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Summary
The sequential parallel clinical trial is a novel clinical trial design being used in psychiatric
diseases which are known to have potentially high placebo response rates. The design consists of
an initial parallel trial of placebo versus drug augmented by a second parallel trial of placebo
versus drug in the placebo non-responders from the initial trial. Statistical research in the design
has focused on hypothesis tests. However, an equally important output from any clinical trial is the
estimate of treatment effect and variability around that estimate. In the sequential parallel trial, the
most important treatment effect is the effect in the overall population. This effect can be estimated
by considering only the first phase of the trial but this ignores useful information from the second
phase of the trial. We develop estimates of treatment effect which incorporate data from both
phases of the trial. Our simulations and a real data example suggest that there can be substantial
gains in precision by incorporating data from both phases. The potential gains appear to be
greatest in moderate sized trials which would typically be the case in Phase II trials.

1. Introduction
In psychiatry, randomized, double-blind, placebo controlled clinical trials are necessary to
determine the efficacy of a new treatment. However, even for drugs which are known to be
effective, such trials have a high failure rate. Khan et al. [1] reviewed the data from nine
antidepressants approved by the United States Food and Drug Administration between 1985
and 2000. For these antidepressants, there were 51 randomized, double-blind, placebo-
controlled trials and 92 treatment arms with an eventually approved dose; however of these
92 arms, only 45 showed statistically significant separation compared to placebo. Further
analysis of the data suggests that high placebo response is the major contributor to the
problem of high type II error.

In order to address the placebo response, Fava et al. [2] proposed a novel design aimed at
increasing the efficiency of placebo controlled psychiatric clinical trials. The basic idea is
that in addition to an initial phase of a standard parallel design, there is a second phase in
which patients initially randomized to placebo and who have not responded are randomized
to drug or placebo. The inference on treatment is based on a combined analysis of both the
initial and second phases of the study. Fava et al. [2,3] called this design the sequential
parallel design.

The sequential parallel design is an example of an enrichment design [4] in which the
enrichment is the population of placebo non-responders. In contrast to other enrichment
designs, however, the primary population of interest in the sequential parallel design is the
overall population of depressed patients. This is because in clinical practice, it would be
unethical to initiate patients on placebo and wait to observe their response. The null
hypothesis of the sequential parallel design is that there is no treatment effect in either the
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overall population or the subpopulation of placebo non-responders. If it can be assumed that
placebo responders are also drug responders, then a significant effect in the subpopulation
implies a significant effect in the overall population. Fava et al. [2] proposed a weighted sum
of the observed treatment differences over the two phases to test the null hypothesis of no
treatment effect in either the overall or the subpopulation of placebo non-responders. Huang
and Tamura [5] proposed a score statistic under the assumption of equal treatment effect in
the two phases of the study. Ivanova et al. [6] extended the score statistic under the more
general assumption that the ratio of treatment effect in the two phases is known. Whichever
statistic is chosen, the efficiency of the design can be substantially increased over the
traditional parallel design.

In addition to testing of a statistical hypothesis, a second goal of a clinical trial is to yield an
estimate of the treatment effect and an associated confidence interval. Although the
treatment effect in the population of placebo non-responders may be interesting, the more
important treatment effect is the effect in the overall population. How should one estimate
the treatment effect in the overall population from a sequential parallel design? One obvious
possibility to estimate the treatment effect in the overall population by only considering the
data from the first phase of the trial. The usual estimated treatment effect from the first
phase will be unbiased and the confidence intervals will have correct coverage if the study is
large enough. This approach, however, fails to use any data from the second phase of the
study and hence may be inefficient. Standard confidence intervals using only the first phase
of the design may result in inconsistencies with the statistical test since the test uses
information from both phases. The goal of this manuscript is to explore various options for
estimating the treatment effect in the overall population while incorporating information
from both phases of the study. We consider binary endpoints and measure the treatment
effect as the difference in response rates. In Section 2, we describe the various methods
under consideration and in Section 3, we compare the finite sample properties of these
estimates and their approximate 95% confidence intervals by simulation. In Section 4, we
apply the methods to a recently presented sequential parallel trial of L-methylfolate in the
augmentation treatment of depression. We summarize our findings and recommendations in
Section 5.

