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Abstract
Recent evidence suggests that complex traits are likely determined by multiple loci, with each of
which contributes a weak to moderate individual effect. Although extensive literature exists on
multi-locus analysis of unrelated subjects, there are relatively fewer strategies for jointly analyzing
multiple loci using family data. Here we address this issue by evaluating two pseudo-sibship
methods: the 1:1 matching, which matches each affected offspring to the pseudo sibling formed by
the alleles not transmitted to the affected offspring; the exhaustive matching, which matches each
affected offspring to the pseudo siblings formed by all the other possible combinations of parental
alleles. We prove that the two matching strategies use exactly and approximately the same amount
of information from data under additive and multiplicative genetic models, respectively. Using
numerical calculations under a variety of models and testing assumptions, we show that compared
to the exhaustive matching, the 1:1 matching has comparable asymptotic power in detecting
multiplicative / additive effects in single-locus analysis and main effects in multi-locus analysis,
and it allows association testing of multiple linked loci. These results pave the way for many
existing multi-locus analysis methods developed for the case-control (or matched case-control)
design to be applied to case-parents data with minor modifications. As an example, with the 1:1
matching, we applied an L1 regularized regression to a Crohn’s disease dataset. Using the multiple
loci selected by our approach, we obtained an order-of-magnitude decrease in p-value and an
18.9% increase in prediction accuracy when comparing to using the most significant individual
locus.
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1. Introduction
It has long been recognized that spurious marker disease association can be introduced by
population stratification in case-control studies [1]. When subjects are sampled from
multiple populations that are different in both disease prevalence and allele frequencies,
association analysis based on a case-control design might lead to false findings. As a result,
population stratification is one of the most often cited explanations for the difficulties in
replicating results of genetic association studies [2–4]. One way to avoid drawing erroneous
conclusions on genetic associations is to use family-based designs, such as the case-parents
design, in which both cases and their parents are genotyped [5]. The validity of this design
stems from the fact that the hypothetical control formed by the nontransmitted alleles in a
case-parents trio is from the same population as the case is.

When testing the association between a locus and a disease using case-parents data,
modeling the genotype of an offspring conditioning on parental mating (genotypes) and the
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offspring being affected prevents spurious association caused by population stratification [6,
7]. The conditional approach is equivalent to matching the affected offspring to his or her
three pseudo siblings formed by the other three combinations of parental alleles (hereafter
1:3 matching), and conditional logistic regressions can be used for statistical inference [6,
7]. Different tests based on the conditional logistic regression framework have been
proposed, such as likelihood ratio tests (LRT) and score tests under a variety of assumptions
about the true genetic model [6, 8, 9]. It has been shown that the well-known transmission
disequilibrium test (TDT) [10, 11] is the score test of the conditional logistic regression
using the 1:3 matching under multiplicative model [8]. Interestingly, as originally derived,
the TDT is also a McNemar [12] type of test when matching each affected offspring to his or
her pseudo sibling formed by the alleles that are not transmitted to the affected offspring
(hereafter 1:1 matching). Other tests based on the 1:1 matching include such as the tests
introduced by Terwilliger and Ott [11], and Wittkowski and Liu [13]. Obviously, using three
pseudo siblings for each case utilizes more information from data than the 1:1 matching.
Cordell and Clayton found that the 1:3 matching is more efficient than the 1:1 matching
[14].

The 1:3 matching in a single-locus analysis is exhaustive in that each affected offspring is
matched to all the other possible combinations of parental alleles. Generalized to L unlinked
loci, the number of all pseudo offspring matched to an affected child then is 4L-1 [14, 15]. In
computation, this exponential growth can limit the number of loci to be jointly analyzed. For
linked loci, additional computational complexity arises, as the transmission of parental
alleles to offspring does not follow the Mendel’s law of independent assortment and all the
possible offspring genotypes of a pair of parents do not occur with equal probabilities.
Therefore the recombination fractions between SNPs are required to build conditional
logistic regressions [14–16]. However, these recombination fractions are usually unknown
and difficult to estimate. Thus, although the exhaustive matching maximizes information
extracted from the case-parents data, it is difficult to be used in multi-locus association
analysis. To avoid those complications, instead of the exhaustive matching, we can use the
1:1 matching.

