
Toward Millions of File System IOPS on Low-Cost, Commodity
Hardware

Da Zheng,
Department of Computer Science, Johns Hopkins University

Randal Burns, and
Department of Computer Science, Johns Hopkins University

Alexander S. Szalay
Department of Physics and Astronomy, Johns Hopkins University

Abstract
We describe a storage system that removes I/O bottlenecks to achieve more than one million IOPS
based on a user-space file abstraction for arrays of commodity SSDs. The file abstraction refactors
I/O scheduling and placement for extreme parallelism and non-uniform memory and I/O. The
system includes a set-associative, parallel page cache in the user space. We redesign page caching
to eliminate CPU overhead and lock-contention in non-uniform memory architecture machines.
We evaluate our design on a 32 core NUMA machine with four, eight-core processors.
Experiments show that our design delivers 1.23 million 512-byte read IOPS. The page cache
realizes the scalable IOPS of Linux asynchronous I/O (AIO) and increases user-perceived I/O
performance linearly with cache hit rates. The parallel, set-associative cache matches the cache hit
rates of the global Linux page cache under real workloads.

General Terms
Design; Performance

Keywords
Data-intensive computing; page cache optimization; millions of IOPS; low cost; solid-state storage
devices

1. Introduction
Systems that perform fast, random I/O are revolutionizing commercial data services and
scientific computing, creating the capability to quickly extract information from massive
data sets [15]. For example, NoSQL systems underlying cloud stores generate small,
incoherent I/Os that search key indexes and reference values, tables, documents, or graphs.
The design of Amazon's DynamoDB testifies to this trend; it differentiates itself as a fast

Copyright 2013 ACM

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

Categories and Subject Descriptors: D.4.2 [Storage Management]: Secondary storage

NIH Public Access
Author Manuscript
ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and scalable technology based on integrating SSDs into a key/value database [1]. In
scientific computing, SSDs improve the throughput of graph and network analyses by an
order of magnitude over magnetic disk [28]. Data sets that describe graphs are notoriously
difficult to analyze on the steep memory hierarchies of conventional HPC hardware [14],
because they induce fine-grained, incoherent data accesses. The future of data-driven
computing will rely on extending random access to large-scale storage, building on today's
SSDs and other non-volatile memories as they emerge.

Specialized hardware for random access offers an effective solution, albeit costly. For
example, Fusion-IO provides NAND-flash persistent memory that delivers over one million
accesses per second. Fusion-IO represents a class of persistent memory devices that are used
as application accelerators integrated as memory addressed directly from the processor. As
another approach, the Cray XMT architecture implements a flat memory system so that all
cores have fast access to all memory addresses. This approach is limited by memory size.
All custom hardware approaches cost multiples of commodity SSDs.

While recent advances in commodity SSDs have produced machines with hardware capable
of over one million random IOPS, standard system configurations fail to realize the full
potential of the hardware. Performance issues are ubiquitous in hardware and software,
ranging from the assignment of interrupts, to non-uniform memory bandwidth, to lock
contention in device drivers and the operating system. Problems arise because I/O systems
were not designed for the extreme parallelism of multicore processors and SSDs. The design
of file systems, page caches, device drivers and I/O schedulers does not reflect the
parallelism (tens to hundreds of contexts) of the threads that initiate I/O or the multi-channel
devices that service I/O requests.

None of the I/O access methods in Linux kernel perform well on a high-speed SSD array. I/
O requests go through many layers in the kernel before reaching a device [12]. This
produces significant CPU consumption under high IOPS. Each layer in the block subsystem
uses locks to protect its data structures during concurrent updates. Furthermore, SSDs
require many parallel I/Os to achieve optimal performance, while synchronous I/O, such as
buffered I/O and direct I/O, issues one I/O request per thread at a time. The many threads
needed to load the I/O system produce lock contention and high CPU consumption.
Asynchronous I/O (AIO), which issues multiple requests in a single thread, provides a better
option for accessing SSDs. However, AIO does not integrate with the operating system page
cache so that SSD throughput limits user-perceived performance.

The goal of our system design is twofold: (1) to eliminate bottlenecks in parallel I/O to
realize the full potential of SSD arrays and (2) to integrate caching into SSD I/O to amplify
the user-perceived performance to memory rates. Although the performance of SSDs has
advanced in the past years, it does not approach memory both in random IOPS or latency
(Table 1). Furthermore, RAM may be accessed at a finer granularity 64 versus 512 bytes,
which can widen the performance gap by another factor of eight for workloads that perform
small requests. We conclude that SSDs require a memory page cache interposed between an
SSD file system and applications. This is in contrast to translating SSD storage into the
memory address space using direct I/O. A major obstacle to overcome is that the page
caches in operating systems do not scale to millions of IOPS. They were designed for
magnetic disks that perform only about 100 IOPS per device. Performance suffers as access
rates increase owing to lock contention and with increased mutlicore parallelism owing to
processor overhead.

The first contribution of this paper is the design of a user-space file abstraction that performs
more than one million IOPS on commodity hardware. We implement a thin software layer

Zheng et al. Page 2

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



that gives application programmers an asynchronous interface to file I/O. The system
modifies I/O scheduling, interrupt handling, and data placement to reduce processor
overhead, eliminate lock contention, and account for affinities between processors, memory,
and storage devices.

We further present a scalable user-space cache for NUMA machines and arrays of SSDs that
realizes I/O performance of Linux asynchronous I/O for cache misses and preserve the cache
hit rates of the Linux page cache under real workloads. Our cache design is set-associative;
it breaks the page buffer pool into a large number of small page sets and manages each set
independently to reduce lock contention. The cache design extends to NUMA architectures
by partitioning the cache by processors and using message passing for inter-processor
communication.

2. Related Work
This research falls into the broad area of the scalability operating systems with parallelism.
Several research efforts [3, 32] treat a multicore machine as a network of independent cores
and implement OS functions as a distributed system of processes that communicate with
message passing. We embrace this idea for processors and hybridize it with traditional SMP
programming models for cores. Specifically, we use shared memory for communication
inside a processor and message passing between processors.