2. Description of Design and Estimators
2.1 Sequential Parallel Design

Assume that the clinical trial consists of a single drug and a placebo. In the sequential
parallel design, patients are typically randomized into three groups. The basic idea is that
there are two phases of treatment with the duration of each phase sufficiently long for the
drug to elicit a response. In trials of major depressive disorder, a four to six week duration
for each phase would be reasonable. The three treatment groups are characterized by the
choice of placebo or drug in each phase. The first group receives placebo in both phases of
the study, the second group receives placebo in the first phase and drug in the second phase,
and the third group receive drug in both phases. Patients are randomized to the three groups

according to an a : a : (1−2a) ratio where . Typically, a is chosen to initially allocate
more patients to placebo yet be easy to implement. For example, a=1/3 leads to 1:1:1, and
a=3/8 leads to 3:3:2. All patients in all three groups typically continue through both phases
and the blind is maintained throughout the study. When assessing the treatment effect,
information is used from all randomized patients in the first phase but only from the first
phase placebo non-responders in the second phase. Define p1 = P (drug responsefirst phase),
and q1 = P (placebo responsefirst phase) as the probabilities of being a drug responder and a
placebo responder, in the first phase; define p2 = P (drug responsesecond phase|placebo non–
responderfirst phase) and q2 = P (placebo responsesecond phase|placebo non–
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responderfirst phase) as the conditional probabilities of being a drug responder and a placebo
responder in the second phase given that the patients are placebo non-responders in the first
phase; the sequential parallel design is shown in Table 1.

The total sample size of the trial is n. In the placebo-placebo treated group, n11 is the
observed number of non-responders in the first phase and responders in the second phase,
n12 is the observed number of non-responders in both phases, and n13 is the observed
number of responders in the first phase. In the placebo-drug treated group, n21 is the
observed number of non-responders in first phase and responders in the second phase, n22 is
the observed number of non-responders in both phases, and n23 is the observed number of
responders in the first phase. In the drug-drug treated group, n31 and n32 are the observed
number of responders and non-responders, respectively, in the first phase.

2.2 Maximum Likelihood Estimator
Consider the case where the treatment effect is potentially different in the two phases of the
study. The joint likelihood for n11, n12, n13, n21, n22, n23, n31 and n32 is

The MLE can be obtained by setting the first derivatives of logL(p1, q1, p2, q2) to 0 and
solving, which results in:

Define

then the information matrix of θ is :

Thus, we expect from the general theory that the MLEs θ̂MLE = (p̂1 q̂1 p̂2 q̂2)T are
asymptotically normally distributed with mean θ and covariance matrix
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If we define Δ = p1 − q1, then Δ̂MLE = p̂1 − q̂1. This estimator utilizes only data from the first
phase and we will refer to it as the Phase 1 estimator.

2.3 Constrained Maximum-Likelihood Estimator
In order to utilize data from the second phase, one needs to make assumptions about the
relationship between p1, q1, p2, and q2. One possibility is to make the assumption of equal
treatment effect in the two stages, as was proposed by Huang and Tamura [5] for inferential
testing. Define p1 − q1 = p2 − q2 = Δ. Then the joint likelihood function for n11, n12, n13, n21,
n22, n23, n31 and n32 can be written as:

Define

The first derivatives of logL(Δ, q1, q2) are:

There is no closed form solution for the MLE of θC. The MLE for these parameters have to
be obtained via numerical methods. The information matrix of θ is

 :
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The constrained MLE (constraint of equal treatment effect) θ̂CMLE = (Δ̂, q̂1, q̂2)T are
approximately normally distributed with mean θC and asymptotic covariance matrix

.

2.4 Alternative Treatment Estimator
The assumption of equal treatment effect in the two phases may be clinically debatable
because the two populations are different. The overall population however can be envisioned
to consist of two subpopulations, the subpopulation of placebo non-responders and the
subpopulation of placebo responders. Thus the overall treatment effect Δ can be written as:

where ΔRES and ΔNRES represent the treatment effect in responders and non-responders,
respectively. Suppose we assume that within the population of placebo responders, all
patients also respond to drug. Then ΔRES = 0. This assumption is referred to as the
monotonicity assumption in the causal effects literature and needs to be examined on a case
by case basis when considering a sequential parallel design. Without this assumption, the
inference from the design becomes problematic because a significant test statistic could arise
solely from the population of placebo non-responders.

The quantity p2−q2 represents the treatment effect in placebo non-responders after being
treated by placebo. If one assumes that the initial placebo treatment does not affect the
treatment effect in placebo non-responders, then ΔNRES = p2 − q2. We call this assumption
the constancy of treatment effects. Under monotonicity and constancy assumptions, an
alternative estimator of the overall treatment effect is:

2.5 Linear Combination Estimator
The assumptions of monotonicity and constancy of treatment effect in placebo non-
responders would be difficult to verify in practice. Thus, rather than relying on Δ̂2 alone, we
consider linear combinations of the two estimators Δ̂MLE and Δ̂2. Serfling [7, p.127] shows
that the optimal (minimal variance) linear combination of two estimators that are jointly
asymptotically normal is a function of the elements of the asymptotic covariance matrix.

If the covariance matrix of (Δ̂MLE, Δ̂2) is denoted:

then the linear combination  with minimum variance occurs when
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At this value of w, the asymptotic variance of the linear combination times n is

(1)

For the two estimators Δ̂MLE and Δ̂2, the delta method yields the asymptotic covariance
matrix

(2)

Thus Δ̂O is asymptotically normal with mean w(p1 − q1) + (1 − w)(p2− q2) and variance
given by (1) with the values of Σij taken from (2). When p1 − q1 = (1 − q1)(p2− q2), the
asymptotic mean of Δ̂O is p1− q1 and Δ̂O is asymptotically unbiased.