In the literature, a number of multi-locus methods using the 1:1 matching have been
proposed [17–30]. In those methods, a test statistic is first computed by comparing the
transmitted alleles to the nontransmitted alleles, and then the statistical significance is
assessed either by asymptotic theories or by a permutation procedure that randomly shuffles
the “transmitted” and “nontransmitted” labels of each affected offspring and his or her
pseudo sibling. In terms of haplotype phase, both haplotype-based [17–21, 23, 24] and
genotype-based [22, 24–30] methods have been proposed. For genotype-based methods,
both main effects [22, 24, 27] and gene-gene interaction have been tested [26]. Although the
1:1 matching is more straightforward to implement, computationally more tractable, and
allows association testing of multiple linked SNPs, there is no doubt that it utilizes less
information from data than the exhaustive matching. It is therefore important to know the
efficiency of the 1:1 matching relative to that of the exhaustive matching. Especially, if the
efficiency of the 1:1 matching is model- or test-dependent, it is critical to evaluate under
what situations the 1:1 matching is efficient.

In this paper, we systematically investigate the relative efficiency of the two ways of
creating pseudo controls: the 1:1 matching and the exhaustive matching. We prove that the
two matching strategies use exactly and approximately the same amount of information
from data under additive and multiplicative models, respectively. We also quantify the
efficiency of the two matching strategies using statistical power computed from asymptotic
LRTs under the conditional logistic regression framework. We compare the efficiency of the
two matching strategies under different genetic models and testing models, in both one-locus
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analysis and two-locus analysis. As an illustration of using the 1:1 matching to conduct
multi-locus analysis, we apply an L1 regularized variable selection method to a Chron’s
disease dataset, and compare its performance to using the most significant single locus.

2. Methods
2.1. The equivalence of the 1:1 matching and the exhaustive matching under additive
genotype relative risks

—Suppose we are testing the association between a disease and a single nucleotide
polymorphism (SNP) with a risk allele ‘A’ and a normal allele ‘a’. For convenience, we use
numerically coded genotypes based on the number of the “A” alleles and adopt the notations
of trio types used in [9]. If we ignore the order of parents, there are six parental mating types
and ten trio types, which are illustrated in the first two columns of Table 1. For a case-
parents trio, let t ∈ {12,22,21,31,42,41,40,51,50,60} denote the trio type determined by the
parental mating type and the genotype of the affected offspring, as shown in Table 1. When
testing the association between a locus and a disease using the case-parents design, the
approach conditioning on parental mating type and the case being affected is equivalent to
the 1:3 matching, which matches each affected offspring to his or her three pseudo siblings
[6, 7]. We use HE (t) to denote the 1:3 matching set of numerically coded genotypes that
comprises the genotype of the offspring and the other three combinations of parental alleles.
Generalized to L unlinked SNPs, the set HE (.) consists of 4L genotypes. An alternative
matching strategy matches each affected offspring to his or her pseudo-sibling constructed
by the alleles that are not transmitted to the affected offspring, and we denote the 1:1
matching set by H1(t). As an example, suppose the genotypes of the affected offspring, the
father, and the mother are 2 (AA), 1 (Aa), and 1 (Aa), respectively, then t = 42, H1(t) =
{2,0} and HE (t) = {2,0,1,1}, as shown in Figure 1.

Let gl, l=1,2,…,L be the number of copies of the risk allele at SNP l. We define the genotype
relative risk (GRR) of genotype (g1, g2,…, gL) as the relative risk of being affected for
subjects with this genotype relative to subjects with genotype (0,0,…,0):

Definition: We say the GRRs are additive if

where , for l = 1,
…, L. For example, when L=1, r0 = 1,r1 = 1+γ1,r2 = 1+2γ1.

Note that additive GRRs imply additive penetrances. We next show that additive GRRs
implies the equivalence between the 1:1 matching and the exhaustive matching.

Theorem: Suppose the GRRs are additive, the 1:1 matching and the exhaustive matching
use exactly the same amount of information from data. In other words, the likelihood
functions of the 1:1 matching and the exhaustive matching are identical.
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The proof for unlinked loci is provided in the Appendix. When loci are linked, if we also
know recombination fractions among loci, we can use a weighted exhaustive matching, with
the weights determined by recombination fractions. With the same method used in the
Appendix and some additional notations, we can prove that the 1:1 matching and the
weighted exhaustive matching use the same amount of information from data under additive
GRRs. Here we focus only on unlinked loci for two reasons. First, this situation leads to the
largest difference between the two matching strategies. Second, when SNPs are linked,
using the exhaustive matching requires recombination fractions [14–16] that might not be
easily estimated from case-parents data.

To make the results intuitive, consider the situation when L is 1. Let nt denote the number of
case-parents trios in trio type t, where t ∈ {12,22,21,31,42,41,40,51,50,60}. The likelihood
functions under the exhaustive matching and under the 1:1 matching are

(1)

and

(2)

respectively. Under the assumption of additive GRRs, i.e., 1+r2 = 2r1, both LE and L1 are
proportional to

Definition: We say GRRs are multiplicative if

Corollary: When the marginal genetic effects are not large, the 1:1 matching and the
exhaustive matching use approximately the same amount of information from data under
multiplicative GRRs.

