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Abstract
It has been repeatedly shown that in case-control association studies, analysis of a secondary trait
which ignores the original sampling scheme can produce highly biased risk estimates. Although a
number of approaches have been proposed to properly analyze secondary traits, most approaches
fail to reproduce the marginal logistic model assumed for the original case-control trait and/or do
not allow for interaction between secondary trait and genotype marker on primary disease risk. In
addition, the flexible handling of covariates remains challenging. We present a general
retrospective likelihood framework to perform association testing for both binary and continuous
secondary traits which respects marginal models and incorporates the interaction term. We provide
a computational algorithm, based on a reparameterized approximate profile likelihood, for
obtaining the maximum likelihood (ML) estimate and its standard error for the genetic effect on
secondary trait, in presence of covariates. For completeness we also present an alternative pseudo-
likelihood method for handling covariates. We describe extensive simulations to evaluate the
performance of the ML estimator in comparison with the pseudo-likelihood and other competing
methods.

2 Introduction
The retrospective case-control design is one of the most important tools for epidemiology,
and for rare diseases/traits may offer tremendous savings in time and expense compared to a
prospective design. Even so, case-control designs remain costly, and efficiency is further
maximized by gathering additional clinical phenotypes/traits for the sampled individuals.
We refer to the dichotomous case/control variable as the primary trait (or phenotype), and
other traits, which may be discrete or continuous, as secondary. Methods for analyzing such
data have received considerable recent attention due to the availability of genome-wide
association (GWA) datasets, which often follow a case-control design and include numerous
secondary traits, which may be correlated with the primary trait (Frayling et al., 2007;
Weedon et al., 2008; Spitz et al., 2008). In such studies the risk variables of main interest are
genotypes of single nucleotide polymorphisms (SNPs), with possible additional covariate
effects. The approaches described here apply generally to secondary analysis of case-control
data, but the notation and examples are applicable to genetic association studies.

It is widely understood that, for case-control designs, a (prospective) analysis which ignores
the sampling scheme yields consistent estimates of the odds ratio for disease risk (e.g., using
logistic regression models (Prentice and Pyke, 1979)). For the analysis of secondary traits
within a case-control design, a number of approaches have been described (Jiang et al.,
2006; Lin and Zeng, 2009; He et al., 2012; Wang and Shete, 2011, 2012). The existing
methods can be broadly divided as follows: a) the naïve method of analyzing the combined
sample of cases and controls, without accounting for the case-control ascertainment; b)
performing analysis within case and control groups; c) combining estimates from the case
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and control groups either by meta-analysis with inverse variances as weights or by using
case/control status as a covariate; d) correcting bias using weighting schemes originally
developed for sample surveys; and d) explicitly accounting for the case/control sampling
scheme via a retrospective likelihood.

The naïve method can lead to severely biased estimates of the risk effects for the secondary
traits, except under restrictive conditions (Nagelkerke et al., 1995; Jiang et al., 2006; Lin and
Zeng, 2009; Monsees et al., 2009). Simple methods which account for the biased sampling
include adjusting for the disease status in a regression model or restricting the analysis to
cases or controls only. For rare diseases, the controls-only analysis is approximately
unbiased, but may be highly inefficient. If the association between the primary and the
secondary traits does not depend on the SNP genotype, then the cases also give a valid risk
effect estimate and can be combined with the controls-only estimate via a inverse-variance
meta-analytic procedure to provide a weighted estimate with improved efficiency. Li et al.
(2010) describe an adaptively weighted method for rare diseases with binary secondary trait
and genotype, that further combines the controls-only and the weighted estimates. Recently,
they proposed another adaptive procedure to analyze secondary phenotypes for data from a
case-control study of a primary disease that is not rare (Li and Gail, 2012).

The survey approach uses weights inversely proportional to the sampling fractions (Jiang et
al., 2006; Scott and Wild, 2002). Richardson et al. (2007) and Monsees et al. (2009) use this
standard survey-weighted approach, applied to the analysis of binary secondary traits,
termed the inverse-probability-of-sampling-weighted (IPW) regression by Monsees et al.
(2009). Technically this approach requires knowledge of the case-control sampling
fractions, but the disease prevalence is often available externally and may be used as in
Wang and Shete (2011).