As a counterpoint, a team from MIT [8] conducted a comprehensive survey on the kernel
scalability and concluded that the traditional monolithic kernel can also have good parallel
performance. We demonstrate that this is not the case for the page cache at millions of
IOPS.

More specifically, our work relates to the scalable page caching. Yui et al. [33] designed a
lock-free cache management for database based on Generalized CLOCK [31] and use a
lock-free hashtable as index. They evaluated their design in a eight-core computer. We
provide an alternative design of scalable cache and evaluate our solution at a larger scale.

The open-source community has improved the scalability of Linux page cache. Read-copy-
update (RCU) [20] reduces contention through lock-free synchronization of parallel reads
from the page cache (cache hits). However, the Linux kernel still relies on spin locks to
protect page cache from concurrent updates (cache misses). In contrast, our design focuses
on random I/O, which implies a high churn rate of pages into and out of the cache.

Park et al. [24] evaluated the performance effects of SSDs on scientific I/O workloads and
they used workloads with large I/O requests. They concluded that SSDs can only provide
modest performance gains over mechanical hard drives. As the advance of SSD technology,
the performance of SSDs have been improved significantly, we demonstrate that our SSD
array can provide random and sequential I/O performance many times faster than
mechanical hard drives to accelerate scientific applications.

The set-associative cache was originally inspired by theoretical results that shows that a
cache with restricted associativity can approximate LRU [29]. We build on this result to
create a set-associative cache that matches the hit rates of the Linux kernel in practice.

The high IOPS of SSDs have revealed many performance issues with traditional I/O
scheduling, which has lead to the development of new fair queuing techniques that work
well with SSDs [25]. We also have to modify I/O scheduling as one of many optimizations
to storage performance.

Zheng et al. Page 3

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Our previous work [34] shows that a fixed size set-associative cache achieves good
scalability with parallelism using a RAM disk. This paper extend this result to SSD arrays
and adds features, such as replacement, write optimizations, and dynamic sizing. The design
of the user-space file abstraction is novel to this paper as well.

3. A High IOPS File Abstraction
Although one can attach many SSDs to a machine, it is a non-trivial task to aggregate the
performance of all SSDs. The default Linux configuration delivers only a fraction of optimal
performance owing to skewed interrupt distribution, device affinity in the NUMA
architecture, poor I/O scheduling, and lock contention in Linux file systems and device
drivers. The process of optimizing the storage system to realize the full hardware potential
includes setting configuration parameters, the creation and placement of dedicated threads
that perform I/O, and data placement across SSDs. Our experimental results demonstrate
that our design improves system IOPS by a factor of 3.5.

3.1 Reducing Lock Contention
Parallel access to file systems exhibits high lock contention. Ext3/ext4 holds an exclusive
lock on an inode, a data structure representing a file system object in the Linux kernel, for
both reads and writes. For writes, XFS holds an exclusive lock on each inode that
deschedules a thread if the lock is not immediately available. In both cases, high lock
contention causes significant CPU overhead or, in the case of XFS, frequent context switch,
and prevents the file systems from issuing sufficient parallel I/O. Lock contention is not
limited to the file system, the kernel has shared and exclusive locks for each block device
(SSD).

To eliminate lock contention, we create a dedicated thread for each SSD to serve I/O
requests and use asynchronous I/O (AIO) to issue parallel requests to an SSD. Each file in
our system consists of multiple individual files, one file per SSD, a design similar to PLFS
[4]. By dedicating an I/O thread per SSD, the thread owns the file and the per-device lock
exclusively at all time. There is no lock contention in the file system and block devices. AIO
allows the single thread to output multiple I/Os at the same time. The communication
between application threads and I/O threads is similar to message passing. An application
thread sends requests to an I/O thread by adding them to a rendezvous queue. The add
operation may block the application thread if the queue is full. Thus, the I/O thread attempts
to dispatch requests immediately upon arrival. Although there is locking in the rendezvous
queue, the locking overhead is reduced by the two facts: each SSD maintains its own
message queue, which reduces lock contention; the current implementation bundles multiple
requests in a single message, which reduces the number of cache invalidations caused by
locking.

3.2 Processor Affinity
Non-uniform performance to memory and the PCI bus throttles IOPS owing to the
inefficiency of remote accesses. In recent multi-processor machines for both AMD and Intel
architectures, each processor connects to its own memory and PCI bus. The memory and
PCI bus of remote processors are directly addressable, but at increased latency and reduced
throughput.

We avoid remote accesses by binding I/O threads to the processors connected to the SSDs
that they access. This optimization leverages our design of using dedicated I/O threads,
making it possible to localize all requests, regardless of how many threads perform I/O. By
binding threads to processors, we ensure that all I/Os are sent to the local PCI bus.

Zheng et al. Page 4

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.3 Other Optimizations
Distributing Interrupts—With the default Linux setting, interrupts from SSDs are not
evenly distributed among processor cores and we often witness that all interrupts are sent to
a single core. Such large a number of interrupts saturates a CPU core which throttles system-
wide IOPS.

We remove this bottleneck by distributing interrupts evenly among all physical cores of a
processor using the message signalled interrupts extension to PCI 3.0 (MSI-X) [21]. MSI-X
allows devices to select targets for up to 2048 interrupts. We distribute the interrupts of a
storage controller host-bus adapter across multiple cores of its local processor.

I/O scheduler—Completely Fair Queuing (CFQ), the default I/O scheduler in the Linux
kernel >2.6.18, maintains I/O requests in per-thread queues and allocates time slices for each
process to access disks to achieve fairness. When many threads access many SSDs
simultaneously, CFQ prevent threads from delivering sufficient parallel requests to keep
SSDs busy. Performance issues with CFQ and SSDs have lead researchers to redesign I/O
scheduling [25]. Future Linux releases plan to include new schedulers.