When the marginal genetic effects are not large, we can use the first-order Taylor expansion
to approximate the GRRs and get rid of terms of higher orders. Hence, the result follows
immediately. Therefore, the 1:1 matching and the exhaustive matching also use similar
amount of information from data under multiplicative GRRs. When the frequency of the risk
allele at a locus is small, the dominant model is close to the multiplicative model, implying
the near equivalence between the two matching strategies under the dominant model. It is
not clear how much power the 1:1 matching would lose under the recessive model. To
quantify the relative efficiency of the 1:1 matching to that of the exhaustive matching, we
use numerical comparisons under a variety of models and testing assumptions for both one-
locus and two-locus analysis, as described next.
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2.2. One-locus models and tests
2.2.1. Likelihood ratio tests for the association between a disease and a SNP
—For testing the association between a SNP and a disease, the conditional likelihood
function of conditioning on parental mating type and the case being affected is equivalent to
the 1:3 matching likelihood function LE (r1,r2), given in (1). An alternative matching
method is the 1:1 matching, with the likelihood function, denoted by L1(r1,r2), provide in
(2). Based on the likelihood functions, we consider the following three types of likelihood
ratio tests.

The first type of tests we study is two-degree-of-freedom tests. In this type of tests, we
compare the maximized likelihood with parameters r1 and r2 to the likelihood under the null
hypothesis r1=r2=1. We denote the resulted two-degree-freedom test with the 1:3 matching
as “2dfE” and the test with the 1:1 matching as “2df1”.

The second type of tests we study has one degree of freedom, which is obtained by placing
restrictions on GRRs. We consider the following three commonly used restrictions:

• Multiplicative, for which 

• Recessive, for which r1 = 1

• Dominant, for which r2 = r1

The likelihood ratio tests are constructed by comparing the maximized likelihood under each
restriction to the likelihood under the null hypothesis r1=r2=1. In each of the above
restricted models, only one parameter needs to be estimated, therefore the resulted
likelihood ratio tests have only one degree of freedom. We denote the three tests with the 1:3
matching as “MULE”, “RECE”, and “DOME”, respectively; and denote the three tests with
the 1:1 matching as “MUL1”, “REC1”, and “DOM1”, respectively. Because the TDT [10] is
widely used, we also compute the power of the TDT.

The third type of tests we consider is the test of Hardy-Weinberg Equilibrium (HWE).
Testing HWE in case-only data or case-control data has been used in fine-scale mapping
[31–33]. It has also been used to provide information about the underlying disease models
and thus to improve statistical power [34–36]. In case-only data or case-control data, testing
HWE is equivalent to testing whether the underlying genotype penetrance is multiplicative,
since HWE in affected subjects holds if and only if the disease model is multiplicative. In
case-parents data, multiplicative GRRs imply independent transmission of alleles from
parents to the affected offspring [9], that is, the transmission follows HWE. Therefore, we
can conduct the HWE test for case-parents data by testing whether the GRRs are
multiplicative. Under the null hypothesis of multiplicative GRRs, the likelihood functions
using the 1:3 matching and the 1:1 matching are

respectively. For the 1:3 matching, we construct the likelihood ratio test by comparing the
maximized LE (r1,r2) to the maximized LE (r), and we denoted the resulted test as “HWEE”.
Similarly, for 1:1 matching, we construct the likelihood ratio test “HWE1” by comparing the
maximized L1(r1,r2) to the maximized L1(r).
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2.2.2. Power calculation—We have introduced nine likelihood ratio tests for both the 1:3
matching and the 1:1 matching. The efficiency depends not only on tests, but also on true
genetic models. Here we consider four true genetic models: multiplicative, recessive,
dominant, and additive. The definitions of the models have been discussed previously.

To compute the asymptotic power, we choose the number of trios to be 200, and fix the
frequency of the risk allele ‘A’ to be 0.2. We assume that the trios are from a random mating
population. For a given true genetic model, we first compute the expected numbers of
different trio types. Using the expected numbers of trio types, for a given test, we then
compute the non-centrality parameter using twice the log of the ratio of the likelihood
maximized under the alternative hypothesis to the likelihood maximized under the null
hypothesis [15]. As an example, to compute the power of the 2dfE test under a multiplicative
model, we first compute the expected numbers of trio types under the multiplicative model;
then compute the non-centrality parameter ncp = 2log(max LE (r1, r2)/LE (1,1)), where max
LE (r1,r2) is the likelihood maximized over the parameters r1 and r2; last, we compute the

power using , where X2 (ncp) is a chi-square-distributed random

variable with two degrees of freedom and the non-centrality parameter ncp, and  is the
95th percentile of the chi-square distribution with two degrees of freedom.