Table 2 gives the values for the asymptotic variance (×n) of Δ̂MLE and the optimal linear
combination for various values of p1, q1, p2, q2 and a when the assumptions underlying Δ̂2
hold. Clearly, substantial reductions in variance are possible when the data from the second
phase are combined with the first phase data. The issue of course is that the optimal weight
is a function of the unknown parameters. One obvious approach would be to plug in the
maximum likelihood estimators for p1, q1, p2, and q2 into Δ̂O, and we denote this plug-in
estimator as Δ̂EST. The danger however of using weights with random components and
ignoring this randomness, has been discussed by Shuster [8] in the context of meta-analyses.

An alternative approach to the plug-in estimator is to consider weights that are only a
function of the known allocation ratio a. In examining (1) we noticed that the covariance
tends to be much smaller in magnitude than the variance quantities. For example, if n = 1, a
= .25, p1 = .6, q1 = .5, p2 = .5, and q2 = .3, the covariance matrix is

Suppose we ignore the covariance in determining the weight. We also somewhat arbitrarily

assume q1 = .4 and p1(1 − pl) = p2(1 − p2) = q2(1 − q2) = .2. Then  This
allocation based weight is compared to the optimal weight in Table 2. It appears that this
estimator does a reasonable job as long as the unknown parameters are not too close to zero.
For these values of underlying parameters, wa tends to overweight Δ̂MLE which may not be
unreasonable since Δ̂MLE is always unbiased. We call this linear combination estimator Δ̂WA.
Note in Table 2 that Var(Δ̂WA) is close to Var(Δ̂O). Both Δ̂EST and Δ̂WA are asymptotically
unbiased when p1 − q1 = (1 − q1)(p2− q2).
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The monotonicity and constancy of treatment effect assumptions imply that p1 − q1 = (1 −
q1)(p2− q2). If this does not hold, the linear combination estimator will be biased for
estimating p1 − q1. The magnitude of the bias compared to the variance depends on the
underlying parameters and the sample size n. In the following section, we give results from
our simulation study which looks at the various point estimates and their approximate 95%
confidence intervals.

3. Simulation Study
The estimators, Δ̂MLE, Δ̂CMLE, Δ̂O, Δ̂EST, and Δ̂WA (hereafter referred to as MLE, CMLE, O,
EST, and WA respectively) were examined in a simulation study. This section presents the
results of a small representative sample from that study. The oracle estimator, Δ̂O, is not an
estimator one can use in practice since it uses the true values of p1, q1, p2, and q2 in both the
weight and the variances of the estimator. However we examined it in the simulations as a
benchmark for the other linear combination estimators.

We consider total sample sizes from n = 50 to n = 400. At each sample size and parameter
configuration, 1000 realizations were simulated. For all estimators excluding Δ̂O, we used
Wald type confidence intervals obtained by the underlying asymptotic normality of the
estimators. The Newton-Raphson method using initial values, q̂1, q̂2 and

 was used to calculate CMLE. If the method failed to converge, a small
set of alternative initial values were tested. If nonconvergence was still an issue, then a grid
search over allowable values of q1, q2 and Δ was used to determine CMLE. Table 3 shows
the performance of the estimators in terms of bias, variance, mean squared error (MSE),
coverage probability of the nominal 95% confidence interval, and the average length of the
95% confidence interval. At each sample size, we show the range of S.E. across the five
estimators for each performance measure. In Table 3, we show two cases for which p1 − q1
= (1 − q1)(p2 − q2). These cases represent cases in which the assumptions underlying the
linear combination estimators are true and the estimators are asymptotically unbiased. In
Table 3, the allocation ratio a is equal to 0.35 which is close to the case where the initial
allocation is 1:1:1 for the sequential parallel design. We also examined other a ranging from
0.20 to 0.40 and the results were qualitatively similar. The results show that in all cases, the
MSE of the linear combination estimators are smaller than the MLE and CMLE estimators
and the lengths of the 95% confidence intervals are smaller than the corresponding lengths
for the MLE and CMLE. This indicates that the gains in using a linear combination
estimator can be substantial, especially at moderate sample sizes from n = 100 to n = 200. At
low sample sizes, the confidence intervals for all of the estimators excluding the benchmark
O tend to be liberal, especially for the EST estimator.