At present, there are two solutions. The most common is to use the noop I/O scheduler,
which does not perform per-thread request management. This also reduces CPU overhead.
Alternatively, accessing an SSD from a single thread allows CFQ to inject sufficient
requests. Both solutions alleviate the bottleneck in our system.

Data Layout—To realize peak aggregate IOPS, we parallelize I/O among all SSDs by
distributing data. We offer three data distribution functions implemented in the data
mapping layer of Figure 1.

• Striping: Data are divided into fixed-size small blocks placed on successive disks in
increasing order. This layout is most efficient for sequential I/O, but susceptible to
hotspots.

• Rotated Striping: Data are divided into stripes but the start disk for each stripe is
rotated, much like distributed parity in RAID5 [27]. This pattern prevents strided
access patterns from skewing the workload to a single SSD.

• Hash mapping: The placement of each block is randomized among all disks. This
fully declusters hotspots, but requires each block to be translate by a hash function.

Workloads that do not perform sequential I/O benefit from randomization.

3.4 Implementation
We implement this system in a user-space library that exposes a simple file abstraction
(SSDFA) to user applications. It supports basic operations such as file creation, deletion,
open, close, read and write, and provides both synchronous and asynchronous read and write
interface. Each virtual file has metadata to keep track of the corresponding files on the
underlying file system. Currently, it does not support directories.

The architecture of the system is shown in Figure 1. It builds on top of a Linux native file
system on each SSD. Ext3/ext4 performs well in the system as does XFS, which we use in
experiments. Each SSD has a dedicated I/O thread to process application requests. On
completion of an I/O request, a notification is sent to a dedicated callback thread for
processing the completed requests. The callback threads help to reduce overhead in the I/O
threads and help applications to achieve processor affinity. Each processor has a callback
thread.

Zheng et al. Page 5

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4. A Set-Associative Page Cache
The emergence of SSDs has introduced a new performance bottleneck into page caching:
managing the high churn or page turnover associated with the large number of IOPS
supported by these devices. Previous efforts to parallelize the Linux page cache focused on
parallel read throughput from pages already in the cache. For example, read-copy-update
(RCU) [20] provides low-overhead wait free reads from multiple threads. This supports
high-throughput to in-memory pages, but does not help address high page turnover.

Cache management overheads associated with adding and evicting pages in the cache limit
the number of IOPS that Linux can perform. The problem lies not just in lock contention,
but delays from the L1-L3 cache misses during page translation and locking. We redesign
the page cache to eliminate lock and memory contention among parallel threads by using
set-associativity. The page cache consists of many small sets of pages (Figure 2). A hash
function maps each logical page to a set in which it can occupy any physical page frame.

We manage each set of pages independently using a single lock and no lists. For each page
set, we retain a small amount of metadata to describe the page locations. We also keep one
byte of frequency information per page. We keep the metadata of a page set in one or few
cache lines to minimize CPU cache misses. If a set is not full, a new page is added to the
first unoccupied position. Otherwise, a user-specified page eviction policy is invoked to
evict a page. The current available eviction policies are LRU, LFU, Clock [11] and GClock
[31].

As shown in figure 2, each page contains a pointer to a linked list of I/O requests. When a
request requires a page for which an I/O is already pending, the request will be added to the
queue of the page. Once I/O on the page is complete, all requests in the queue will be
served.

There are two levels of locking to protect the data structure of the cache:

• per-page lock: a spin lock to protect the state of a page.

• per-set lock: a spin lock to protect search, eviction, and replacement inside a page
set.

A page also contains a reference count that prevents a page from being evicted while the
page is being used by other threads.

4.1 Resizing
A page cache must support dynamic resizing to share physical memory with processes and
swap. We implement dynamic resizing of the cache with linear hashing [18]. Linear hashing
proceeds in rounds that double or halve the hashing address space. The actual memory usage
can grow and shrink incrementally. We hold the total number of allocated pages through
loading and eviction within the page sets. When splitting a page set i, we rehash its pages to
set i and init_size×2level +i. The number of page sets is defined as init_size × 2level + split.
level indicates the number of times that pages have been split. split points to the page set to
be split. The cache uses two hash functions within each level hash0 and hash1:

• hash0(v) = h(v, init_size × 2level)

• hash1(v) = h(v, init_size × 2level+1)

If the result of hash0 is smaller than split, hash1 is used for the page lookup as shown in
figure 2.

Zheng et al. Page 6

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4.2 Read and write optimizations
Even though SSDs deliver high random IOPS, they still have higher throughput for larger I/
O requests [6]. Furthermore, accessing a block of data on an SSD goes through a long code
path in the kernel and consumes a significant number of CPU cycles [12]. By initiating
larger requests, we can reduce CPU consumption and increase throughput.

Our page cache converts large read requests into a multi-buffer requests in which each
buffer is single page in the page cache. Because we use the multi-buffer API of libaio, the
pages need not be contiguous in memory. A large application request may be broken into
multiple requests if some pages in the range read by the request are already in the cache or
the request crosses a stripe boundary. The split requests are reassembled once all I/O
completes and then delivered to the application as a single request.

The page cache has a dedicated thread to flush dirty pages. It selects dirty pages from the
page sets where the number of dirty pages exceeds a threshold and write them with parallel
asynchronous I/O to SSDs. Flushing dirty pages can reduce average write latency, which
dramatically improves the performance of synchronous write issued by applications.
However, the scheme may also increase the amount of data written to SSDs. To reduce the
number of dirty pages to be flushed, the current policy within a page set is to select the dirty
pages that are most likely to be evicted in a near future.

To reduce write I/O, we greedily flush all adjacent dirty pages using a single I/O, including
pages that have not yet been scheduled for writeback. This optimization was originally
proposed in disk file systems [2]. The hazard is that flushing pages early will generate more
write I/O when pages are being actively written. To avoid generating more I/O, we tweak
the page eviction policy, similar to CFLRU [26], to keep dirty pages in the memory longer:
when the cache evicts a page from a set, it tries to evict a clean page if possible.