In general, most of the approaches described above result in inconsistent risk estimates,
although the bias may be low under some specific assumptions. The efficiency of the
procedures also varies widely (Jiang et al., 2006). An alternative approach to account for the
sampling mechanism is to use the retrospective likelihood, explicitly conditioning on the
sampling scheme (Jiang et al., 2006; Scott and Wild, 1997b, 2001, 1991; Lee et al., 1998;
Lin and Zeng, 2009; He et al., 2012). The retrospective likelihood models the joint
distribution for the primary and secondary traits as a function of the genotype and other
covariates. There are a number of attractive features to this approach. If the model is correct,
then it will provide large-sample optimality for the maximum likelihood (ML) estimates.
Provided the model is sufficiently rich, it enables partitioning of the correlations between
primary and secondary phenotypes into the portion due to the risk variable (genotype), as
well as a residual portion that may be due to other genes or environment. In addition,
standard semi-parametric maximum likelihood (SPML) approaches are available to handle
covariates in a flexible manner, with minimal assumptions for the potentially complex
interplay of covariates with other data. For this reason the retrospective approaches are
collectively termed “SPML” in the taxonomy of Jiang et al. (2006).

Although the motivation for the retrospective likelihood is clear, specific implementations
vary. One approach is to factor the joint distribution into the marginal for the secondary trait
and the conditional for the primary trait given secondary (SPML2 in Jiang et al., 2006). For
example, Lin and Zeng (2009) handle both binary and continuous secondary traits by
modeling the disease status given the secondary trait as a logistic regression. Wang and
Shete (2011) use this joint model and apply a method of moments approach to produce bias-
corrected odds ratio estimates for binary secondary traits using prevalence estimates for the
primary and secondary traits from the literature. Recently they have shown that their method
is robust even when there is an interactive effect of the SNP and secondary phenotype on the
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primary disease risk (Wang and Shete, 2012). He et al. (2012) have proposed a Gaussian
copula-based approach that models the joint distribution in terms of the marginals for the
primary and secondary phenotypes (SPML3 in Jiang et al., 2006) and uses the multivarite
normal distribution to build in correlation between the phenotypes. Their method can handle
multiple correlated secondary phenotypes.

Despite all of these efforts, a number of deficiencies remain. Most retrospective likelihood
approaches do not incorporate interaction between the genetic variant and the secondary trait
on primary disease risk. Other than the Gaussian copula approach (He et al., 2012),
retrospective methods do not generally preserve the marginal logistic model for the disease
trait, creating a contradiction between the primary trait risk estimates obtained from the
marginal model and from the joint primary-secondary analysis. Additionally, the
nonparametric handling of continuous covariates remains challenging; when there are
multiple covariates, including one or more continuous ones, direct maximization of the
likelihood is infeasible.

We propose an approach that specifies the joint distribution of primary and secondary traits
in terms of the marginals for the two traits, with terms to govern their association (SPML3 in
Jiang et al., 2006). Our framework enables association testing for both binary and
continuous secondary traits, while respecting the desired logistic model for the primary trait
and standard marginal models for the secondary trait. We demonstrate how this approach
can incorporate covariates, and easily allow for interaction between the genetic variant and
the secondary trait on primary disease risk. To handle the computational complexity
introduced by the covariates, we reparameterize the profile likelihood, and derive a closed
form expression which provides ML estimates of risk effects. For completeness, we briey
describe a pseudo-likelihood approach that bypasses the need to involve the potentially
high-dimensional covariate distribution. We perform extensive simulations to evaluate the
performance of our profile likelihood method and compare it with the pseudo-likelihood and
other competing methods.

The remainder of the paper is organized as follows. In Section 3 we lay down the details for
our proposed profile likelihood-based method. In particular, in Subsection 3.1 we describe
our joint model for the primary and secondary traits and in the following subsection we
provide details of the estimation procedure. In Section 4 we demonstrate the performance of
the proposed method as compared to other competing methods via a real data example and
simulations. Section 5 concludes with some comments on related work and future directions.
In Section 7 we expand on the theoretical details.