Table 4 shows the same performance measures of the estimators for two cases for which p1
− q1 ≠ (1 − q1)(p2 − q2). In these cases, the linear combination estimators will be biased for
the true quantity of interest p1 − q1 and this is evident in the bias columns of the table.
Negative values for bias indicate cases where the estimator underestimates the true quantity
of interest. The bias for the linear combination estimators does not go to zero as n increases
and thus, as n gets larger, the bias becomes more pronounced in comparison to the variance.
This causes the coverage probability to deteriorate as n increases. At moderate values of n,
the coverage probability of the linear combination estimators tends to be 90-95% as opposed
to the nominal 95%. Even though the estimators are biased, the MSE for the linear
combination estimators is still smaller than the MSE for the MLE which suggests that as a
point estimate, the linear combination estimator is still competitive with the MLE. The
second set of parameters in Table 4 is a case in which the constrained maximum likelihood
estimator is asymptotically unbiased since p1 − q1 = p2 − q2. At small and moderate sample
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sizes, failure of convergence for the Newton-Raphson method was more pronounced and
5-20% of the time, a grid search was needed to compute CMLE.

When p1 − q1 ≠ (1 − q1)(p2 − q2), the bias is a function of how far apart the two estimates
are. In general, q2 < q1 and thus, as q1 increases, there is a greater chance that the
discrepancy is large. Thus, more caution is needed in using 95% confidence intervals for the
linear combination estimators when the placebo response in the first phase is large. Even in
cases of large discrepancy, however, we observed that the MSE of the linear combination
estimators was lower than the MSE of the MLE.

4. Real Data Example
A sequential parallel clinical trial was conducted in Selective Serotonin Reuptake Inhibitor
(SSRI) treated patients with Major Depressive Disorder with the test drug being 15 mg of L-
methylfolate (ClinicalTrials.gov Identifier: NCT00955955). In this study, the test drug or
placebo was augmented to the SSRI which the patient was currently taking. The allocation
ratio was 3:3:2 for the groups identified in Table 1 which corresponds to a=0.375. The
treatment period for both the first phase and the second phase was 30 days. The primary
outcome scale was the change in total scores of the 17 item Hamilton Depression Rating
Scale. Response was defined as a 50% reduction from baseline (defined as initiation of the
phases) in the total score. Figure 1 illustrates the final response data from the trial (Fava et
al. [9]). In this example, p̂1 = .368, q̂1 = .196, p̂2 = .278 and q̂2 = .095. The dropout of
placebo non-responders adds additional multinomial categories in the sequential parallel
design (Tamura and Huang [10]). If s is defined as the retention rate of placebo non-
responders, then the covariance matrix (1) is modified with the last two terms of the
asymptotic variance of Δ̂2 divided by s. The constrained MLE of s has a closed form
solution as the empirical retention rate in placebo non-responders and the constrained MLE
of the remaining parameters may be obtained by similar optimization methods as before.
With these adjustments, the estimated weight for the plug-in estimator is 0.379, resulting in
Δ̂EST = 0.156 (s.e.=0.078). The weighted estimator Δ̂WA = 0.156 (s.e.=0.078) and the
constrained MLE Δ̂CMLE = 0.177 (s.e.=0.086). Figure 2 shows the point estimates and the
associated 95% confidence limits of the difference in response rates in the overall
population. Although all 4 point estimators are very similar, there is a large reduction in the
length of the 95% confidence interval for the linear combination estimators and the
constrained MLE. The reported p-value for the drug effect was 0.0399 (Fava et al. [9])
which is consistent with the confidence limits which utilize the second phase information.

5. Discussion
Our simulation studies suggest there are substantial gains possible in utilizing information
from the second phase of the design in estimating the treatment effect and associated
confidence intervals. The linear combination estimators and associated confidence intervals
are simple to calculate compared to the constrained maximum likelihood estimator. There
appears to be little difference between the two linear combination estimators considered
here, however at small sample sizes, we prefer the estimator which weights information only
based on the allocation ratio. There are large gains for moderate sample size studies which
would be the case in Phase II or proof of concept studies. As the sample size becomes large,
bias can cause the coverage probability of the confidence intervals from the linear
combination estimators to break down if p1 − q1 ≠ (1 − q1)(p2 − q2). This is also true of the
CMLE if the treatment effects are not equal in the two phases. If the sequential parallel
design is used in a large pivotal Phase III trials where correct coverage is important, it seems
reasonable to use the MLE confidence interval widths with a linear combination estimator
for the point estimate.
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The logic we have used to construct the estimators can be extended to continuous data. In
such a case, the important factor is the joint distribution of the estimators of treatment effect
from the first phase and the second phase. Once the joint distribution is known, then
analogous linear combination estimators to what we have constructed for binary data, can be
obtained. The monotonicity assumption in the continuous data case assumes that the
quantitative response in placebo responders would be exactly the same whether the patient
was administered drug or placebo. Some hint of whether this assumption is tenable can be
obtained by examining the data in the second phase from placebo responders. If placebo
responders when switched to drug show a significant difference compared to placebo
responders who remained on placebo, then the assumption of monotonicity would be
questionable.

