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Abstract
The functional MRI (fMRI) community has zealously embraced resting state or intrinsic
functional connectivity approaches to mapping brain organization. Having demonstrated their
utility for charting the large-scale functional architecture of the brain, the field is now leveraging
task-independent methods for the investigation of phenotypic variation and the identification of
biomarkers for clinical conditions. Enthusiasm aside, questions regarding the significance and
validity of intrinsic brain phenomena remain. Here, we discuss these challenges and outline
current developments that, in moving the field toward discovery science, permit a shift from
cartography toward a mechanistic understanding of the neural bases of variation in cognition,
emotion and behavior.

Characterizing phenotypic variation
Nearly two decades after the seminal description of the phenomenon [1], resting state or
intrinsic functional connectivity (iFC; Box 1) research is booming. Having amply
demonstrated the utility of iFC approaches for mapping the functional architecture of the
brain [2,3], researchers are now beginning to tackle cognitive and clinical neuroscience
questions concerning the neural bases of interindividual phenotypic variation (i.e., brain-
behavior relationships). In the past, fMRI research was restricted to the examination of
specific cognitive constructs and tasks adapted for the scanner environment. However, fMRI
researchers can now examine the relationship between brain activity and any phenotypic
variable quantified inside or outside the scanner (e.g., psychiatric diagnoses; cognitive,
behavioral or physical states or traits; task performance), using a single imaging dataset. The
possibilities are exhilarating – studies have already examined the neural correlates of
variation along several spectra of behavior, including memory function [4], social
competence [5], personality [6], and social network size and rank in macaque monkeys [7].
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Enthusiasm must be tempered, however, by concerns regarding sample size, motion and
other nuisance factors, as well as a lack of consensus regarding data processing strategies.
Most importantly, the neurophysiological bases of intrinsic brain activity and iFC remain
poorly understood. Here, we discuss these challenges and outline how propagation of the
methods and ethos of discovery science can help to address them.

The unconstrained nature of rest
A persistent criticism of resting state fMRI (R-fMRI) is the unconstrained, unknowable and
variable nature of rest itself. In particular, concern is often expressed that interindividual or
group differences in ‘resting’ cognition could be largely responsible for the results obtained.
Unease regarding the influence of active cognition during rest primarily reflects a conflation
of the intrinsic activity that underlies iFC and the relative increases in activity that occur in
the default network during passive or resting state conditions. Specifically, whereas the
relative increase in default network activity during passive conditions is indeed likely to
reflect active cognition [8,9], intrinsic activity persists across, albeit moderated by, multiple
states, including rest, task performance, sedation and sleep, and is also observed across
species. As such, intrinsic activity represents a distinct phenomenon, likely with distinct
neurophysiological bases, that does not support active cognitive processing [9].

The effect of participant current state cannot be disregarded entirely, however.
Manipulations of participant resting cognitions [10] or mood [11] impact iFC significantly.
Further, intrinsic activity is affected by whether participants are instructed to maintain their
eyes open or closed [12,13], the prior performance of cognitive tasks [14] and factors such
as substance withdrawal [15], drowsiness and sleep [16,17]. Perceptual processing may also
have an impact [18]. Concern about such factors has largely been controverted by the
moderate-to-high test-retest reliability demonstrated for indices of intrinsic activity [19] and
iFC [12,20-23]. Even substantial variation associated with data collection site or scanner
does not obscure iFC measures [24]. Consequently, if factors related to participant state vary
randomly across a sample, their effects are likely to be negligible, but if systematic variation
is suspected, for instance, between groups, concern is justified and interpretations should be
tempered accordingly. One response to this challenge is comprehensive phenotypic
characterization. This will allow investigators to control for state and trait differences among
participants or to interrogate relationships associated with these differences themselves, by
permitting the investigation of brain-behavior relationships for both categorical (e.g., group)
and continuous measures of phenotypic variation in the context of group-level analyses
[25,26]. Finally, an alternative approach involves avoiding ‘rest’ by exerting experimental
control over participant state, for example, by scanning during natural sleep or passive
conditions (listening to music or watching a movie) (e.g., [27]). Investigating the impact of
such manipulations is an important next step.