3 Methods
Let D denote the disease status or the primary trait (0=control, 1=case), Y the secondary
trait, G the genotype at a biallelic locus, and Z the vector of covariates. Under additive
model, G represents the number of minor alleles (0, 1, or 2) at the locus; under dominant
(recessive) model, G denotes whether the individual carries at least one minor allele (two
minor alleles). We randomly sample n0 and n1 individuals from the controls (D = 0) and the
cases (D = 1) in the population respectively, and observe their Y-, G-, and Z-values. The log-
likelihood for our case-control sampled data (du, yu, gu, zu), u = 1, 2, …, n, takes the

retrospective form  where
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We model P(d, y|g, z) parametrically, the regression P(y|g, z) being of primary interest. Note
that P(g, z), the joint distribution for G and Z in the population, cannot be ignored, since

We deal with P(g, z) nonparametrically, thereby taking a semi-parametric approach to
modeling the likelihood. In the following subsections we describe the joint model for the
bivariate response (D, Y) and the estimation procedure.

3.1 Joint modeling of the primary and secondary traits
In modeling the joint distribution for the traits we try to preserve the marginal logistic model
typically assumed for the original case-control trait D. We specify the bivariate distribution,
P(D, Y|g, z), by parametrically modeling the marginals for the primary and secondary traits
and also building a parametric model for their association given the genotype and the
covariates. The natural choice for the marginal distribution for disease status is logistic, and
that for the secondary trait is logistic or normal depending on whether the trait is binary or
continuous respectively. For binary Y, the Palmgren model (Palmgren, 1989), the Bahadur
model (Bahadur, 1959), and models based on copula theory (Meester and MacKay, 1994)
have been used previously to specify joint distributions for bivariate binary responses. But
for continuous Y, there is no standard bivariate distribution that yields logistic and normal
marginals for D and Y respectively.

3.1.1 Binary secondary trait—The bivariate logistic model, considered by Palmgren
(1989), has been used previously to model the joint distribution for correlated binary data
(Jiang et al., 2006; Lee et al., 1998) and is conceptually very simple. It is based on the fact
that the joint distribution of two binary variables can be specified in terms of their marginal
probabilities and their odds ratio. Thus, for a randomly sampled individual in the population
we specify the joint distribution of D and Y given g and z as

and .

We are interested in inferring about β2, the risk effect for the secondary trait.

3.1.2 Continuous secondary trait—For continuous Y, we consider joint models for (D,
Y |g, z) such that the marginal distributions for D and Y given g and z correspond to the
standard logistic and linear regressions respectively, that is,

To come up with a joint model that complies with the above marginals, we start with the
following bivariate normal distribution,
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where , and . We then introduce
another latent variable to produce the logistic marginal. To transform the normal variate V,

we define . It follows that the density of U given g and z is
logistic with location parameter μ1 and scale parameter 1,

We then threshold U at 0 to derive D. That is, D, defined as

follows

As in the binary case, β2 is our parameter of interest.

3.2 Estimation of β2

3.2.1 ML estimate in absence of covariates—Let us first consider the situation
without any covariates. The retrospective log-likelihood is

(1)

We assume Hardy-Weinberg equilibrium and parameterize the genotype distribution in
terms of the minor allele frequency, δ. We use θ to denote the set of parameters describing
the joint distribution for D and Y given g. We write θ as (θ1, θ2)′, where θ1 = (α1, β1, γ1)′
parameterizes the disease model. Then the log-likelihood in (1) can be written as

(2)

We maximize (2) with respect to η = (θ, δ)′ to derive η̂, the ML estimate for η. We can use
the standard Newton-Raphson method to obtain the ML estimate iteratively, or other
optimization tools such as quasi-Newton methods, Nelder-Mead simplex algorithm for
derivative-free maximization, simulated annealing. Specifically, using Newton-Raphson
method, we update the parameter in the (k + 1)th iteration by
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The inverse of the observed information matrix, , gives standard error
estimate for η̂.