2.3. Two-locus models
We use two-locus models as examples of multi-locus scenarios, since multi-locus models
with more than two loci will result in complicated exhaustive matching. In the two-locus
analysis, we consider both the 1:1 matching and the 1:15 (exhaustive) matching. We assume
that the two SNPs are unlinked since this situation leads to the largest difference between the
two matching strategies.

Two SNPs can jointly affect the risk of a disease in many different ways. Here we consider
four types of true genetic models, including

mul-mul, the model with multiplicative main effects at both SNPs and no interaction;

dom-dom, the model with dominant main effects at both SNPs and no interaction;

rec-rec, the model with recessive main effects at both SNPs and no interaction;

gene-gene interaction, the model with multiplicative main effects and gene-gene
interaction effect.

The GRRs of the four models are shown in Table 2.

To test genetic association between the two loci and a disease, we consider the following
conditional likelihood function

where H represents the 1:1 matching or the exhaustive matching; α, β, and γ denote the
coefficients of the main effect at the first SNP, the main effect at the second SNP, and the
interaction effect between the two SNPs, respectively; go,i and ho,i are the numerically coded
genotypes of the affected offspring in the ith case-parents trio at the first and the second
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SNPs, respectively; ti1 and ti2 are the trio types defined based upon the first and the second
SNPs, respectively.

For the first three genetic models, namely mul-mul, dom-dom, and rec-rec, no interaction is
assumed between the two loci. We test the main effect using LRTs similar to those
described in the one-locus analysis. Specifically, we compare LH (α, β,0) at its maximized
value to LH (0,0,0). For the gene-gene interaction model, in addition to testing the main
effect, we also test the gene-gene interaction by comparing the maximized value of LH
(α,β,γ) to that of LH (α, β,0). The computation of power of the LRTs under the four true
genetic models are similar to what we use in the one-locus analysis, with 200 case-parents
trios sampled from a random mating population with the risk allele frequencies at both SNPs
being 0.2.

2.4. Application to real data
We conducted both single-locus and multi-locus analyses on a Caucasian-based case-parents
dataset in which all offspring had Crohn’s disease. Crohn’s disease is an inflammatory
bowel disease that affects about half a million people in North America [37]. Using a
linkage analysis of nuclear families with inflammatory bowel disease patients, Rioux et al.
[38] detected linkage signals at human chromosome 5q31. To narrow down the candidate
region, they genotyped SNPs at 5q31 for 139 case-parents trios [39]. We used the publically
available subset, i.e., 129 trios genotyped on 103 common SNPs, available from http://
www.broadinstitute.org/archive/humgen/IBD5/haplodata.html (data downloaded on July 27,
2010). These 103 SNPs cover a 500-kb region at 5q31, and the linkage disequilibrium
structure of the 103 SNPs was reported before [40]. In our analysis we excluded two trios
with more than 40% missing genotypes, and analyzed the remaining 127 trios.

For the single-locus analysis of the data, we consider four types of tests, with each assuming
a specific genetic model: 2df, the two-degree-freedom test; DOM, the dominant test; MUL,
the multiplicative test; and REC, the recessive test. Each type is conducted with both the 1:1
matching and the 1:3 matching, so in total there are eight tests. All the eight tests are applied
to each of the 103 SNPs of the Crohn’s disease dataset.

We also conduct the multi-locus analysis using the 1:1 matching. The exhaustive matching
cannot be used, because the recombination fractions are unknown and cannot be accurately
estimated, and there are 103 SNPs. In the Crohn’s disease data, the number of SNPs is close
to the number of trios, which would create problems if we jointly analyze all the SNPs in a
conditional logistic regression. This motivates us to use the Lasso regularization [41].
Another advantage of the Lasso regularization is that it shrinks estimates of regression
coefficients toward zero by adding an L1 penalty term, therefore it is especially suitable for
selecting SNPs in genetic association analysis [42–45]. To realize Lasso regularization, we
use the penalized R package, which provides L1 regularized estimation for Cox proportional-
hazards regression [46]. The reason why we choose this package is that Cox proportional-
hazards regression can be used to fit conditional logistic regression by putting each matched
case-control pair in a unique stratum [9]. In our analysis, we first impute missing genotype
data using BEAGLE [47], as the penalized package requires complete data. Then with the
genotype variable of each SNP being numerically coded to be 0, 1, or 2 according to the
number of copies of the rare allele of the SNP, we use the leave-one-out cross-validation to
choose the optimal tuning constant, which determines the degree of shrinkage of the
regression coefficients. Following that we compute the coefficients of the conditional
logistic regression for the SNPs chosen with the optimal tuning constant. And finally we
compute the percentage of correctly predicted disease status. For comparison, we also
compute the percentage of correctly predicted disease status using the most significant SNP.
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3. Results
3.1. Results of one-locus models