4.3 NUMA design
Performance issues arise when operating a global, shared page cache on a non-uniform
memory architecture. The problems stem from the increased latency of remote memory
access, the reduced throughput of remote bulk memory copy [17]. A global, shared page
cache treats all devices and memory uniformly. In doing so, it creates increasingly many
remote operations as we scale the number of processors.

We extend the set-associative cache for the NUMA architectures (NUMA-SA) to optimize
for workloads with relatively high cache hit rates and tackle hardware heterogeneity. The
NUMA-SA cache design was inspired by multicore operating systems that treat each core a
node in a message-passing distributed system [3]. However, we hybridize this concept with
standard SMP programming models: we use message passing for inter-processor operations
but use shared-memory among the cores within each processor. Figure 3 shows the design of
NUMA-SA cache. Each processor attached to SSDs has threads dedicated to performing I/O
for each SSD. The dedicated I/O thread removes contention for kernel and file locks. The
processors without SSDs maintain page caches to serve applications I/O requests.

I/O requests from applications are routed to the caching nodes through message passing to
reduce remote memory access. The caching nodes maintain message passing queues and a
pool of threads for processing messages. On completion of an I/O request, the data is written
back to the destination memory directly and then a reply is sent to the issuing thread. This
design opens opportunities to move application computation to the cache to reduce remote
memory access.

Zheng et al. Page 7

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We separate I/O nodes from caching nodes in order to balance computation. I/O operations
require significant CPU and running a cache on an I/O node overloads the processor and
reduces IOPS. This is a design decision, not a requirement, i.e. we can run a set-associative
cache on the I/O nodes as well. In a NUMA machine, a large fraction of I/Os require remote
memory transfers. This happens when application threads run on other nodes than I/O nodes.
Separating the cache and I/O nodes does increase remote memory transfers. However,
balanced CPU utilization makes up for this effect in performance. As systems scale to more
processors, we expect that few processors will have PCI buses, which will increase the CPU
load on these nodes, so that splitting these functions will continue to be advantageous.

Message passing creates many small requests and synchronizing these requests can become
expensive. Message passing may block sending threads if their queue is full and receiving
threads if their queue is empty. Synchronization of requests often involves cache line
invalidation on shared data and thread rescheduling. Frequent thread rescheduling wastes
CPU cycles, preventing application threads from getting enough CPU. We reduce
synchronization overheads by amortizing them over larger messages.

5. Evaluation
We conduct experiments on a non-uniform memory architecture machine with four Intel
Xeon E5-4620 processors, clocked at 2.2GHz, and 512GB memory of DDR3-1333. Each
processor has eight cores with hyperthreading enabled, resulting in 16 logical cores. Only
two processors in the machine have PCI buses connected to them. The machine has three
LSI SAS 9217-8i host bus adapters (HBA) connected to a SuperMicro storage chassis, in
which 16 OCZ Vertex 4 SSDs are installed. In addition to the LSI HBAs, there is one RAID
controller that connects to disks with root filesystem. The machine runs Ubuntu Linux 12.04
and Linux kernel v3.2.30.

To compare the best performance of our system design with that of the Linux, we measure
the system in two configurations: an SMP architecture using a single processor and NUMA
using all processors. On all I/O measures, Linux performs best from a single processor.
Remote memory operations make using all four processors slower.

• SMP configuration: 16 SSDs connect to one processor through two LSI HBAs
controlling eight SSDs each. All threads run on the same processor. Data are
striped across SSDs.

• NUMA configuration: 16 SSDs are connected to two processors. Processor 0 has
five SSDs attached to an LSI HBA and one through the RAID controller. Processor
1 has two LSI HBAs with five SSDs each. Application threads are evenly
distributed across all four processors. Data are distributed through a hash mapping
that assigns 10% more I/Os to the LSI HBA attached SSDs. The RAID controller is
slower.

Experiments use the configurations shown in Table 2 if not stated otherwise.

5.1 User-Space File Abstraction
This section enumerates the effectiveness of the hardware and software optimizations
implemented in the SSD user-space file abstraction without caching, showing the
contribution of each. The size of the smallest requests issued by the page cache is 4KB, so
we focus on 4KB read and write performance. In each experiment, we read/write 40GB data
randomly through the SSD file abstraction in 16 threads.

We perform four optimizations on the SSD file abstraction in succession to optimize
performance.

Zheng et al. Page 8

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



• O_even-irq: distribute interrupts evenly among all CPU cores;

• O_bind-cpu: bind threads to the processor local to the SSD;

• O_noop: use the noop I/O scheduler;

• O_io-thread: create a dedicated I/O threads to access each SSD on behalf of the
application threads.

Figure 4 shows I/O performance improvement of the SSD file abstraction when applying
these optimizations in succession. Performance reaches a peak 765,000 read IOPS and
699,000 write IOPS from a single processor up from 209,000 and 191,000 IOPS
unoptimized. Distributing interrupts removes a CPU bottleneck for read. Binding threads to
the local processor has a profound impact, doubling both read and write by eliminating
remote operations. Dedicated I/O threads (O_io-thread) improves write throughput, which
we attribute to removing lock contention on the file system's inode.

When we apply all optimizations, the system realizes the performance of raw SSD hardware,
as shown in Figure 4. It only loses less than 1% random read throughput and 2.4% random
write throughput. The performance loss mainly comes from disparity among SSDs, because
the system performs at the speed of the slowest SSD in the array. When writing data to
SSDs, individual SSDs slow down due to garbage collection, which causes the entire SSD
array to slow down. Therefore, write performance loss is higher than read performance loss.
These performance losses compare well with the 10% performance loss measured by
Caulfield [9].