Physiological noise and the global signal
The primary criticism leveled at Biswal et al. [1] – the extent to which R-fMRI phenomena
can be explained by physiological processes such as vasomotion, rather than spontaneous
neuronal activity – remains a concern. Signals associated with cardiac and respiratory
processes account for 5-15% of the variance in intrinsic blood oxygenation level dependent
(BOLD) activity [28-31]. Interindividual or group differences in factors affecting
neurovascular coupling (e.g., age or disease processes) may therefore be particularly
worrisome [32,33]. The study of very young [34] and elderly [35] populations should be
accompanied by an awareness of these factors, as should studies of a variety of pathologic
conditions including obesity [36], Alzheimer’s Disease [37] and stroke [38]. Ideally,
physiological signals should be recorded and removed from R-fMRI data [28,39-41].
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However, many researchers lack the necessary recording equipment or experience
procedural difficulties (e.g., respiratory belt calibration). Although independent component
analysis (ICA) approaches can remove physiological signals in the absence of explicit
recordings [42,43], the predominant approach is nuisance signal regression. This entails the
removal, via regression, of signals associated with motion, white matter and cerebrospinal
fluid, as well as a global (mean) signal. Global signal regression (GSR) has been criticized
for mathematically shifting the distribution of correlations so that approximately half are
negative [44]. The neurophysiological validity of the resulting negative correlations
(‘anticorrelations’) has not yet been established. On the other hand, omitting GSR from
analyses reduces sensitivity and anatomical specificity, prompting its continued use, despite
the associated caveats.

Alternatives to GSR have been proposed [45,46], which, although promising, do not resolve
the question of what it means when two regions that were positively correlated or unrelated
before correction become negatively correlated afterwards. More problematic is the
temptation to over-interpret negative correlations – as ‘inhibitory’ interactions (e.g., [47]).
Further, electrophysiological work suggests that the global signal is correlated with an
oscillatory neuronal signal present throughout the brain [48]. Although this observation does
not necessarily invalidate the use of GSR, it prompts caution in discussing ‘negative’ iFC
and emphasizes the need for direct examination of the neurophysiological bases of intrinsic
activity and the global signal in animal models [49].

Head motion: a recurring issue
The association between age and iFC constitutes one of the best studied phenotypic
relationships to date. Recent evidence that previously reported developmental changes in
iFC may, in part, reflect the effects of motion [50,51] is thus particularly troubling. The
confounding effects of motion are not restricted to developmental studies but are a concern
for all iFC studies, and indeed fMRI studies in general [50-52]. The solution remains
unclear. Power et al. [50] propose that offending time points be removed prior to computing
iFC. However, this is a destructive procedure that may violate analytic assumptions (e.g.,
temporal contiguity). Further, how and when to excise motion-corrupted frames is unclear
[53], as are the limits of this approach: what proportion of time points can or should be
removed? Van Dijk et al. [52] propose a less aggressive approach that involves including the
mean frame-wise motion or number of micromovements as a nuisance covariate in group-
level analyses. How to best quantify the success of such correction strategies and when to
exclude participants outright remain open questions.

Structural variation
Volumetric and morphometric differences among participants, together with variation in the
accuracy of template normalization, may also confound investigations of phenotypic
differences in the functional connectome. Strategies to deal with these factors have been
described, such as the inclusion of mean or voxel-wise covariates quantifying normalization
accuracy [54] or morphometric measures [55], or the use of iFC maps themselves as a basis
for inter-subject alignment [56]. Surface-based analyses [3,57,58] offer a particularly
promising avenue. Yet, even in meticulously executed surface-based analyses, ambiguities
remain, such as the commonly observed iFC between superior temporal areas and ventral
somatomotor cortex, which may reflect true anatomic connectivity or blurring of signal
across the Sylvian fissure [3]. In addition, interindividual variation in the locations of
functional boundaries may not be resolved by alignment of gross anatomical features. High-
resolution datasets and work in animal models may permit the disambiguation of these
possibilities.
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The case for discovery
Poldrack [59] has emphatically outlined the need for larger sample sizes, appropriate
correction for multiple comparisons and robust statistical methods across the fMRI field as a
whole. Simply put, inadequate sample sizes, methods and correction procedures induce a
vicious cycle in which under-powered or methodologically weak studies are used in
attempts to replicate the results of other weak studies, producing a large number of failures
to replicate and a surfeit of false positives.