Figures 2 and 3 show the power of the TDT, and the four tests under four different one-locus
genetic models for both the 1:1 matching and the 1:3 matching. The power of the TDT and
MULE was nearly identical, and their power curves almost overlap to each other in Figures 2
and 3. This is not surprising, because the TDT is the score test and MULE is the likelihood
ratio test of the same model. We also subtract the power of the 1:1 matching from that of the
1:3 matching, and summarize the differences in Table 3. Thus, positive values in Table 3
indicate that the 1:3 matching is more powerful than the 1:1 matching, and negative values
indicate the opposite.

When the testing model agrees with the true model, as the 1:3 matching uses more
information from data, naturally the 1:3 matching is always more powerful than the 1:1
matching. It is also more efficient under the two-degree-of-freedom test, for all true genetic
models except the additive model. This exception is due to the fact that the likelihood
functions LE (r1, r2) and L1(r1,r2) are identical under additive GRRs.

There are also many situations that the power of the 1:1 matching is comparable to or even
greater than that of the 1:3 matching. For example, when the true model is additive, the two
matching approaches have the same power under the two-degree-of-freedom test, and the
1:1 matching is more powerful under the other tests. When the true model is multiplicative,
the 1:1 matching is also more powerful under dominant or the recessive test, and it is only
slightly less powerful under the multiplicative or the two-degree-of-freedom test. Another
situation where the 1:1 matching is superior is when the testing model is quite different from
the true model. For example, when the testing model is dominant but the true model is
recessive, as shown in Table 3 and the lower panel of Figure 3, the 1:1 matching
outperformed the 1:3 matching with a maximum difference of 51.9% (recall that a negative
value in Table 3 implies that the 1:1 matching is more powerful than the 1:3 matching). This
demonstrates that the 1: 1 matching is more robust against the misspecification of genetic
model.

For the multiplicative test, the 1:1 matching has comparable efficiency to the 1:3 matching
for all genetic models, as also shown in Table 3. This is especially important, because when
no prior information regarding the true genetic model is available, one often conducts tests
with the multiplicative assumption to prevent substantial power loss due to model
misspecification.

The results of the HWE test are shown in Figure 4. When the GRRs are multiplicative, the
transmission of alleles from parents follows the HWE. As a result, the power of the HWE
test is equal to the nominal p-value cutoff for both matching strategies. When the GRRs are
additive, dominant, or recessive, the 1:3 matching is more powerful than the 1:1 matching.
As those GRRs at a locus can be considered as allelic interactions, the result indicates that
the 1:1 matching is less efficient in testing allelic interactions.

3.2. Results of two-locus models
The results of two-locus analysis are shown in Figure 5 and they are similar to those
observed in the single-locus analysis. Recall that the main effects in our two-locus analysis
are assumed to be multiplicative at both loci. When the testing model agrees with the true
main effects, the exhaustive matching is expected to be more powerful than the 1:1
matching; however, we found that under the mul-mul model the difference in power between
the two strategies is quite small, with the maximum difference being less than 0.7% (data
not shown). This echoes what we found in the one-locus analysis, that is, for the
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multiplicative test, the 1:1 matching and the 1:3 matching have comparable efficiency.
When the true main effects do not agree with the testing model, the relative efficiency of the
1:1 matching to the exhaustive matching is model dependent. The 1:1 matching is slightly
more powerful in the dom-dom model (the upper left plot of Figure 5), but slightly less
powerful in the rec-rec model (the upper right plot of Figure 5). For the gene-gene
interaction models, we tested both main effects (shown in the lower left plot of Figure 5) and
gene-gene interactions (show in the lower right plot of Figure 5). In detecting main effects,
the 1:1 matching is as efficient as the exhaustive matching, with the maximum power
reduction being less than 3%. In detecting gene-gene interactions, the 1:1 matching is not as
efficient as the exhaustive matching, with the maximum loss being 30.2%.