3.2.2 ML estimate via profiling in presence of covariates—Let us now consider the
situation where the joint model for the disease and the secondary trait involves covariates.
The retrospective log-likelihood is

(3)

We can reasonably assume that G and Z are independently distributed in the underlying
population, but must somehow account for the distribution of Z. Since the covariate
structure is usually far too complicated to model parametrically (considering that it may be
correlated with the primary trait), we want to make no assumptions about the form of the
covariate distribution.. For a single binary covariate parameterized by ψ, we can easily
derive the ML estimate by maximizing the retrospective likelihood with respect to (η, ψ).
However, this approach is infeasible for a continuous covariate as the ML estimate involves
maximization with respect to a high-dimensional nuisance parameter. In the following
section we describe a computational technique to derive a closed-form expression, which
may be thought of as an approximate profile likelihood up to one nuisance parameter, that
upon maximization provides the ML estimate for the parameters of interest.

Let {z1, z2, …, zL} represent unique values of Z in the case-control sample. We
parameterize the distribution function for Z in terms of the probability masses {ψ1, ψ2, …,
ψL} that we assign to {z1, z2, …, zL}. The retrospective log-likelihood in (3) can now be
written as

(4)

When ψ is high-dimensional, maximizing the log-likelihood with respect to (η, ψ) can be a
daunting task. We take the approximate profile likelihood approach described by Chatterjee
and Carroll (2005) to handle the nuisance parameter ψ (hereafter dropping the
“approximate” qualifier). To obtain the overall ML estimate for η, we maximize the profile
log-likelihood, l(η) = supψl(η, ψ) with respect to η. Following Scott and Wild (1997a, 2001)
and Chatterjee and Carroll (2005), we show in the Appendix (Section 7.1) that the profile
log-likelihood l(η) can be equivalently expressed as

where
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The parameter κ represents the ratio of the sampling fractions,

and satisfies the equation . We thus have effectively reduced the number of
parameters from (p + L − 1) to (p + 1), with p used to denote the dimension of η. We provide
a closed form expression, l*(ϕ), that on maximization with respect to ϕ = (η, κ)′ gives η̂,
thereby bypassing the need to numerically maximize the likelihood with respect to a high-
dimensional nuisance parameter.

Although l*(ϕ) is not a true log-likelihood the relevant asymptotic theory for ϕ̂ can be

obtained by working with , referred to as the “pseudo” score-equations by
Scott and Wild (2001). Under the assumption that n goes to infinity with n1/n and n2/n

remaining fixed, we show in the Appendix (Section 7.2) that  converges in
distribution to a normal random vector with mean zero and covariance matrix

where

and

with  and . In practice, we can use

the inverse of the observed information matrix based on l*, to estimate Cov(ϕ̂). Since Γ(ϕ) ≥
0, J*(ϕ̂)−1 provides a conservative estimate for Cov(ϕ̂). Note that if the disease prevalence is
known or well-estimated, we fix κ at its true value and work with l*(η) to obtain η̂ and its
standard error.

3.2.3 Pseudo-likelihood estimate—Motivated by the fact that β2, the parameter of
interest, appears only in the first term of the expression for the log-likelihood in (3), one
might attempt to handle the covariates via a previously described pseudo-likelihood
approach (Gong and Samaniego, 1981). For the sake of completeness, we lay down the
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framework for this approach to estimate β2 and its standard error, and evaluate its
performance via simulations. The retrospective log-likelihood in (4) can be viewed as

(5)

where

(6)

and

As β2 is of primary interest, we treat θ1 as nuisance parameter. Gong and Samaniego
proposed first obtaining an estimate for θ1. When disease prevalence is known, we derive an
estimate for θ1, say θ̃1, from l2(θ1, δ, ψ) (in general different from the ML estimate θ̂1
derived from l). We then plug this estimate into l1(θ1, θ2) to obtain the pseudo log-likelihood

(7)

The pseudo-likelihood estimate, θ̃2, is obtained by maximizing l̃1 with respect to θ2. We
discuss the asymptotic properties of the pseudo-likelihood estimate and provide formulae for
its variance estimation in the Appendix (Section 7.3).

4 Results
We present a data example and simulation results to demonstrate the performance of the
profile likelihood-based ML estimate in comparison with the pseudo-likelihood estimate
and other competing methods: the naïve method ignoring the sampling mechanism, the
cases-only and controls-only methods, the weighted method combining the cases-only and
controls-only estimators via inverse-variance, the adaptively weighted method, proposed by
Li et al. (2010), combining the controls-only and weighted estimators, the adjusted method
including the disease status as a covariate in the regression for the secondary trait, and
finally the survey approach using weights inversely proportional to the sampling fractions.
All analyses were performed in R v.2.15.0. In the table and figures we use ‘Wtd’, ‘Awtd’,
and ‘Adj’ to denote the weighted, the adaptively weighted, and the adjusted estimates
respectively.