One of the primary goals of Phase II studies is to get information on the treatment effect in
order to design the pivotal Phase III studies. In such studies, exact coverage of the
confidence interval is less important. However, analytical methods which reduce the
uncertainty of the point estimate are important whether the information is used informally or
more formally as was suggested by Chuang-Stein [11] for the design of pivotal Phase III
studies. Another important usage of the linear combination estimator and confidence
intervals would be in graphical displays involving a number of clinical trials. As an
example, suppose a sponsor utilized a sequential parallel design in a Phase II study and
subsequently used the traditional parallel design in two Phase III studies. In an integrated
summary of efficacy, it would be important to use a linear combination estimator and
confidence interval for the sequential parallel design (assuming that there was not a large
difference between p̂1 − q̂1 and (1 − q̂1)(p̂2 − q̂2)), when graphically representing the results
from all three studies. Our results show that if the sequential parallel design is used as a
Phase II study, it is important that the treatment effect and variability around that effect be
calculated using data from both phases of the study.

Acknowledgments
The authors thank Dr. Maurizio Fava and Dr. David Schoenfeld for sharing the L-methylfolate results with us prior
to their presentation. Dennis Boos was supported by NIH grant P01 CA142538-01.

References
1. Khan A, Khan SR, Walens G, Kolts R, Giller EL. Frequency of positive studies among fixed and

flexible dose antidepressant clinical trials: an analysis of the Food and Drug Administration
summary basis of approval reports. Neuropsychopharmacology. 2003; 28:552–557.10.1038/sj.npp.
1300059 [PubMed: 12629536]

2. Fava M, Evins AE, Dorer DJ, Schoenfeld DA. The problem of placebo response in clinical trials for
psychiatric disorders: culprits, possible remedies, and a novel study design approach. Psychotherapy
and Psychosomatics. 2003; 72:115–127.10.1159/000069738 [PubMed: 12707478]

3. Fava M, Evins AE, Dorer DJ, Schoenfeld DA. Erratum. Psychotherapy and Psychosomoatics. 2004;
73:123.10.1159/000076725

4. Fedorov, VV.; Liu, T. Wiley Encyclopedia of Clinical Trials. New York: Wiley; 2007. Enrichment
design.

5. Huang X, Tamura RN. Comparison of Test Statistics for the Sequential Parallel Design. Statistics in
Biopharmaceutical Research. 2010; 2(1):42–50.10.1198/sbr.2010.08015

6. Ivanova A, Qaqish B, Schoenfeld DA. Sample Size and Power Calculations for the Sequential
Parallel Comparison Design. Statistics in Medicine. 2010 Submitted to.

7. Serfling, RJ. Approximation Theorems of Mathematical Statistics. New York: Wiley; 1980.

8. Shuster JJ. Empirical vs natural weighting in random effects meta-analysis. Statistics in Medicine.
2010; 29(12):1259–65.10.1002/sim.3607 [PubMed: 19475538]

Tamura et al. Page 9

Stat Med. Author manuscript; available in PMC 2014 January 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



9. Fava, M.; Shelton, R.; Zajecka, J.; Rickels, K.; Clam, A.; Bace, L.; Schoenfeld, D.; Nelson, E.;
Baeber, J.; Lydracd, B.; Migehoulon, D.; Alpect, J.; Zisook, S.; Papakogtas, G. L-methylfolate
Augmentation of Selective Seroton in Reuptake Inhibitors (SSRIs) for SSRI-Resistant Major
Depressive Disorder: Results of Two Randomized Double Blind Trials. Poster Presented at 2010
ACNP Annual Meeting; 2010.

10. Tamura RN, Huang X. An examination of the efficiency of the sequential parallel design in
psychiatric clinical trials. Clinical Trials: Journal of the Society of Clinical Trials. 2007; 4:309–
317.10.1177/1740774507081217

11. Chuang-Stein C. Sample size and the probability of a successful trial. Pharmaceutical Statistics.
2006; 5:305–309.10.1002/pst.232 [PubMed: 17128428]

Tamura et al. Page 10

Stat Med. Author manuscript; available in PMC 2014 January 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Response data from sequential parallel clinical trial of 15mg L-methylfolate
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Figure 2.
Point estimates and 95% confidence intervals for the treatment-placebo response rates for
the L-methylfolate example.

Tamura et al. Page 12

Stat Med. Author manuscript; available in PMC 2014 January 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Tamura et al. Page 13

Ta
bl

e 
1

Se
qu

en
tia

l p
ar

al
le

l t
ri

al
 d

es
ig

n.