Intuitively, the exhaustive matching utilizes more information and thus should be more
efficient than the 1:1 matching in both single-locus and multi-locus analysis. This is largely
confirmed in the numerical comparisons above. First, a higher power in detecting main
effect was observed with the exhaustive matching method when the true model was
correctly specified. It seems that most of the time this gain in statistical power was minimal
and hardly be appreciable in both single-locus and two-locus analysis. This might be partly
due to the fact that not all pseudo-controls constructed under the exhaustive matching
provide evidence for the true model. Some pseudo controls may represent the evidence
against the true model, offsetting the statistical power in detecting an association. Second,
we found that the exhaustive matching is much more powerful than the 1:1 matching in
testing for interaction. By the way the 1:1 matching was constructed, it does not allow for
other possible combinations of alleles at different loci except the ones passed from the
parents; its power for detecting interaction is thus very much limited.

To summarize, the results of the one-locus and two-locus studies demonstrate that the 1:1
matching generally has comparable power to the exhaustive matching in detecting
multiplicative / additive effects in single-locus analysis and main effects in multi-locus
analysis, but not as efficient in detecting interactions, which agrees with our theoretical
finding about the equivalence (near equivalence) between the 1:1 matching and the
exhaustive matching under additive (multiplicative) GRRs.

3.3. Results of the Crohn’s disease dataset
The p-values of the single-locus analysis of the Crohn’s disease dataset are shown in Figure
6. Among all tests, the two tests for the multiplicative effect show the highest significance
for most SNPs. The difference in p-values between the 1:1 matching and the 1:3 matching is
small for the two two-degree-of-freedom tests and for the two multiplicative tests. Because
the two two-degree-freedom tests are exactly / approximately identical when the true model
is additive / multiplicative, the results here suggest that additivity or multiplicity is a good
approximation to the true genetic models of most SNPs.

Given that the 1:1 matching is efficient in testing main genetic effects in multi-locus
analysis, we use the 1:1 matching to search SNPs that are jointly associated with Crohn’s
disease. In the multi-locus analysis, we first arbitrarily chose two values for the tuning
constant, 1 and 20. The value 1 resulted in selecting 29 out of 103 SNPs, and the value 20
resulted in selecting two SNPs. Therefore, it is reasonable to believe that the optimal value
of the tuning constant is between 1 and 20. Restricting the tuning constant to be in this range
and using the leave-one-out cross-validation, we found the optimal value of the tuning
constant is 3.48. This optimal value led to a conditional logistic regression with nine SNPs,
with an overall p-value of 1.6×10−7. Using the final model with the nine selected SNPs, we
computed the predicted probability that an offspring or a pseudo control is diseased, with the
results shown in the upper plot of Figure 7. Using 0.5 as the cutoff to predict whether a child
is diseased, the model with the nine selected SNPs correctly predicted 92 out of 127 affected
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offspring being diseased, that is, a 72.4% of correctness. As a comparison, we also
computed the percentage of correctly predicted disease status using the most significant
SNP. With missing genotypes imputed, the 26th SNP has the smallest p-value (1.61×10−6

using 1:1 matching, 1.32×10−6 using 1:3 matching) and it provided the best predictability
among all individual SNPs, but it only correctly predicted 68 of 127 affected offspring to be
diseased, that is 53.5%. The receiver operating characteristic (ROC) curves and the areas
under the ROC curves (AUC) are shown in the lower plot of Figure 7. Because we
calculated the AUC using the data of the affected offspring and their pseudo sibs, the AUC
values we obtained might overestimate what they would be if real case-control data are used.
But the larger AUC of the multi-locus analysis nevertheless shows the benefit of using
multi-locus analysis. These results demonstrate that the 1:1 matching enabled multiple-locus
analysis provides an improved prediction of disease than the single-locus analysis.

Although the nine selected markers show increased predictability for Crohn’s disease than
the most significant SNP, we have to interpret the selected markers cautiously. It has been
recently shown that untyped rare DNA variations can cause association between a disease
and multiple common SNPs [48]. Thus, the selected SNPs might imply that multiple
common and rare DNA variations at 5q31 are responsible for Crohn’s disease. Note that the
region 5q31 has been replicated by several genome-wide association studies, such as [49,
50]. Thus, despite the uncertainty in interpreting the detected association based on the
Crohn’s disease data, our results nevertheless demonstrate that the penalized multi-locus
method based on the 1:1 matching can improve power in detecting association. In the future,
we plan to evaluate the penalized method with large-scale genome-wide trio studies.

4. Discussion
To summarize, we compared the efficiency of the 1:1 matching to that of the exhaustive
matching using both theoretical derivations and numerical computations. Our results show
that 1) the two matching strategies use exactly / approximately the same amount of
information under additive / multiplicative GRRs, and 2) the 1:1 matching is efficient in
detecting main effects in multi-locus analysis. We illustrated the usefulness and efficiency of
the 1:1 matching in multi-locus analysis by applying it to the Crohn’s disease data, and we
improved the percentage of correctly predicted diseases status by more than 18.9% -- from
53.5% achieved by using the most significant SNP to 72.4% achieved by using the nine
SNPs selected by the penalized method.