4.1 Data example
We reanalyze the data on colorectal cancer, smoking, and N-acetyltransferase 2 (NAT2)
presented in Li et al. (2010). The authors compare different analysis methods for a binary
secondary trait using case-control data for colorectal adenoma described in Moslehi et al.
(2006). Moslehi et al. explore how variants in NAT1 and NAT2 genes affect the smoking-
colorectal cancer relationship using cases with colorectal adenoma and controls selected
from the screening arm of the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer
screening trial. Of 42,037 participants who provided a blood sample, 4,834 were excluded.
772 cases were randomly selected from 1234 participants who had at least one advanced
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colorectal adenoma detected at baseline screen and 777 gender and age-matched controls
were sampled from 26,651 participants with a negative baseline sigmoidoscopy screening.
Li et al. use this case-control data for colorectal adenoma to analyze the effect of NAT2 gene
on smoking (secondary trait). In Table 1 we display the data analyzed in Li et al. (2010) and
in Table 2 we illustrate our re-analysis of the data.

There are no covariates here, so the ML estimate based on the Palmgren model is easily
derivable from the retrospective likelihood, without requiring additional profiling or pseudo-
likelihood. We used a prevalence of 0.04 (=1234/(1234+26651)) based on Moslehi et al.
(2006). Under known prevalence, the ML based on the Palmgren model and the survey
approach are the same. Li et al., in their paper, treat the robust controls-only estimate as the
gold standard and show that the adaptively weighted estimate is similar to the controls-only
estimate. The authors point out that the non-zero interaction between NAT2 and smoking on
colorectal adenoma risk results in high bias for the commonly used methods, apparent in the
table for the naïve, the cases-only, the weighted, and the adjusted estimates. In contrast, our
results show that the ML/survey estimate is similar to the adaptively weighted and controls-
only estimates, with the ML/survey estimate enjoying smaller standard error.

4.2 Simulations
We compare performances of the different methods for both binary and continuous
secondary traits, for biologically plausible scenarios, by generating data from the
corresponding bivariate models (see Methods). We consider a biallelic SNP with an additive
mode of inheritance and a minor allele frequency of 0.25. For demonstration purposes we
include two covariates, one following a Bernoulli distribution with 0.45 success probability
and the other a standard normal variate. For our simulations we consider the SNP genotype
and the covariates as independent in the population. We fix the disease prevalence at 5% and
the mean or prevalence of the secondary trait at 20%. Rather than specifying α1 and α2
directly, it is more interpretable to solve for them for specified values of the prevalences and
other parameters. We fix β1 at 0.25 (odds ratio = 1.28). We consider β2 = 0 to reect the null
and compare Type I error for different methods. To simulate data under alternative
hypotheses and examine power, we fix β2 at either −0.25 or 0.25 for the binary secondary
trait; for the continuous setup we use −0.15 and 0.15. We assign the values (−0.94, −0.37)′
and (−1.82, 0.30)′, each generated independently from the standard normal, to the
parameters γ1 and γ2, respectively. We fix α3 at 1.0 and examine β3 ranging from −2.0 to
2.0. We use σ2 = 1.0 for the continuous scenario. For fixed prevalences, α1 and α2 are
calculated according to the following equations:

and

For each combination of parameter values, we ran 10,000 simulations, each consisting of
1500 cases and 1500 controls. For each simulated dataset, we derive the ML, pseudo-
likelihood, naïve, cases-only, controls-only, weighted, adaptively weighted, adjusted and
survey-weighted estimates of the risk effect for the secondary trait and the corresponding
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standard error estimates. We used the “nmk” function within the “dfoptim” package in R to
implement the robust Nelder-Mead algorithm for derivative-free optimization of the
likelihood and the “hessian” function from the “numDeriv” package to derive Hessian
matrices at parameter estimates. We judge the different estimators based on the amount of
bias they incur in estimating the risk effect and their mean squared error (MSE). Using the
standard error estimates we construct 95% Wald-type confidence intervals for the risk effect
and study their coverage probabilities. Also, we examine Type I error and power for
corresponding Wald tests conducted at an intended 5% significance level.