When we apply all optimizations in the NUMA configuration, we approach the full potential
of the hardware, reaching 1.23 million read IOPS. We show performance alongside the the
Fusion-IO ioDrive Octal [13] for a comparison with state of the art memory-integrated
NAND flash products (Table 3). This reveals that our design realizes comparable read
performance using commodity hardware. SSDs have a 4KB minimum block size so that 512
bytes write a partial block and, thus, slow. The 766K 4KB writes offer a better point of
comparison.

We further compare our system with Linux software options, including block interfaces
(software RAID) and file systems (Figure 5). Although software RAID can provide
comparable performance in SMP configurations, NUMA results in a performance collapse
to less than half the IOPS. Locking structures in file systems prevent scalable performance
on Linux software RAID. Ext4 holds a lock to protect its data structure for both reads and
writes. Although XFS realizes good read performance, it performs poorly for writes due to
the exclusive locks that deschedule a thread if they are not immediately available.

As an aside, we see a performance decrease in each SSD as more SSDs are accessed in a
HBA, as shown in Figure 6. A single SSD can deliver 73,000 4KB-read IOPS and 61,000
4KB-write IOPS, while eight SSDs in a HBA deliver only 47,000 read IOPS and 44,000
write IOPS per SSD. Other work confirms this phenomena [12], although the aggregate
IOPS of an SSD array increases as the number of SSDs increases. Multiple HBAs scale.
Performance degradation may be caused by lock contention in the HBA driver as well as by
the interfere inside the hardware itself. As a design rule, we attach as few SSDs to a HBA as
possible to increase the overall I/O throughput of the SSD array in the NUMA configuration.

5.2 Set-Associative Caching
We demonstrate the performance of set-associative and NUMA-SA caches under different
workloads to illustrate their overhead and scalability and compare performance with the
Linux page cache.

Zheng et al. Page 9

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We choose workloads that exhibit high I/O rates and random access that are representatives
of cloud computing and data-intensive science. We generated traces by running applications,
capturing I/O system calls, and converting them into file accesses in the underlying data
distribution. System call traces ensure that I/O are not filtered by a cache. Workloads
include:

• Uniformly random: The workload samples 128 bytes from pages chosen randomly
without replacement. The workload generates no cache hits, accessing 10,485,760
unique pages with 10,485,760 physical reads.

• Yahoo! Cloud Serving Benchmark (YCSB) [10]: We derived a workload by
inserting 30 million items into MemcacheDB and performing 30 million lookups
according to YCSB's read-only Zipfian workload. The workload has 39,188,480
reads from 5,748,822 pages. The size of each request is 4096 bytes.

• Neo4j [22]: This workload injects a LiveJournal social network [19] in Neo4j and
searches for the shortest path between two random nodes with Dijkstra algorithm.
Neo4j sometimes scans multiple small objects on disks with separate reads, which
biases the cache hit rate. We merge small sequential reads into a single read. With
this change, the workload has 22,450,263 reads and 113 writes from 1,086,955
pages. The request size varies from 1 bytes to 1,001,616 bytes. Most requests are
small. The mean request size is 57 bytes.

• Synapse labelling: This workload was traces at the Open Connectome Project
openconnecto.me and describes the output of a parallel computer-vision pipeline
run on a 4 Teravoxel image volume of mouse brain data. The pipeline detects 19
million synapses (neural connections) that it writes to spatial database. Write
throughput limits performance. The workload labels 19,462,656 synapses in a 3-d
array using 16 parallel threads. The workload has 19,462,656 unaligned writes of
about 1000 bytes on average and updates 2,697,487 unique pages.

For experiments with multiple application threads, we dynamically dispatch small batches of
I/O using a shared work queue so that all threads finish at nearly the same time, regardless
of system and workload heterogeneity.

We measure the performance of Linux page cache with careful optimizations. We install
Linux software RAID on the SSD array and install XFS on software RAID. We run 256
threads to issue requests in parallel to Linux page cache in order to provide sufficient I/O
requests to the SSD array. We disable read ahead to avoid the kernel to read unnecessary
data. Each thread opens the data file by itself because concurrent updates on a file handler in
a NUMA machine leads to expensive inter-processor cache line invalidation. As shown in
the previous section, XFS does not support parallel write, we only measure read
performance.

Random Workloads—The first experiment demonstrates that set-associative caching
relieves the processor bottleneck on page replacement. We run the uniform random
workload with no cache hits and measure IOPS and CPU utilization (Figure 7). CPU cycles
bound the IOPS of the Linux cache when run from a single processor—its best
configuration. Linux uses all cycles on all 8 CPU cores to achieves 641K IOPS. The set-
associative cache on the same hardware runs at under 80% CPU utilization and increases
IOPS by 20% to the maximal performance of the SSD hardware. Running the same
workload across the entire machine increases IOPS by another 20% to almost 950K for
NUMA-SA. The same hardware configuration for Linux results in an IOPS collapse.
Besides the poor performance of software RAID, a NUMA machine also amplifies locking

Zheng et al. Page 10

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



overhead on the Linux page cache. The severe lock contention in the NUMA machine is
caused by higher parallelism and more expensive cache line invalidation.

A comparison of IOPS as a function of cache hit rate reveals that the set-associative caches
outperform the Linux cache at high hit rates and that caching is necessary to realize
application performance. We measure IOPS under the uniform random workload for the
Linux cache, with set-associative caching, and without caching (SSDFA). Overheads in the
the Linux page cache make the set-associative cache realize roughly 30% more IOPS than
Linux at all cache hit rates (Figure 8(a)). The overheads come from different sources at
different hit rates. At 0% the main overhead comes from I/O and cache replacement. At 95%
the main overhead comes from the Linux virtual file system [7] and page lookup on the
cache index.

Non-uniform memory widens the performance gap (Figure 8). In this experiment application
threads run on all processors. NUMA-SA effectively avoids lock contention and reduces
remote memory access, but Linux page cache has severe lock contention in the NUMA
machine. This results in a factor of four improvement in user-perceived IOPS when
compared with the Linux cache. Notably, the Linux cache does not match the performance
of our SSD file abstraction (with no cachcing) until a 75% cache hit rate, which reinforces
the concept that lightweight I/O processing is equally important as caching to realize high
IOPS.