We studied the usefulness of the 1:1 matching in the case-parents design. With minor
modifications, the same matching strategy can also be extended to general nuclear families
with multiple affected and unaffected offspring. For a family with m affected offspring, it is
reasonable to assume that the disease risk of a subject is independent of the genotypes of his
siblings or parents, given the genotype of the subject. With this assumption, under a main-
effect-only multi-locus model, the conditional likelihood function for this family then is

where gj is the genotype vector for the jth affected offspring, ḡj is the genotype vector
constructed by alleles not transmitted to the jth affected offspring, β is the vector of the
coefficients of the main genetics effects in the conditional logistic regression. This way of
creating matched data and constructing the likelihood function corresponds to a permutation
test that permutes all siblings within a family, instead of individual siblings, in each
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permutation. As this permutation maintains the dependence of siblings within the same
family [51], the matching we use here also preserves the dependence of siblings and leads to
valid tests of association whether linkage presents or not. In addition, we may also include
unaffected offspring in our modeling, by labeling the alleles of an unaffected offspring as
“nontransmitted” and the alleles not transmitted to the unaffected offspring as “transmitted”
[52]. This has to be used with caution, however, as incorporating the unaffected offspring
may lead to either negligible gain in power or even reduced power when the penetrance is
not high [53].

Here we showed that the 1:1 matching has comparable efficiency to the exhaustive matching
in many situations. But we want to point out that our results do not indicate that one should
always replace the exhaustive matching with the 1:1 matching. In fact, when testing the
association between one locus and a disease, the exhaustive matching (the 1:3 matching)
always uses the same or more information from data than does the 1:1 matching. For two
unlinked loci, the exhaustive matching is also recommended, as the exhaustive matching
(1:15) does not lead to substantially more computational cost than the 1:1 matching. It is
when multiple loci are jointly analyzed, especially when the number of jointly analyzed loci
is greater than two or when the loci are in linkage, the 1:1 matching provides an efficient,
convenient, and easy-to-implement strategy to test main genetic effects. If gene-gene
interaction effects are the focus of an analysis, the 1:1 matching is still valid, such as in [26];
however, it might be suboptimal in terms of power. It is clearly worthy of future research
efforts to develop statistical methods that can efficiently capture interactions of multiple
linked loci using family data.
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Appendix
We can arbitrarily label one allele as the risk allele and the other one as the normal allele at
each SNP, and define trio types at each SNP in the same ways as shown in Table 1. Let
nt1,t2,…,tL denote the number of trios with type tl at SNP l for l=1,2,…,L, where

The contribution of nt1,t2,…,tL to the exhaustive likelihood and the 1:1 matching likelihood
are

respectively, where g(t1,t2,…,tL) is the genotype of the affected child in a case-parents trio
with type (t1,t2,…,tL), H1 (t1,t2,…,tL) denote the genotypes of the affected child and his or
her pseudo-sibling under the 1:1 matching, and HE(t1,t2,…,tL) denote the 4L genotypes of all
possible siblings (including the affected child and the 4L-1 pseudo-siblings) under the
exhaustive matching. When the L loci are unlinked, the pseudo-sibship method implies that
the 4L genotypes in HE (t1,t2,…,tL) are equally likely.
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Under the assumption of additive GRRs, the GRR of a genotype depends only on the
number of the risk alleles at each SNP. Thus, for the 1:1 matching, the sum of the GRRs of
the affected child and his or her pseudo-sibling is equal to the sum of the GRRs of the father
and the mother. If we let nl denote the number of risk alleles at SNP l in a pair of parents
under trio type (t1,t2,…,tL), we have

In the exhaustive matching, HE (t1,t2,…,tL) comprises of all the 4L combinations of parental
alleles. Thus, the sum of the risk alleles of the 4L genotypes at SNP l is equal to (4L/2)nl.
Thus,