T
re

at
m

en
t

R
es

po
ns

e

F
ir

st
 p

ha
se

Se
co

nd
 p

ha
se

F
ir

st
 p

ha
se

Se
co

nd
 p

ha
se

F
re

qu
en

cy
P

ro
ba

bi
lit

y

N
um

be
r 

of
 p

at
ie

nt
s 

al
lo

ca
te

d

Pl
ac

eb
o

Pl
ac

eb
o

N
o

Y
es

n 1
1

(1
 −

 q
1)

q 2

na
N

o
N

o
n 1

2
(1

 −
 q

1)
(1

 −
 q

2)

Y
es

n 1
3

q 1

Pl
ac

eb
o

D
ru

g
N

o
Y

es
n 2

1
(1

 −
 q

1)
p 2

na
N

o
N

o
n 2

2
(1

 −
 q

1)
(1

 −
 p

2)

Y
es

n 2
3

q 1

D
ru

g
D

ru
g

Y
es

n 3
1

p 1

n(
1 

−
 2

a)
N

o
n 3

2
1−

p 1

Stat Med. Author manuscript; available in PMC 2014 January 07.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Tamura et al. Page 14

Ta
bl

e 
2

A
sy

m
pt

ot
ic

 v
ar

ia
nc

es
 (

×
n)

 o
f 

th
e 

Ph
as

e 
I 

es
tim

at
or

, Δ̂
M

L
E
, t

he
 o

pt
im

al
 li

ne
ar

 c
om

bi
na

tio
n 

es
tim

at
or

, Δ̂
O

 a
nd

 th
e 

al
lo

ca
tio

n 
w

ei
gh

te
d 

es
tim

at
or

 Δ̂
W

A
.

a
p 1

q 1
p 2

q 2
w

*
w

a**
V

ar
(Δ̂

M
L

E
)

V
ar

(Δ̂
O

)
V

ar
(Δ̂

W
A
)

.2
5

.6
.5

.5
.3

.4
88

.5
22

0.
98

0
0.

53
0

0.
53

2

.4
.3

.3
5

.1
.5

05
0.

90
0

0.
50

6
0.

50
7

.3
0

.6
.5

.5
.3

.4
29

.4
71

1.
01

7
0.

48
3

0.
48

6

.4
.3

.3
5

.1
.4

39
0.

95
0

0.
46

6
0.

46
8

.3
5

.6
.5

.5
.3

.3
56

.4
04

1.
15

7
0.

45
8

0.
46

2

.4
.3

.3
5

.1
.3

61
1.

10
0

0.
44

5
0.

44
8

* O
pt

im
al

 w
ei

gh
t

**
A

llo
ca

tio
n 

ba
se

d 
w

ei
gh

t

Stat Med. Author manuscript; available in PMC 2014 January 07.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Tamura et al. Page 15

Ta
bl

e 
3

Pe
rf

or
m

an
ce

 o
f 

es
tim

at
or

s 
w

he
n 

p 1
−

q 1
 =

 (
1−

q 1
)(

p 2
−

q 2
).

 C
ov

er
ag

e 
is

 th
e 

em
pi

ri
ca

l c
ov

er
ag

e 
of

 th
e 

no
m

in
al

 9
5%

 c
on

fi
de

nc
e 

in
te

rv
al

 a
nd

 le
ng

th
 is

 th
e

av
er

ag
e 

le
ng

th
 o

f 
th

e 
95

%
 c

on
fi

de
nc

e 
in

te
rv

al
. A

llo
ca

tio
n 

a 
=

 0
.3

5.

p 1
 =

 .6
, q

1 
= 

.5
, p

2 
= 

.5
, q

2 
= 

.3
p 1

 =
 .4

, q
1 

= 
.2

, p
2 

= 
.3

5,
 q

2 
= 

.1

n
E

st
im

at
or

B
ia

s
V

ar
ia

nc
e

M
SE

C
ov

er
ag

e
L

en
gt

h
B

ia
s

V
ar

ia
nc

e
M

SE
C

ov
er

ag
e

L
en

gt
h

50
M

L
E

.0
01

.0
23

.0
23

93
0.

59
0

.0
02

.0
21

.0
21

93
0.

55
7

C
M

L
E

.0
32

.0
16

.0
17

93
0.

48
3

.0
23

.0
11

.0
12

93
0.

39
5

O
.0

03
.0

09
.0

09
95

0.
37

4
-.

00
1

.0
09

.0
09

96
0.

37
5

E
ST

.0
12

.0
09

.0
10

92
0.

35
6

-.
00

2
.0

10
.0

10
92

0.
35

8

W
A

.0
03

.0
09

.0
09

94
0.

36
3

-.
00

1
.0

09
.0

09
94

0.
36

2

R
an

ge
 S

E
.0

03
-

.0
00

4-
.0

00
4-

.7
-

.0
00

0-
.0

03
-

.0
00

4-
.0

00
4-

.6
-

.0
00

0-

.0
05

.0
01

0
.0

01
0

.9
.0

01
0

.0
05

.0
01

0
.0

00
9

.9
.0

01
2

10
0

M
L

E
.0

01
.0

11
.0

11
95

0.
41

6
.0

04
.0

10
.0

10
94

0.
39

3

C
M

L
E

.0
28

.0
08

.0
09

93
0.

34
5

.0
25

.0
05

.0
06

94
0.