The user-perceived I/O performance increases linearly with cache hit rates. This is true for
set-associative caching, NUMA-SA, and Linux. The amount of CPU and effectiveness of
the CPU dictates relative performance. Linux is always CPU bound.

The Impact of Page Set Size—An important parameter in a set-associative cache is the
size of a page set. The parameter defines a tradeoff between cache hit rate and CPU
overhead within a page set. Smaller pages sets reduce cache hit rate and interference. Larger
page sets better approximate global caches, but increase contention and the overhead of page
lookup and eviction.

The cache hit rates provide a lower bound on the page set size. Figure 9 shows that the page
set size has a limited impact on the cache hit rate. Although a larger page set size increases
the hit rate in all workloads, it has more noticeable impact on the YCSB workload. Once the
page set size increase beyond 12 pages per set, there are minimal benefits to cache hit rates.

We choose the smallest page set size that provides good cache hit rates across all workloads.
CPU overhead dictates small page sets. CPU increases with page set size by up to 4.3%.
Cache hit rates result in better user-perceived performance by up to 3%. We choose 12
pages as the default configuration and use it for all subsequent experiments.

Cache Hit Rates—We compare the cache hit rate of the set-associative cache with other
page eviction policies in order to quantify how well a cache with restricted associativity
emulates a global cache [29] on a variety of workloads. Figure 10 compares the Clock-Pro
page eviction variant used by Linux [16]. We also include the cache hit rate of GClock [31]
on a global page buffer. For the set-associative cache, we implement these replacement
policies on each page set as well as least-frequently used (LFU). When evaluating the cache
hit rate, we use the first half of a sequence of accesses to warm the cache and the second half
to evaluate the hit rate.

The set-associative has a cache hit rate comparable to a global page buffer. It may lead to
lower cache hit rate than a global page buffer for the same page eviction policy, as shown in

Zheng et al. Page 11

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the YCSB case. For workloads such as YCSB, which are dominated by frequency, LFU can
generate more cache hits. It is difficult to implement LFU in a global page buffer, but it is
simple in the set-associative cache due to the small size of a page set. We refer to [34] for
more detailed description of LFU implementation in the set-associative cache.

Performance on Real Workloads—For user-perceived performance, the increased
IOPS from hardware overwhelms any losses from decreased cache hit rates. Figure 11
shows the performance of set-associative and NUMA-SA caches in comparison to Linux's
best performance under the Neo4j, YCSB, and Synapse workloads, Again, the Linux page
cache performs best on a single processor.

The set-associative cache performs much better than Linux page cache under real
workloads. The Linux page cache achieves around 50–60% of the maximal performance for
read-only workloads (Neo4j and YCSB). Furthermore, it delivers only 8,000 IOPS for an
unaligned-write workload (Synapses). The poor performance of Linux page cache results
from the exclusive locking in XFS, which only allows one thread to access the page cache
and issue one request at a time to the block devices.

5.3 HPC benchmark
This section evaluates the overall performance of the user-space file abstraction under
scientific benchmarks. The typical setup of some scientific benchmarks such as
MADbench2 [5] has very large read/writes (in the order of magnitude of 100 MB).
However, our system is optimized mainly for small random I/O accesses and requires many
parallel I/O requests to achieve maximal performance. We choose the IOR benchmark [30]
for its flexibility. IOR is a highly parameterized benchmark and Shan et al. [30] has
demonstrated that IOR can reproduce diverse scientific workloads.

IOR has some limitations. It only supports multi-process parallelism and synchronous I/O
interface. SSDs require many parallel I/O requests to achieve maximal performance, and our
current implementation can only share page cache among threads. To better assess the
performance of our system, we add multi-threading and asynchronous I/O support to the
IOR benchmark.

We perform thorough evaluations to our system with the IOR benchmark. We evaluate the
synchronous and asynchronous interface of the SSD user-space file abstraction with various
request sizes. We compare our system with Linux's existing solutions, software RAID and
Linux page cache. For fair comparison, we only compare two options: asynchronous I/O
without caching and synchronous I/O with caching, because Linux AIO does not support
caching and our system currently does not support synchronous I/O without caching. We
only evaluate SA cache in SSDFA because NUMA-SA cache is optimized for asynchronous
I/O interface and high cache hit rate, and the IOR workload does not generate cache hits. We
turn on the random option in the IOR benchmark. We use the N-1 test in IOR (N clients
read/write to a single file) because the N-N test (N clients read/write to N files) essentially
removes almost all locking overhead in Linux file systems and page cache. We use the
default configurations shown in Table 2 except that the cache size is 4GB and 16GB in the
SMP configuration and the NUMA configuration, respectively, because of the difficulty of
limiting the size of Linux page cache on a large NUMA machine.

Figure 12 shows that SSDFA read can significantly outperform Linux read on a NUMA
machine. When the request size is small, Linux AIO read has much lower throughput than
SSDFA asynchronous read (no cache) in the NUMA configuration due to the bottleneck in
the Linux software RAID. The performance of Linux buffer read barely increases with the
request size in the NUMA configuration due to the high cache overhead, while the

Zheng et al. Page 12

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



performance of SSDFA synchronous buffer read can increase with the request size. The
SSDFA synchronous buffer read has higher thread synchronization overhead than Linux
buffer read. But thanks to its small cache overhead, it can eventually surpasses Linux buffer
read on a single processor when the request size becomes large.

SSDFA write can significantly outperform all Linux's solutions, especially for small request
sizes, as shown in Figure 13. Thanks to pre-cleaning of the flush thread in our SA cache,
SSDFA synchronous buffer write can achieve performance close to SSDFA asynchronous
write. XFS has two exclusive locks on each file: one is to protect the inode data structure
and is held briefly at each acquisition; the other is to protect I/O access to the file and is held
for a longer time. Linux AIO write only acquires the one for inode and Linux buffered write
acquires both locks. Thus, Linux AIO cannot perform well with small writes, but it can still
reach maximal performance with a large request size on both a single processor and four
processors. Linux buffered write, on the other hand, performs much worse and its
performance can only be improved slightly with a larger request size.