Figure 1 illustrates why these challenges are particularly salient for the examination of
interindividual variation in the functional connectome. The plot shows the effect of sample
size on a group-level correlation between age and iFC, revealing that sample sizes less than
100 produce wildly varying estimates of the ‘true’ effect (i.e., the effect obtained across all
1093 participants). Even though concerns can be mitigated by combining estimates of iFC
across multiple scans [5] or by demonstrating reliability across scans or samples [6,55,60],
this finding is sobering for studies of brain-behavior relationships using R-fMRI data,
which, to date, have employed relatively small samples.

Going forward, these challenges may best be addressed by adopting the tools of discovery
science and accruing large-scale, well-characterized datasets that permit the creation of test
and replication samples (e.g., [3,57]). Several projects are already moving in that direction,
including the 1000 Functional Connectomes Project (FCP) and International Neuroimaging
Data-sharing Initiative (INDI; http://fcon_1000.projects.nitrc.org), the Human Connectome
Project (HCP; http://www.humanconnectome.org), and the Superstruct project (http://
sfari.org/funding/grants/abstracts/the-brain-genomics-superstruct-project). Data from FCP/
INDI are already freely available to the community, while both the HCP and Superstruct
projects will be making data available in the near future. The scientific multiplier effect of
such efforts is already evident, with at least 24 papers published using FCP resources within
two years of making these resources available. Propagation of the ethos of discovery science
to the field as a whole is crucial to further progress in identifying the neural correlates of
individual differences.

Analytic tools for discovery
Together with ICA approaches, seed-based correlation remains a popular method for
deriving iFC because of its computational simplicity and amenability to group-level
comparisons. Temporal- [61,62] and frequency domain-based [63-65] measures for
characterizing intrinsic activity are also gaining popularity. More sophisticated methods are
rapidly proliferating (see [66] for a review) as researchers adapt analyses and algorithms
from other fields and computational infrastructures grow to match their demands. Some
approaches, such as those aimed at detecting causal influences among regions, have been
found wanting [67], although newer methods for the investigation of directional influences
may be more effective [68]. A particularly promising line of research is the investigation of
dynamic changes in iFC [69], a characteristic that may explain some of the phenotypic
variation in iFC observed to date (e.g., ‘hyperconnectivity’ or ‘hypoconnectivity’ in one
group relative to another may reflect more or less consistent iFC over time, respectively).

The next step is the development of methods capable of surveying the entire functional
connectome for brain-behavior relationships in order to yield empirically grounded
hypotheses that can be tested in replication datasets. Such approaches constitute a deviation
from current practices, which require data reduction and/or a priori specification of regions
or networks of interest. These requirements necessarily limit exploration and discard
potentially meaningful information about interindividual variation. Acknowledging their
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genetic counterpart, new methods for exploration are termed Connectome-Wide Association
Studies [70] and rely on multivariate, rather than univariate, statistical approaches (see Box
2).

Deep phenotyping
An early critique of R-fMRI [71] stated that rest was unlikely to be a productive way to
understand network function. This assertion is incontrovertible – correlated intrinsic activity
itself says nothing about the functions supported by the networks in which it occurs [9].
Such understanding can only be obtained by experimental manipulations in the context of
task-based approaches or by relating interindividual variation in measures of intrinsic
activity to variation in phenotypic measures. This highlights the importance of investment in
the cognitive and behavioral constructs examined and the tools with which they are
measured. As eloquently outlined by Bilder and colleagues, phenomics is now the rate-
limiting step preventing the advance of discovery science in neuroimaging [72]. Obtaining
community consensus on the phenotypic constructs to be explored (cognitive ontologies
[73]) will ultimately transform cognitive and psychiatric neuroscience (Box 3).