28
3

O
-.

00
2

.0
04

.0
04

95
0.

26
5

.0
00

.0
04

.0
04

96
0.

26
5

E
ST

.0
02

.0
05

.0
05

93
0.

25
9

-.
00

1
.0

04
.0

04
94

0.
25

9

W
A

-.
00

1
.0

04
.0

04
95

0.
26

1
.0

00
.0

04
.0

04
95

0.
26

0

R
an

ge
 S

E
.0

02
-

.0
00

2-
.0

00
2-

.7
-

.0
00

0-
.0

02
-

.0
00

2-
.0

00
2-

.7
-

.0
00

0-

.0
03

.0
00

5
.0

00
5

.8
.0

00
4

.0
03

.0
00

4
.0

00
4

.8
.0

00
5

20
0

M
L

E
-.

00
3

.0
06

.0
06

93
0.

29
6

.0
03

.0
05

.0
05

94
0.

27
9

C
M

L
E

.0
28

.0
04

.0
05

91
0.

24
6

.0
25

.0
03

.0
03

91
0.

20
2

O
.0

00
.0

02
.0

02
95

0.
18

8
.0

01
.0

02
.0

02
94

0.
18

8

E
ST

.0
02

.0
03

.0
03

94
0.

18
5

.0
01

.0
02

.0
02

94
0.

18
5

W
A

-.
00

1
.0

02
.0

02
94

0.
18

7
.0

01
.0

02
.0

02
94

0.
18

6

R
an

ge
 S

E
.0

02
-

.0
00

1-
.0

00
1-

.7
-

.0
00

0-
.0

02
-

.0
00

1-
.0

00
1-

.8
-

.0
00

0-

.0
02

.0
00

3
.0

00
3

.9
.0

00
2

.0
02

.0
00

2
.0

00
2

.9
.0

00
2

40
0

M
L

E
-.

00
4

.0
03

.0
03

95
0.

21
0

.0
00

.0
02

.0
02

94
0.

19
8

C
M

L
E

.0
26

.0
02

.0
03

91
0.

17
5

.0
25

.0
01

.0
02

91
0.

14
4

O
-.

00
2

.0
01

.0
01

95
0.

13
3

.0
01

.0
01

.0
01

96
0.

13
3

E
ST

-.
00

1
.0

01
.0

01
94

0.
13

2
.0

01
.0

01
.0

01
95

0.
13

2

Stat Med. Author manuscript; available in PMC 2014 January 07.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Tamura et al. Page 16

p 1
 =

 .6
, q

1 
= 

.5
, p

2 
= 

.5
, q

2 
= 

.3
p 1

 =
 .4

, q
1 

= 
.2

, p
2 

= 
.3

5,
 q

2 
= 

.1

n
E

st
im

at
or

B
ia

s
V

ar
ia

nc
e

M
SE

C
ov

er
ag

e
L

en
gt

h
B

ia
s

V
ar

ia
nc

e
M

SE
C

ov
er

ag
e

L
en

gt
h

W
A

-.
00

2
.0

01
.0

01
94

0.
13

3
.0

01
.0

01
.0

01
96

0.
13

2

R
an

ge
 S

E
.0

01
-

<
.0

00
1-

<
.0

00
1-

.7
-

.0
00

0-
.0

01
-

<
.0

00
1-

<
.0

00
1-

.6
-

.0
00

0-

.0
02

.0
00

1
.0

00
1

.9
.0

00
1

.0
02

.0
00

1
.0

00
1

.9
.0

00
1

Stat Med. Author manuscript; available in PMC 2014 January 07.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Tamura et al. Page 17

Ta
bl

e 
4

Pe
rf

or
m

an
ce

 o
f 

es
tim

at
or

s 
w

he
n 

p 1
−

q 1
 ≠

 (
1−

q 1
)(

p 2
−

q 2
).

 C
ov

er
ag

e 
is

 th
e 

em
pi

ri
ca

l c
ov

er
ag

e 
of

 th
e 

no
m

in
al

 9
5%

 c
on

fi
de

nc
e 

in
te

rv
al

 a
nd

 le
ng

th
 is

 th
e

av
er

ag
e 

le
ng

th
 o

f 
th

e 
95

%
 c

on
fi

de
nc

e 
in

te
rv

al
. A

llo
ca

tio
n 

a 
=

 0
.3

5.

p 1
 =

 .4
, q

1 
= 

.2
, p

2 
= 

.4
, q

2 
= 

.1
p 1

 =
 .4

, q
1 

= 
.2

, p
2 

= 
.3

, q
2 

= 
.1

n
E

st
im

at
or

B
ia

s
V

ar
ia

nc
e

M
SE

C
ov

er
ag

e
L

en
gt

h
B

ia
s

V
ar

ia
nc

e
M

SE
C

ov
er

ag
e

L
en

gt
h

50
M

L
E

-.
00

2
.0

22
.0

22
92

0.
55

5
.0

08
.0

24
.0

24
93

0.
55

4

C
M

L
E

.0
42

.0
13

.0
14

89
0.