6. Conclusions
We present a storage system that achieves more than one million random read IOPS based
on a user-space file abstraction running on an array of commodity SSDs. The file abstraction
builds on top of a local file system on each SSD in order to aggregates their IOPS. It also
creates dedicated threads for I/O to each SSD. These threads access the SSD and file
exclusively, which eliminates lock contention in the file and device interfaces. The design
amplifies IOPS by 3.5 times and realizes nearly the full potential of the SSD hardware, less
than 1% loss for reads and 2.4% for writes.

In the file abstraction, we deploy a set-associative parallel page cache designed for non-
uniform memory architectures. The design divides the global page cache into many small,
independent sets, which reduces lock contention. For NUMA architectures, the design
minimizes the CPU overhead associated with remote memory copies through a hybrid SMP
and message passing programming model. Each processor is treated as a node in a
distributed system and inter-processor operations exchange messages through rendezvous
queues served by a dedicated thread pool. The multiple cores of each processor are
programmed as an SMP. With page caching, user-perceived throughput grows linearly with
the cache hit rate up to 16 million IOPS, more than four times that realized by Linux. Our
optimizations in the parallel page cache achieve good performance for all request sizes and
synchronous write performs nearly as well as asynchronous write.

As a whole, the design alleviates bottlenecks associated with lock contention, CPU
overhead, and remote memory copies across many layers of hardware and software. The
design captures parallelism and non-uniform performance of modern hardware to realize
world-class performance for commodity SSDs.

References
1. AmazonWebServices. Amazon dynamodb overview, a fully managed nosql database service. 2011.

Available at http://www.youtube.com/watch?v=oz-7wJJ9HZ0

2. Batsakis A, Burns R, Kanevsky A, Lentini J, Talpey T. AWOL: An adaptive write optimizations
layer. Conference on File and Storage Technologies. 2008

3. Baumann A, Barham P, Dagand PE, Harris T, Isaacs R, Peter S, Roscoe T, SchÃijpbach A,
Singhania A. The multikernel: a new OS architecture for scalable multicore systems. Symposium on
Operating Systems Principles. 2009

Zheng et al. Page 13

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.youtube.com/watch?v=oz-7wJJ9HZ0


4. Bent J, Gibson G, Grider G, McClelland B, Nowoczynski P, Nunez J, Polte M, Wingate M. PLFS:
A checkpoint filesystem for parallel applications. Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis. 2009

5. Borrill, J.; Oliker, L.; Shalf, J.; Shan, H. Investigation of leading HPC I/O performance using a
scientific-application derived benchmark. Proceedings of the 2007 ACM/IEEE conference on
Supercomputing; New York, NY, USA. 2007.

6. Bouganim L, Jónssonn B, Bonnet P. uFLIP: Understanding flash IO patterns. Fourth Biennial
Conference on Innovative Data Systems Research. 2009

7. Bovet, DP.; Cesati, M. Understanding the Linux Kernel. O'Reilly Media; 2005.

8. Boyd-Wickizer S, Clements A, Mao Y, Pesterev A, Kaashoek F, Morris R, Zeldovich N. An
analysis of Linux scalability to many cores. Conference on Operating systems design and
implementation. 2010

9. Caulfield AM, Coburn J, Mollov T, De A, Akel A, He J, Jagatheesan A, Gupta RK, Snavely A,
Swanson S. Understanding the impact of emerging non-volatile memories on high-performance, IO-
intensive computing. International Conference for High Performance Computing, Networking,
Storage and Analysis. 2010

10. Cooper B, Silberstein A, Tam E, Ramakrishnan R, Sears R. Benchmarking cloud serving systems
with YCSB. Symposium on Cloud computing. 2010

11. Corbato FJ. A paging experiment with the multics system. 1969

12. Foong A, Veal B, Hady F. Towards ssd-ready enterprise platforms. International Workshop on
Accelerating Data Management Systems Using Modern Processor and Storage Architectures
(ADMS). 2010

13. Fusion-IO ioDrive Octal. [Accessed 3/11/2013] http://www.fusionio.com/platforms/iodrive-octal/

14. Hendrickson B. Data analytics and high performance computing: When worlds collide. Los
Alamos Computer Science Symposium. 2009

15. Hey, T.; Tansley, S.; Tolle, K., editors. The Fourth Paradigm: Data-Intensive Scientific Discovery.
Microsoft Research; 2009.

16. Jiang S, Chen F, Zhang X. CLOCK-Pro: An effective improvement of the CLOCK replacement.
USENIX Annual Technical Conference. 2005

17. Li Y, Pandis I, Mueller R, Raman V, Lohman G. NUMA-aware algorithms: the case of data
shuffling. The biennial Conference on Innovative Data Systems Research (CIDR). 2013

18. Litwin W. Linear hashing: A new tool for file and table addressing. Sixth International Conference
on Very Large Data Bases. 1980

19. Livejournal social network. [Accessed 3/11/2013] http://snap.stanford.edu/data/soc-
LiveJournal1.html

20. McKenney P, Sarma D, Arcangeli A, Kleen A, Krieger O. Read-copy update. Linux Symposium.
2002

21. MSI-HOWTO. [Accessed 3/6/2012] http://lwn.net/Articles/44139/

22. Neo4j. [Accessed 3/11/2013] www.neo4j.org

23. OCZ VERTEX 4. [Accessed 3/11/2013] http://www.ocztechnology.com/ocz-vertex-4-sata-iii-2-5-
ssd.html

24. Park S, Shen K. A performance evaluation of scientific I/O workloads on flash-based SSDs. IEEE
International Conference on Cluster Computing and Workshops. 2009

25. Park S, Shen K. FIOS: A fair and efficient I/O scheduler. Conference on File and Storage
Technology. 2012

26. Park, Sy; Jung, D.; Kang, Ju; Kim, Js; Lee, J. CFLRU: A replacement algorithm for flash memory.
Proceedings of the 2006 international conference on Compilers, architecture and synthesis for
embedded systems; New York, NY, USA. 2006.