Lost in the cracks
Applying data-driven partitioning techniques (e.g., cluster analysis) to iFC data can
parcellate the brain into distinct functional systems and units, revealing its functional
‘building blocks’ [3,74-76]. Such efforts typically focus on identifying functional units that
are stable across individuals, rather than how they vary. Yet, interindividual variation in how
functional areas are differentiated from one another may be of interest in itself. Cohen et al.
[58] provided a key insight when they described ‘transition zones’: the boundaries between
functional areas, indicated by sharp changes in iFC. Such transition zones are evident when
mapping the confidence or stability of iFC-based parcellations (e.g., [3,57]) and iFC
variability within a network across individuals (Figure 2). Interindividual variation in these
transition zones does not appear to strictly follow structural variation, but rather variation in
task-evoked activations [58,77]. As such, examination of links between variation in
functional zones and behavior holds promise: initial studies suggest that the functional
connections most strongly related to phenotypic variables [5,6] and to the magnitude of task-
evoked activation [77] are those that exhibit the greatest variability across individuals and
lay within these transition zones. The role of intraindividual dynamic variation in the
strength of iFC [69] in the creation of these transition zones also merits investigation.

Toward a mechanistic understanding
We have provided an overview of some of the main challenges facing intrinsic brain
research as the field moves into an era of discovery. We hold that assimilation of the
methods and ethos of discovery science will propel the field beyond simply mapping the
brain’s functional organization toward understanding how interindividual variation in brain
organization and function underlie normal and abnormal variation in cognition, emotion and
behavior. Looking ahead, a mechanistic understanding of brain-behavior relationships will
demand multimodal and translational approaches. Studies in animal models permit direct
structural, pharmacological, molecular and genetic experimental manipulations that will
provide causal explanations of intrinsic brain phenomena, as well as the disruptions
associated with clinical disorders. The time scales of animal development also provide
experimentally tractable timeframes within which to study questions pertinent to human
development and developmental psychopathology. Already, non-invasive investigations in
humans using EEG [78] and MEG [79,80] have demonstrated relationships between spatial
and temporal indices of oscillatory electrophysiological activity and iFC measures. Together
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with invasive studies in non-human primates [48,81,82] and humans [83,84], these studies
provide strong evidence that the signal fluctuations underlying iFC arise from the same
neuronal substrate as activity occurring on faster time scales, including those relevant to
information processing and behavior [84]. A compelling complementary line of research
involves the investigation of the impact of intrinsic (ongoing) brain activity on perception
and behavior [85,86]. Finally, computational modeling work employing physiologically
realistic constraints [87,88] has provided compelling accounts of the emergence of intrinsic
fluctuations on the timescales captured by fMRI from neuronal interactions occurring at
faster timescales, as well as plausible explanations for some of the more puzzling
characteristics of intrinsic activity (e.g., anti-phase relationships between networks).
Continued exploitation of these important lines of research is sure to spark the next wave of
breakthroughs in our understanding of brain and behavior.
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Box 1

Same phenomenon, many names

Although long a condition of interest for researchers working with a variety of modalities
including electroencephalography (EEG) and positron emission tomography (PET), the
work of Biswal and colleagues [1] marked the birth of the field of study of rest using
fMRI (see [89] for an excellent historical account). Although certainly an appropriate
designation during the early years of the field, the term ‘resting state’ now seems
somewhat of a misnomer. That is, in light of evidence for the ubiquitous and universal
nature of the correlated fluctuations of interest, the term ‘resting state’ no longer
accurately captures the phenomenon in question, motivating a search for alternatives.

Extant designations vary according to whether they capture the imaging method (e.g., R-
fMRI), analytic approach (e.g., resting state functional connectivity) or the biological
phenomenon itself, and it is difficult to identify a label that encompasses all aspects.
Here, our preference is to refer to the biological phenomenon, without bias toward a
specific imaging modality or analytic approach. Accordingly, while we recognize the
historical significance of ‘resting state,’ we use the term ‘intrinsic activity,’ defined by
Raichle [90] as “ongoing neural and metabolic activity which is not directly associated
with subjects’ performance of a task”. We also employ the corollaries ‘intrinsic
functional connectivity’ (iFC) and ‘intrinsic connectivity networks’ (ICNs) to refer to the
quantification of coherent intrinsic activity and the functional networks in which it
occurs, respectively. Finally, we use the term ‘functional connectome’ [24] to refer to the
complete set of intrinsic functional connections in the brain.