Figures 1 and 2 present the key simulation results for the binary and continuous secondary
traits, respectively. The upper row plots the bias, MSE, and coverage probability estimates
for the different estimators. In the lower row the estimated Type I error and power are
displayed for the corresponding tests under the null and the alternative scenarios. In Figures
1 and 2 we demonstrate the performance of the likelihood-based methods in comparison
with only three other methods: the controls-only, adaptively weighted, and survey
approaches. The remaining methods (naïve, cases-only, weighted and adjusted), are hugely
biased, exhibit extremely large MSEs, and suffer from poor coverage (Figure 4 in
Appendix).

We observe the same performance patterns for binary (Figure 1) and continuous (Figure 2)
secondary traits. The leftmost plot in the upper row displays the bias incurred by the
different estimators. The controls-only and the adaptively weighted methods are
considerably biased for non-zero values of β3. The likelihood-based and survey-weighted
estimators are essentially unbiased. The corresponding MSEs for the estimators are shown in
the middle plot of the upper row. Both the ML and pseudo-likelihood estimators, as well as
the survey-weighted estimator, have smaller mean squared errors than the controls-only and
the adaptively weighted estimators for most β3 values examined. In particular, the two
likelihood-based estimators have practically the same MSEs and perform slightly better than
the survey-weighted estimator, especially for the continuous trait. The rightmost plot in the
upper row presents the estimated coverage probabilities. The coverage for the controls-only
and the adaptively weighted methods drops considerably for large β3. For the confidence
intervals corresponding to the likelihood-based and survey methods, the coverage is
maintained at the nominal level.

Only the likelihood and the survey approaches maintain the correct Type I error throughout.
The power for the Wald tests corresponding to the likelihood and survey methods ranges
between 62% to 75% for the binary setup, and varies roughly from 71% to 95% for the
continuous setup, whereas the controls-only and the adaptive methods have power as low as
6% (21%) to as high as 100% (95%) for the continuous (binary) trait. But their apparently
superior power for large values of β3 is largely illusory, as they suffer from substantially
inflated Type I error for those β3 values. The key message from the simulations is that the
relative advantage of the likelihood and the survey methods over the controls-only and the
adaptively weighted methods is preserved across the simulation setups. Furthermore, the
likelihood methods can have substantial power advantage over the survey method, evident in
the plots for the continuous secondary trait. The mean squared error estimates for the
continuous trait suggest that the likelihood estimators can be almost one and a half times
more efficient than the survey-weighted estimator. The performances of the ML and pseudo-
likelihood estimators are comparable.

4.2.1 Evaluation of robustness—We illustrate the robustness of the proposed ML
method by generating data for the binary secondary trait under an alternative model. Earlier,
we had simulated data from the Palmgren model. Here we generate data from the following
bivariate model, proposed by Lin and Zeng (2009),

Ghosh et al. Page 10

J Am Stat Assoc. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We note that the disease model above does not preserve the standard logistic marginal
distribution for primary disease risk and does not allow for interaction between the genetic
variant and the secondary trait on disease risk. The simulation setup is as before. We vary
the correlation between the primary and secondary phenotypes, denoted by τ in the disease
model, between −0.7 and 0.7. We note that estimates from all the methods are practically
unbiased and that Type I error is maintained; the adaptively weighted method is slightly
conservative.

5 Discussion
The recent attention to the analysis of secondary traits in case/control genome scans has
spurred a variety of methodological efforts. However, it is not clear that the genetics
literature has utilized the full range of longstanding methods, including survey-based
weighted estimators (Scott and Wild, 2002; Binder, 1983), the Palmgren model (Palmgren,
1989) and the work of Lee et al. (1998). The paper by Jiang et al. (2006) provided a
relatively complete taxonomy of various approaches to the problem, but key choices in the
modeling of primary and secondary effects had remained open. The more recent work of Lin
and Zeng (2009); Li et al. (2010); Li and Gail (2012); He et al. (2012); Wang and Shete
(2011, 2012) have provided specific solutions, relevant for the genomic scan context, but
with constraints such that it is not clear that a comprehensive approach has been available.