40
2

.0
02

.0
11

.0
11

92
0.

38
8

O
.0

21
.0

10
.0

11
94

0.
38

2
-.

02
3

.0
09

.0
09

95
0.

36
6

E
ST

.0
19

.0
11

.0
12

90
0.

36
6

-.
02

7
.0

10
.0

10
90

0.
34

7

W
A

.0
21

.0
10

.0
11

92
0.

37
0

-.
02

2
.0

09
.0

09
92

0.
35

3

R
an

ge
 S

E
.0

03
-

.0
00

5-
.0

00
5-

.8
-

.0
00

0-
.0

03
-

.0
00

4-
.0

00
4-

.7
-

.0
00

0-

.0
05

.0
01

0
.0

01
0

.1
0

.0
01

3
.0

05
.0

01
1

.0
01

1
1.

0
.0

01
3

10
0

M
L

E
.0

01
.0

10
.0

10
93

0.
39

1
.0

01
.0

10
.0

10
93

0.
39

1

C
M

L
E

.0
43

.0
06

.0
08

89
0.

28
7

.0
00

.0
06

.0
06

94
0.

27
9

O
.0

21
.0

05
.0

05
93

0.
27

0
-.

02
4

.0
05

.0
05

93
0.

25
9

E
ST

.0
20

.0
05

.0
06

92
0.

26
5

-.
02

5
.0

05
.0

05
91

0.
25

3

W
A

.0
21

.0
05

.0
05

93
0.

26
6

-.
02

4
.0

05
.0

05
92

0.
25

5

R
an

ge
 S

E
.0

02
-

.0
00

2-
.0

00
2-

.8
-

.0
00

0-
.0

02
-

.0
00

2-
.0

00
2-

.7
-

.0
00

0-

.0
03

.0
00

5
.0

00
4

1.
0

.0
00

5
.0

03
.0

00
5

.0
00

5
.9

.0
00

5

20
0

M
L

E
-.

00
2

.0
05

.0
05

93
0.

27
9

-.
00

3
.0

05
.0

05
95

0.
27

9

C
M

L
E

.0
45

.0
03

.0
05

85
0.

20
4

.0
01

.0
03

.0
03

94
0.

19
9

O
.0

21
.0

02
.0

03
93

0.
19

1
-.

02
3

.0
02

.0
03

92
0.

18
3

E
ST

.0
21

.0
03

.0
03

92
0.

18
9

-.
02

3
.0

02
.0

03
91

0.
18

2

W
A

.0
22

.0
02

.0
03

93
0.

18
9

-.
02

3
.0

02
.0

03
91

0.
18

2

R
an

ge
 S

E
.0

02
-

.0
00

1-
.0

00
1-

.8
-

.0
00

0
.0

02
-

.0
00

1-
.0

00
1-

.7
-

.0
00

0-

.0
02

.0
00

2
.0

00
2

1.
1

.0
00

3
.0

02
.0

00
2

.0
00

2
.9

.0
00

3

40
0

M
L

E
-.

00
1

.0
03

.0
03

95
0.

19
8

.0
00

.0
02

.0
02

94
0.

19
8

C
M

L
E

.0
44

.0
01

.0
03

79
0.

14
5

.0
00

.0
01

.0
01

96
0.

14
1

O
.0

21
.0

01
.0

02
92

0.
13

5
-.

02
4

.0
01

.0
02

89
0.

13
0

E
ST

.0
21

.0
01

.0
02

92
0.

13
5

-.
02

5
.0

01
.0

02
88

0.
12

9

Stat Med. Author manuscript; available in PMC 2014 January 07.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Tamura et al. Page 18

p 1
 =

 .4
, q

1 
= 

.2
, p

2 
= 

.4
, q

2 
= 

.1
p 1

 =
 .4

, q
1 

= 
.2

, p
2 

= 
.3

, q
2 

= 
.1

n
E

st
im

at
or

B
ia

s
V

ar
ia

nc
e

M
SE

C
ov

er
ag

e
L

en
gt

h
B

ia
s

V
ar

ia
nc

e
M

SE
C

ov
er

ag
e

L
en

gt
h

W
A

.0
22

.0
01

.0
02

92
0.

13
5

-.
02

4
.0

01
.0

02
89

0.
12

9

R
an

ge
 S

E
.0

01
-

<
.0

00
1-

<
.0

00
1-

.7
-

.0
00

0-
.0

01
-

<
.0

00
1-

<
.0

00
1-

.7
-

.0
00

0-

.0
02

.0
00

1
.0

00
1

1.
3

.0
00

1
.0

02
.0

00
1

.0
00

1
1.

0
.0

00
1

Stat Med. Author manuscript; available in PMC 2014 January 07.