It is our hope that, as the field moves toward a better understanding of the
neuroanatomical and neurophysiological bases of intrinsic activity, a more specific
nomenclature will emerge. Currently, however, we suggest that ‘intrinsic’ is preferable to
‘resting state’ for a number of reasons: (i) it captures something about the biological
phenomenon itself, which is not specific to a particular modality such as fMRI; (ii) it
depicts the ubiquity of the phenomenon – the persistence of intrinsic activity across sleep,
sedation, task performance and coma, as well as its presence across multiple mammalian
species; (iii) it does not limit the phenomenon described in terms of periodicity or
frequency; (iv) it has already been adopted by several researchers (e.g., [57,90]); and
finally, (v) as the field experiments with different states (e.g., scanning during sleep or
while participants watch a video or listen to music), shedding the ‘resting state’ moniker
will become more important.
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Box 2

Multivariate prediction analysis

When applied to the study of intrinsic activity, the goal of discovery science is to identify
models that relate measures of that activity (such as iFC) to phenotypic variables.
Prediction analysis provides a means for measuring how well these models generalize to
independent data. This is complementary to inferential statistics, which measure the
likelihood of such relationships arising by chance. In the prediction analysis framework,
a model relating iFC to a phenotype is learned from a training dataset. This model is then
applied to an independent test dataset to predict phenotypes. The resulting predictions are
compared to the true phenotypes to estimate how well the model generalizes to the test
dataset. Thus, prediction analysis provides a natural framework for evaluating biomarkers
[21], performing real-time fMRI [91] and evaluating experimental tradeoffs [92].

Prediction analysis has been applied to functional neuroimaging data since the early
1990s [93] and more recently to IFC data [94]. Most, if not all, analysis methods can be
applied in a predictive modeling framework but the majority of methods that have been
applied to iFC are multivariate classification and regression methods (referred to as
multivariate prediction analysis – MVPA). Multivariate methods are more sensitive to
distributed patterns of iFC than their univariate counterparts. Additionally, they provide a
means for evaluating the significance of an entire pattern using a single statistic,
obviating the need to correct for multiple comparisons.

Although there are many circumstances in which high prediction accuracy is the ultimate
goal of an analysis (e.g., predicting treatment outcome), in general, it is desirable that the
model also be interpretable. Identifying the iFC measures (features) that are most
important to the model is problematic and an open issue for MVPA research. Several
feature selection algorithms have been proposed to address this issue, but there is no
consensus on which is best [21]. We note that feature selection methods that rely on
feature-by-feature statistical tests require correction for multiple comparisons.

MVPA classification has already been successfully used to identify potential iFC
biomarkers of Alzheimer’s disease [95], major depression [96], schizophrenia [97], and
autism [47], among others. MVPA classification and regression techniques have also
been applied to identify biomarkers of age [98] and recent work has shown the utility of
MVPA methods for deriving iFC models at the individual level [99]. An in-depth
overview of the statistical pattern recognition methods underlying MVPA techniques can
be found in [100].
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Box 3

Clinical insights and applications

Long frustrated by the challenges of designing task-probes amenable to clinical
populations that differ in terms of intellectual, cognitive or behavioral functioning,
researchers have readily welcomed the iFC approach (see Table 1 for a list of disorders
and conditions studied to date). In addition to overcoming concerns regarding practice,
floor and ceiling effects, iFC approaches have made the of data aggregation across
imaging sites a reality. This is especially important for the study of clinical populations,
many of which have a prevalence of 1% or lower in the general population, necessitating
the aggregation of resources across sites to achieve appropriate sample sizes.