Our likelihood approach is designed to encompass the data types typically encountered for
genome scans. The proposed framework can handle continuous secondary traits, as well as
the binary traits which have received more attention. In addition, our models allow for
interaction between the genetic variant and the secondary trait on primary disease risk. We
do not require the rare-disease assumption, i.e., our method can be used to to analyze
secondary phenotypes for data from case-control studies of both rare and common primary
diseases. We have developed our approach in the context of genome scans, but it is relevant
to any standard case/control design. However, our joint model may be particularly useful in
a genetic context, for which the parameters are interpretable quantities elucidating genetic
effects on risk for both traits, as well as additional trait-trait correlation unexplained by the
SNP.

Although demonstrated for a single SNP in this paper, our method can, in principle, be
applied to genome-wide association data. However, it will be computationally challenging,
as will also be any other retrospective method handling covariates nonparametrically.
Derivative-based numerical optimization techniques, as well as C routines for numerical
optimization, are likely to provide a faster solution. To reduce computational burden of a
genome scan, we can employ a two-stage approach whereby we first screen SNPs using one
of the faster but reasonably accurate methods, such as the survey approach, to identify SNPs
that might be potentially significant and then follow-up on the interesting SNPs using the
ML method.

Our formulation of the joint model for the two traits arises from viewing the pair as a
bivariate response, and differs from the usual models based on conditional factorization of
the joint distribution. In particular, specifying a logistic model for the conditional
distribution of disease status given the secondary trait distorts the natural logistic marginal
distribution for primary disease risk, resulting in incompatible models for the primary trait
when performing primary vs. secondary analysis. Our parameterization of the joint
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distribution respects the conventional logistic choice for the marginal distribution of the
disease trait, whether the secondary trait is binary or continuous. For binary secondary traits,
this property is achieved using a well-known bivariate (Palmgren) logistic model. For
continuous secondary traits we achieve the intended marginal model via a two-stage latent
variable approach. It turns out that our model for the continuous trait is a special case of the
Gaussian copula model (He et al., 2012) for a single normally distributed secondary
phenotype.

We emphasize that we provide algorithms that allow us to deal with covariates
nonparametrically. In our approximate profile likelihood approach, we reparameterize the
profile likelihood to provide a closed form expression eliminating the need for explicit
maximization over high-dimensional nuisance parameters, thus moving a step forward from
theoretically discussing profile likelihood approaches to handling covariates
nonparametrically. We present the pseudo-likelihood approach as another attractive way of
dealing with the covariate distribution. We note that both the likelihood approaches yield
almost identical results. The closed form expression for the reparameterized profile
likelihood can be treated just like a likelihood to obtain the ML estimate and its standard
error. The pseudo-likelihood approach, on the other hand, is intuitively very appealing and
easily provides estimates; but variance estimation adds to the computational complexity. Yet
another option would be to use Bayesian techniques. As one reviewer pointed out, we can
use a Dirichlet prior on the probability masses ψ = {ψ1, ψ2, …, ψL} for Z and then integrate
out ψ as in Zhang and Liu (2007). However, in absence of prior knowledge on covariate
distribution, the likelihood and Bayesian approaches will provide very similar results.

We have assumed the genetic and environmental exposures to be independently distributed
in the underlying population. We emphasize that the independence assumption applies to the
general population, so that after selection by case-control status, they may be dependent (due
to their common dependence on D). Thus the assumption is not as restrictive as it may seem.
Moreover, for specific genetic applications, the assumption may be reasonable. For random
environmental exposures, for instance, it may be entirely reasonable to assume that the
genotype does not cause the exposure. The reciprocal assumption is also very standard, i.e.
the exposure does not ”cause” genotype, which is fixed from conception. However, if gene-
environment independence assumption seems biologically implausible, we can easily relax
this assumption. Earlier, we used Z to denote covariates and G the SNP genotype. Instead, Z
will now contain all genetic and environmental factors together, including gene-environment
interactions, and we model P(z) nonparametrically as before. On the other hand, if it is
reasonable to assume independence of genetic and environmental exposures in the
population, our framework allows us to exploit this and still leave the distribution of the
environmental exposures to be nonparametric.