27. Patterson DA, Gibson G, Katz RH. A case for redundant arrays of inexpensive disks (RAID).
ACM SIGMOD international conference on Management of data. 1988

28. Pearce R, Gokhale M, Amato NM. Multithreaded asynchronous graph traversal for in-memory and
semi-external memory. Supercomputing. 2010

Zheng et al. Page 14

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.fusionio.com/platforms/iodrive-octal/
http://snap.stanford.edu/data/soc-LiveJournal1.html
http://snap.stanford.edu/data/soc-LiveJournal1.html
http://lwn.net/Articles/44139/
http://www.neo4j.org
http://www.ocztechnology.com/ocz-vertex-4-sata-iii-2-5-ssd.html
http://www.ocztechnology.com/ocz-vertex-4-sata-iii-2-5-ssd.html


29. Sen S, Chatterjee S, Dumir N. Towards a theory of cache-efficient algorithms. Journal of the
ACM. 2002; 49(6)

30. Shan, H.; Antypas, K.; Shalf, J. Characterizing and predicting the I/O performance of HPC
applications using a parameterized synthetic benchmark. Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis; Austin, TX. 2008.

31. Smith AJ. Sequentiality and prefetching in database systems. ACM Transactions on Database
Systems. 1978; 3(3)

32. Wentzlaff D, Agarwal A. Factored operating systems (fos): The case for a scalable operating
system for multicores. ACM SIGOPS Operating System Review (OSR). 2009

33. Yui M, Miyazaki J, Uemura S, Yamana H. Nb-GCLOCK: A non-blocking buffer management
based on the generalized CLOCK. International Conference on Data Engineering (ICDE). 2010

34. Zheng D, Burns R, Szalay AS. A parallel page cache: IOPS and caching for multicore systems.
USENIX conference on Hot Topics in Storage and File Systems. 2012

Zheng et al. Page 15

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. The architecture of the SSD file abstraction (SSDFA)

Zheng et al. Page 16

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
The organization of the set-associative cache showing the data structures and locks for pages
and page sets. The hash0 and hash1 functions implement linear hashing [18] used to resize
the cache. n = init_size × 2level.

Zheng et al. Page 17

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. The architecture of the NUMA-SA cache on a four processor machine with two
processors attached to SSDs

Zheng et al. Page 18

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Optimizing page I/O on the SSD file abstraction accessed from an 8 core processor (SMP).
The bars show the aggregate IOPS when applying four optimizations successively in
comparison with the hardware's capabilities (raw).

Zheng et al. Page 19

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Performance of our user-space file abstraction with Linux file systems and software RAID.
All systems use optimizations O_even-irq and O_noop.

Zheng et al. Page 20

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
The 4KB read and write IOPS of individual SSDs and the aggregate IOPS of the SSD array
with different numbers of SSDs in the array. All SSDs connect to a single HBA.

Zheng et al. Page 21

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7. IOPS and CPU for random read (0% cache hit rate)

Zheng et al. Page 22

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
User-perceived IOPS as a function of cache hit rate.

Zheng et al. Page 23

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
The impact of page set sizes on cache hit rate in the set-associative cache under real
workloads both in one and 16 threads.

Zheng et al. Page 24

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10.
The cache hit rate of different cache designs under different workloads.

Zheng et al. Page 25

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 11. The performance of the set-associative cache on real workloads

Zheng et al. Page 26

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 12.
The read performance of SSDFA and Linux solutions both on a single processor and on 4
processors. SSDFA-AR shows the performance of asynchronous read (no cache), SSDFA-
BR shows the performance of (synchronous) buffer read. Linux-AIO and Linux-BR show
the performance of Linux AIO read and Linux buffer read.

Zheng et al. Page 27

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 13.
The write performance of SSDFA and Linux solutions both on a single processor and on 4
processors. SSDFA-AW shows the performance of asynchronous write (no cache), SSDFA-
BW shows the performance of SSDFA (synchronous) buffer write. Linux-AIO and Linux-
BW shows the performance of Linux AIO write and Linux buffer write.

Zheng et al. Page 28

ICS. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zheng et al. Page 29

Table 1

The performance of specialized memory-addressable NAND flash (ioDrive Octal), a commodity SSD (OCZ
Vertex 4), and memory (DDR3-1333). IOPS are measured with 512-byte random accesses.

random IOPS latency granularity

ioDrive Octal [13] 1,300,000 45μs 512B

OCZ Vertex 4 [23] 120,000 20μs 512B

DDR3-1333 7,300,000 15ns 64B

ICS. Author manuscript; available in PMC 2014 January 06.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zheng et al. Page 30

Table 2

Default configuration of experiments.

Linux I/O scheduler noop

Page cache size 512MB

Page eviction policy GClock

Block size 16 pages

Block mapping striping (SMP)/hash (NUMA)

Page set size 12 pages

AIO depth 32

Number of app threads 16

File system on SSDs XFS

ICS. Author manuscript; available in PMC 2014 January 06.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zheng et al. Page 31

Table 3

The performance of NUMA SSD user-space file abstraction compared with FusionIO ioDrive Octal.

SSDFA ioDrive Octal 5TB

Read IOPS (512B) 1,228,100 1,190,000

Write IOPS (512B) 386,976 1,180,000

Read IOPS (4KB) 946,700 N/A

Write IOPS (4KB) 766,082 N/A

Read Bandwidth (64 kB) 6.8GB/s 6.0 GB/s

Write Bandwidth (64 kB) 5.6GB/s 4.4 GB/s

ICS. Author manuscript; available in PMC 2014 January 06.