The transformative impact of the iFC approach for the fields of neurology and psychiatry
extends beyond logistical considerations, fostering a shift in how we conceptualize
neuropsychiatric illness. Whereas task-based studies encouraged a search for a ‘clinical
homunculus’ that mapped distinct clinical phenomenology to altered function in
circumscribed regions of the brain, the iFC approach emphasizes compromised
functional and structural interactions as potential loci of dysfunction. Ultimately, the
comprehensive assessment of both regional function and interregional connectivity are
needed to provide the most complete characterization of the impact of pathological
processes on the brain.

With respect to the future of clinical applications, the recent ADHD-200 Global
Competition (http://fcon_1000.projects.nitrc.org/indi/adhd200/results.html) brought a key
question to the forefront: do iFC approaches, and neuroimaging more broadly, have a
role in the diagnosis of psychiatric illness? To answer this question, we look to models
from the broader medical community. For example, when a patient visits their doctor
with symptoms suggestive of a common cold, no blood test or diagnostics are ordered. In
contrast, when the presenting symptoms are consistent with multiple possibly severe
diagnoses, objective laboratory tests become of value. Applied to psychiatric illness, for a
typical presentation of a condition such as Attention-Deficit/Hyperactivity Disorder
(ADHD), the criteria in current diagnostic manuals are sufficient. However, when a
clinical presentation cuts across diagnostic boundaries and clarification can directly
impact treatment decision-making, imaging-based tools may have value in improving
diagnostic accuracy. Similarly, imaging-based tools may help track response to
treatment. However, as highlighted by the recent ADHD-200 Competition (http://
fcon_1000.projects.nitrc.org/indi/adhd200), claims of clinical utility of purely imaging-
based approaches in psychiatry are currently premature and potentially harmful. Further
methodological innovation, combined with the generation of carefully characterized and
well-coordinated datasets, is needed before imaging-based diagnostic tools can become a
reality.
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Figure 1.
Effect of sample size on the group-level correlation between age and posterior cingulate
cortex (PCC) iFC (adapted from [24]). The correlation between age and PCC iFC was
computed for each of a set of randomly sampled subgroups, ranging in size from 10 to
1,090. The plot shows the mean correlation ± 2 times the standard deviation (SD), computed
across 10,000 iterations. The plot demonstrates that sample sizes less than 100 produce
wildly varying estimates of the ‘true’ effect (the observed correlation between iFC and age,
computed on the basis of 1093 participants and indicated by the solid horizontal line).
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Figure 2.
Interindividual variation in functional boundaries or transition zones (adapted from [24]).
The figure shows the spatial distribution of voxel-wise coefficients of variation (absolute
value) for (a) fractional Amplitude of Low Frequency Fluctuations (fALFF: a frequency
domain-based measure of intrinsic activity); (b) iFC associated with a seed placed in the
intraparietal sulcus (IPS); (c) iFC associated with a seed placed in posterior cingulate cortex
(PCC); and (d) iFC within an ICA-based network identified as the default network. For the
purpose of visualization, coefficients of variation (CV) were rank-ordered, so that the
relative degree of variation across participants at a given voxel is shown. Ranking
coefficients of variation in this way clearly delineates regions of greatest interindividual
variability, thus demarcating putative functional boundaries or transition zones.
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Table 1

Number of publications in which iFC or resting state approaches have been used to study a variety of disorders
and conditions.

Disorder/Condition # studies

Schizophrenia 63

Alzheimer’s Disease 62

Depression 46

Mild Cognitive Impairment (MCI) 43

Aging 42

Epilepsy 32

Substance Dependence 28

ADHD 17

Multiple Sclerosis 14

Autism 14

Parkinson’s Disease 12

Pain 11

Anxiety Disorders 9

Sleep 9

Miscellaneous Neurological Disorders 9

Stroke 8

Obsessive Compulsive Disorder (OCD) 8

Posttraumatic Stress Disorder (PTSD) 8

Amnesia 6

Brain Lesions 6

Dementia 4

Seizure 4

Trauma 4

Bipolar Disorder 3

Personality Disorders 2

Cerebral Palsy 2

Fetal Alcohol Syndrome 2

Migraine 2

Psychopathy 2

Learning Disabilities 1

Tourette Syndrome 1

Trends Cogn Sci. Author manuscript; available in PMC 2014 January 07.


