax

(1) Ysi = β0 + β1Xi + esi n/a (not a mixed-effects model)

(2) Ysi = β0 + S0s + β1Xi + esi Y~X+(1|Subject)

(3) Ysi = β0 + S0s + (β1 + S1s)Xi + esi Y~X+(1+X|Subject)

(4) Ysi = β0 + S0s + I0i + (β1 + S1s)Xi + esi Y~X+(1+X|Subject)+ (1 |Item)

(5) Ysi = β0 + S0s + I0i + β1Xi + esi Y~X+(1|Subject)+(1|Item)

(6)* As (4), but S0s, S 1s independent Y~X+(l|Subject)+(0+X|Subject)+(1| Item)*

(7)* Ysi = β0 + I0i + (β1 + S1s)Xi + esi Y~X+(0+X|Subject) + (1|Item)*

*
Performance is sensitive to the coding scheme for variable × (see Appendix)
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Table 2

Ranges for the population parameters; ~ U(min, max) means the parameter was sampled from a uniform
distribution with range [min, max].

Parameter Description Value

β0 grand-average intercept ~U(−3,3)

β1 grand-average slope 0 (H0 true) or .8 (H1 true)

τ00
2 by-subject variance of S0s ~ U(0,3)

τ11
2 by-subject variance of S1s ~U(0,3)

ρS correlation between (S0s, S1s) pairs ~U(−.8,.8)

ω00
2 by-item variance of I0i ~ U(0,3)

ω11
2 by-item variance of I1i ~ U(0,3)

ρI correlation between (I0i, I1i) pairs ~U(−.8,.8)

σ2 residual error ~ U(0,3)

pmissing proportion of missing observations ~ U(.00, .05)
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Table 3

Analyses performed on simulated datasets.

Analysis Test statistics

min-F′ min-F′

F1 F1

F1 ×F2 F1F2

Maximal LMEM t, χ2
LR

LMEM, Random Intercepts Only t, χ2
LR, MCMC

LMEM, No Within-Unit Intercepts (NWI) t, χ2
LR

Maximal LMEM, No Random Correlations (NRC) t, χ2
LR, MCMC

Model selection (multiple variants) t, χ2
LR
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Table 4

Model selection algorithms for within-items designs.

Model Direction Order

FS Forward by-subjects slope then by-items

FI Forward by-items slope then by-subjects

FB Forward “best path” algorithm

BS Backward by-subjects slope then by-items

BI Backward by-items slope then by-subjects

BB Backward “best path” algorithm
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