Our setup lends itself to performing corrections for secondary trait risk estimates which are
subject to significance bias, commonly known as the “winner’s curse”. Such bias correction
is necessary if the SNPs have been initially selected based on association with the primary
trait, and approaches based on likelihood models (Ghosh et al., 2008) can be extended to
encompass our joint likelihood.

Several proposed methods for secondary analysis require knowledge of the disease
prevalence. The survey approach uses the ratio of sampling fractions, a function of disease
prevalence, for appropriate weighting of cases and the controls. The method of moments
approach proposed by Wang and Shete (2011) involves knowing the prevalence for the
secondary trait in addition to the disease prevalence. In principle, likelihood-based methods
do not require specification of the disease prevalence. However, when disease prevalence is
assumed unknown, the estimation of intercept parameter α1 can lead to numerically unstable
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solutions, as has been noted by others (Lin and Zeng, 2009; Chatterjee and Carroll, 2005). In
practice, a sensitivity analysis is warranted to determine the degree to which inference is
affected by the assumed prevalence, and robust approaches to estimate the prevalence in the
context of our models is an important area for further exploration.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix

7.1 The profile log-likelihood
Let n+++l denote the number of observations in the sample with Z = zl, l = 1, …, L. The
retrospective log-likelihood in (4) can then be expressed as

(8)

Using a Lagrange multiplier λ to account for the constraint  and then maximizing
the retrospective log-likelihood with respect to ψl, we obtain

(9)

Multiplying (9) by ψl and summing over l gives us λ = 0 which on substitution results in
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(10)

where . We note that . Substituting ψl in the expression for μi we
have

(11)

We substitute (10) in (8) to obtain the following expression that is equivalent to the profile
log-likelihood up to two additional nuisance parameters, μi, i = 0, 1,

where μi’s satisfy (11) and  is defined as

We note that

(12)

Comparing (12) with (11), we realize that (11) can be replaced by .
Thus, we can treat l*(η, μ) as a log-likelihood, although it is not an actual log-likelihood,
and maximize it with respect to (η, μ) to obtain η̂. We further note that l*(η, μ) can be

expressed in terms of η and  as follows:

(13)
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with

7.2 Asymptotic theory for ML estimate
We first show that E(S*(ϕ)) = 0. The proof is presented in the following subsection. We then
assume that n goes to infinity with n1/n and n2/n remaining fixed. Under this assumption it
can be shown, by expanding S*(ϕ̂) about the true value ϕ and then applying standard

procedures, that  converges in distribution to a normal random variable with
mean zero and covariance matrix

We then show in Subsection 7.2.2 that Cov(S*(ϕ)) = J*(ϕ) − Γ(ϕ). This leads to

7.2.1 E(S*(ϕ)) = 0
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7.2.2 Cov(S*(ϕ)) = J*(ϕ) − Γ(ϕ)

Using the same argument as before it can be shown that

which implies that

We have also shown before that

where . Then
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∴

7.3 Asymptotic theory for pseudo-likelihood estimate
Gong and Samaniego (1981), under some regularity conditions, showed that θ̃2 is consistent
when θ̃1 is consistent. Also, suppose that

where  is the true value of (θ1, θ2)′ and

Then, under some regularity conditions, discussed in Gong and Samaniego,
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with

(14)

where

I22 is equal to the variance-covariance matrix of the score function for θ2 evaluated at

 and  is the limiting variance-covariance matrix of .

7.3.1 Variance Estimation
We use

and

We note that

If θ̃1 is the ML estimate obtained by maximizing g(θ1), by Taylor expansion,  is
asymptotically equivalent to

which leads to

We can easily estimate the asymptotic variance of θ̃1 by
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Now we have only to estimate . If we can write

and

then we can use the following to estimate the covariance,

Thus,

Also,

Plugging in all the corresponding estimates in (14) gives

(15)
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Figure 1.
Binary secondary trait
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Figure 2.
Continuous secondary trait
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Figure 3.
Performance under alternative model
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Table 2

Estimates of effect of NAT2 on smoking from a case-control study for colorectal adenoma

Method log(OR) SE

Naïve −0.18 0.26

Cases −0.97 0.37

Controls 0.62 0.39

Adj −0.17 0.26

Wtd −0.21 0.27

Awtd 0.57 0.40

ML/Survey 0.54 0.37
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