As a result, we have

which proves that the likelihood functions for the 1:1 matching and the exhaustive matching
are the same.
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Figure 1.
One (a) v.s. three (b) pseudo siblings for the affected offspring AA genotype, Aa father, and,
Aa mother. The filled circles represent the genotypes of the affected offspring, and the
dotted diamonds represent the genotypes of the pseudo siblings.
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Figure 2.
The power of the nine tests: MUL, DOM, REC, and 2df tests for each of the two matching
strategies, and the TDT test. Because the power curves of the TDT and MULE almost
overlap to each other, it is hard to see the curves of the TDT on the plots. Upper panel:
power curves when the true genetic model is multiplicative; lower panel: power curves when
the true genetic model is additive.
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Figure 3.
The power of the nine tests: MUL, DOM, REC, and 2df tests for each of the two matching
strategies, and the TDT test. Because the power curves of the TDT and MULE almost
overlap to each other, it is hard to see the curves of the TDT on the plots. Upper panel:
power curves when the true genetic model is dominant; lower panel: power curves when the
true genetic model is recessive.
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Figure 4.
The power of the HWE test for the 1:3 matching (solid line) and the 1:1 matching (dashed
line) when the true genetic models are multiplicative, additive, dominant, and recessive,
respectively.
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Figure 5.
The power computed under two-locus models, for both the 1:1 matching (dashed line) and
the exhaustive matching (solid line). The upper two plots show the power of detecting main
effects computed under two main-effect-only models: dom-dom and rec-rec, respectively.
The power of detecting main effects under the mul-mul model shows no noticeable
difference between the 1:1 matching and the exhaustive matching; thus, the results are
omitted. The lower plots show the power of detecting main effects and gene-gene
interactions, respectively, under the gene-gene interaction model.
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Figure 6.
The p-values (on the −log10 scale) of the four single-locus tests for the Crohn’s disease data.
The four tests are, from top to bottom, the 2df, DOM, MUL, and REC tests, respectively.
Solid line: the 1:3 matching; dashed line: the 1:1 matching.
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Figure 7.
Upper panel: the predicted probabilities for the affected offspring (transmitted) and the
pseudo siblings (nontransmitted) being diseased using the penalized multi-locus analysis
under the 1:1 matching; lower panel: the receiver operating characteristic (ROC) curves and
areas under the ROC (AUC) for SNP 26 selected by the single-locus analysis and for the
nine SNPs selected by the penalized multi-locus analysis.
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Table 1

Trio type, parental mating type, case type, and pseudo controls for case-parents data.

Trio type Parental mating type Case type Pseudo controls

12 1: AA x AA 2: AA AA, AA, AA

22 2: AA x Aa 2: AA Aa, AA, Aa

21 1: Aa AA, AA, Aa

31 3: AA x aa 1: Aa Aa, Aa, Aa

42 4: Aa x Aa 2: AA aa, Aa, Aa

41 1: Aa Aa, AA, aa

40 0: aa AA, Aa, Aa

51 5: Aa x aa 1: Aa aa, Aa, aa

50 0: aa Aa, Aa, aa

60 6: aa x aa 0: aa aa, aa, aa

The first column shows the trio types, which are determined by parental mating types and case genotype. The second column shows the parental
mating types, and if we ignore the order of parents there are 6 types in total, as shown from top to bottom. The third column shows the genotypes of
the affected offspring; there are three types in total, AA, Aa and aa, which are represented by type 2, 1, and 0, respectively. The fourth column
shows the genotypes of the pseudo siblings of the affected offspring under the 1:3 matching; the genotype in bold letters is that of the pseudo
sibling of the affected offspring under the 1:1 matching.
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Table 2

The GRRs of four two-locus genetic models: multiplicative-multiplicative, dominant-dominant, recessive-
recessive, and gene-gene interaction models, from top to bottom, respectively.

Genetic Model
SNP1 SNP2

bb Bb BB

mul-mul

aa 1 λ λ2

Aa λ λ2 λ3

AA λ2 λ3 λ4

dom-dom

aa 1 λ λ

Aa λ λ2 λ2

AA λ λ2 λ2

rec-rec

aa 1 1 λ

Aa 1 1 λ

AA λ λ λ2

gene-gene interaction: test for main effects

Aa 1 λ λ2

Aa λ λ2 1.2λ3

AA λ2 1.2λ3 1.22λ4

gene-gene interaction: test for interaction

Aa 1 1.2 1.22

Aa 1.2 1.22λ 1.23λ2

AA 1.22 1.23λ2 1.24λ4
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Table 3

Range of the power difference (in %) between the 1:3 matching and the 1:1 matching for four testing models
(Multiplicative, Dominant, Recessive, 2df) and four true genetic models (Multiplicative, Dominant, Recessive,
and Additive) in the single-locus analysis. A negative value means the 1:1 matching is more powerful, while a
positive value means the 1:3 matching is more powerful.

Testing model
Multiplicative Dominant Recessive 2df

True model

Multiplicative [0, 0.4] [−4.5, 0] [−5.1, 0.1] [0, 0.5]

Dominant [−2.2, 0] [0, 2.1] [−7.6, 0] [0, 2.2]

Recessive [0, 6.6] [−51.9, 0] [0, 15.0] [0, 16.3]

Additive [−0.4, 0] [−2.2, 0] [−11.2, 0] [0, 0]
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